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Human operators supervising multiple uninhabited air and ground vehicles (UAVs
and UGVs) under high task load must be supported appropriately in context by auto-
mation. Two experiments examined the efficacy of such adaptive automation in a
simulated high workload reconnaissance mission involving four subtasks: (a) UAV
target identification; (b) UGV route planning; (c) communications, with embedded
verbal situation awareness probes; and (d) change detection. The results of the first
“baseline” experiment established the sensitivity of a change detection procedure to
transient and nontransient events in a complex, multi-window, dynamic display. Ex-
periment 1 also set appropriate levels of low and high task load for use in Experiment
2, in which three automation conditions were compared: manual; static automation,
in which an automated target recognition (ATR) system was provided for the UAV
task; and adaptive automation, in which individual operator change detection perfor-
mance was assessed in real time and used to invoke the ATR if and only if change de-
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tection accuracy was below a threshold. Change detection accuracy and situation
awareness were higher and workload was lower for both automation conditions com-
pared to manual performance. In addition, these beneficial effects on change detec-
tion and workload were significantly greater for adaptive compared to static automa-
tion. The results point to the efficacy of adaptive automation for supporting the
human operator tasked with supervision of multiple uninhabited vehicles under high
workload conditions.

INTRODUCTION

Uninhabited vehicles (UVs) and other robotic systems are being introduced in
rapid fashion into the military to extend manned capabilities, provide tactical flexi-
bility, and act as “force multipliers” (Barnes, Parasuraman, & Cosenzo, 2006;
Cummings & Guerlain, 2007). In the U.S. Army’s Future Combat Systems (FCS),
for example, battlefield force structures will be redesigned to be flexible, reconfig-
urable components tailored to specific combat missions. The human operators of
these systems will be involved in supervisory control of UVs with the possibility of
occasional manual intervention. In the extreme case, soldiers will operate multiple
systems while on the move and while under enemy fire. Because of the consequent
increase in the cognitive workload demands on the soldier, automation will be
needed to support human-system performance. For example, automated decision
aids can allow tactical decisions to be made more rapidly, thereby shortening the
“sensor-to-shooter” loop in command and control (C2) systems (Adams, 2001;
Rovira, McGarry, & Parasuraman, 2007).

An important design issue is what the level and type of automation should be for
effective support of the operator in such systems (Parasuraman, Sheridan, &
Wickens, 2000). Unfortunately, automated aids have not always enhanced system
performance, primarily due to problems in their use by human operators or to un-
anticipated interactions with other subsystems. Problems in human-automation in-
teraction have included unbalanced mental workload, reduced situation aware-
ness, decision biases, mistrust, overreliance, and complacency (C. Billings, 1997;
Parasuraman & Riley, 1997; Sarter, Woods, & Billings, 1997; Sheridan & Para-
suraman, 2006; Wiener, 1988).

Adaptive automation has been proposed as a solution to the problems asso-
ciated with inflexible automation (Inagaki, 2003; Parasuraman, 2000; Parasura-
man & Miller, 2006; Scerbo, 2001). In this approach, information or decision sup-
port is not fixed at the design stage but presented appropriately depending on
context in the operational environment. Context-sensitive adaptive automation is
initiated by the system based on critical mission events, operator performance, or
physiological state (Barnes et al., 2006; Parasuraman, Bahri, Deaton, Morrison, &
Barnes, 1992). Adaptive systems were proposed over 20 years ago (Hancock,
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Chignell, & Lowenthal, 1985; Parasuraman et al., 1992; Rouse, 1988), but empiri-
cal evaluations of their efficacy have only been conducted over the last decade—in
such domains as aviation (Parasuraman, Mouloua, & Hilburn, 1999), air traffic
management (Hilburn, Jorna, Byrne, & Parasuraman, 1997; D. B. Kaber & Ends-
ley, 2004), and industrial process control (Moray, Inagaki, & Itoh, 2000). Further-
more, there has been only limited empirical research on adaptive automation to
support human supervision of robots or unmanned vehicles (Parasuraman, Galster,
Squire, Furukawa, & Miller, 2005; Wilson & Russell, 2007).

The method of invocation in adaptive systems is a key issue (Barnes et al.,
2006). Parasuraman et al. (1992) reviewed the major invocation techniques and di-
vided them into five main categories: (a) critical events; (b) operator performance
measurement; (c) operator physiological assessment; (d) operator modeling; and
(e) hybrid methods that combine one or more of the previous four methods. For ex-
ample, in an aircraft air defense system, adaptive automation based on critical
events would invoke automation only when certain tactical environmental events
occur, such as the beginning of a “pop-up” weapon delivery sequence: this would
lead to activation of all defensive measures of the aircraft (Barnes & Grossman,
1985). If the critical events do not occur, the automation is not invoked. Hence, this
method is inherently flexible and adaptive, because it can be tied to current tactics
and doctrine during mission planning. This method requires that the contingencies
and critical events are in fact anticipated, which may not always be possible. An-
other disadvantage of the method is its insensitivity to actual system and human
operator performance. One potential way to overcome this limitation is to measure
operator performance and/or physiological activity in real time. For example,
mental workload may be inferred from performance, physiological, or other mea-
sures (Byrne & Parasuraman, 1996; Kramer & Parasuraman, 2007; Wilson & Rus-
sell, 2003). The measures can provide inputs to an adaptive system manager
(which could be rule or neural network based). The output of this system then in-
vokes automation to support or advise the operator appropriately, with the goal of
balancing workload at some optimum, moderate level (Parasuraman et al., 1999;
Wilson & Russell, 2003).

In addition to measures of workload, assessment of situation awareness might
also be useful in adaptive systems (D. B. Kaber & Endsley, 2004). Reduced situa-
tion awareness has been identified as a major contributor to poor performance in
search-and-rescue missions with autonomous robots (Burke & Murphy, 2004;
Murphy, 2004). In particular, transient or dynamic changes in situation awareness
might be captured by probing the operator’s awareness of changes in the environ-
ment. One such measure is change detection performance. People often fail to no-
tice changes in visual displays when they occur at the same time as various forms
of visual transients (Simons & Ambinder, 2005). This “change blindness” phe-
nomenon has typically been demonstrated for basic laboratory tasks or for staged
real-world activities such as two-person sporting games or face-to-face social in-
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teraction (Simons & Rensink, 2005). Change blindness also occurs with complex
visual displays used in various military C2 environments. Durlach (2004) exam-
ined the effect of transient distractor events (i.e., window closing) on detection of
changes in icon position, location, and size in a C2 map display. She showed that
changes in icon position on the map (e.g., indicating enemy unit movement) were
vulnerable to distractor events; detection performance decreased from 79 to 37%
when such distractors were present.

The goal of the present research was to assess the efficacy of adaptive automa-
tion on UV operator performance in a simulated reconnaissance mission. Adaptive
support was triggered based on the operator’s change detection performance. Mis-
sion scenarios involved supervision of multiple UVs and required multitasking.
Effects of adaptive automation on performance, SA, and workload were examined.
We developed an in-house simulation capability, the Robotic NCO, designed to
isolate some of the cognitive requirements associated with a single operator con-
trolling robotic assets within a larger military environment (Barnes et al., 2006).
The goal was to create a microworld with face validity for future military opera-
tions involving UAVs and UGVs while providing for a degree of experimental con-
trol. For example, the design of the UGV task (described below) was based on field
observations of the Army’s Experimental Unmanned Vehicle (XUV) that currently
uses an autonomous navigation system in the manner simulated in our studies. The
simulation required the participant to complete four interrelated, military-relevant
tasks: (s) a UAV target identification task; (b) a UGV route planning task; (c) a
communications task with an embedded verbal situation awareness probe task;
and (d) an ancillary task designed to assess situation awareness using a probe de-
tection method, a change detection task embedded within a situation map. We con-
ducted two experiments with the Robotic NCO simulation. The first was a “base-
line” study, without automation, in which we investigated change detection and
other aspects of performance as a function of parametric variation in task load. In a
subsequent main experiment, we examined the effects of adaptive automation on
performance, workload, and situation awareness in the same task under conditions
of low and high task load.

In the baseline experiment we varied task load by manipulating the difficulty of
the UAV and communications tasks at each of two levels in a 2 × 2 factorial design.
In the embedded change detection task, an icon on the situation map changed its
location at unpredictable times during the simulated mission. On the basis of the
extensive change blindness literature (Simons & Ambinder, 2005), we predicted
that change detection performance would be especially poor if the change oc-
curred when a visual transient was simultaneously present—in this experiment,
when the UGV stopped and requested assistance from the operator, in which case
the UGV status bar flashed. However, in a complex visual display where many
items compete for attention, change detection performance may be poor even
without such visual transients, due to the need for attention to be allocated to many
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different subtasks, windows, and display locations (Durlach, 2004; Parasuraman,
Barnes, & Cosenzo, 2007; Thomas & Wickens, 2006). We therefore predicted that
change detection accuracy would be low even in the absence of an explicit display
transient, although not as low as with the UGV flash event. To test this prediction,
we also included change events when participants were engaged in the UAV task,
when no explicit visual transient was present.

BASELINE EXPERIMENT

Methods

Participants

Sixteen young adults (9 women, 7 men) aged 18–26 years (mean = 20.5) partic-
ipated. The experiment lasted approximately 2 hours and participants were paid
$15.00 per hour.

Robotic NCO Simulation

The Robotic NCO simulation involved four interrelated tasks that participants
had to perform in order to achieve the overall goal of reconnaissance: (a) a UAV
target identification task; (b) a UGV route-planning task; (c) a communications
task with an embedded verbal situation awareness probe task; and (d) a change de-
tection task. These tasks were presented in separate windows of a computer moni-
tor. At a comfortable viewing distance the display subtended about 44° × 33° of vi-
sual angle. In addition, a situation map showing the reconnaissance area was
presented in a separate window at the bottom of the display (see Figure 1A). Partic-
ipants were trained to perform either the UAV or the UGV tasks by switching be-
tween the associated display windows using the designated buttons when one task
or the other demanded their attention. At the same time, participants were required
to respond as needed in the communications, situation awareness probe, and
change detection tasks. The simulated mission began with the preplanned flight of
the UAV and the movement of the UGV over the terrain to be searched and ended
when the UAV had completed its flight, the UGV had completed its route, and the
situation map was populated with all identified targets. Total mission time was ap-
proximately 5 minutes.

UAV Task. The UAV task simulated the arrival of electronic intelligence hits
(“elints”) from possible targets in the terrain over which the UAV flew. When a tar-
get was detected, it was displayed in the UAV view as a white square in a yellow
circle (Figure 1B). Participants were told that when a target was presented, they
were to zoom in on that location, which opened up a window of the UAV view
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(Figure 1A). They were required to identify the target from a list of possible types
(for which they had received prior training). The participant clicked the elint
marker (i.e., white squares) with the mouse to obtain a clear image of the target. He
or she then used a right mouse-click to identify the target as enemy or unknown.
An “enemy” was indicated by a red triangle, and an “unknown” was indicated by a
yellow triangle. This procedure had to be completed within 6 seconds or the target
would disappear, resulting in a “missed” target by the participant. Once identified,
the target icon was then displayed on the situation map. The difficulty of the UAV
targeting task was manipulated by varying the number of elint targets to be identi-
fied, as described below.

UGV Task. At the same time as the UAV continued on its flight path over the
terrain, the UGV moved through the area following a series of preplanned way-
points indicating areas of interest (AOI). During the mission, the UGV would stop
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FIGURE 1A Robotic NCO simulation with the UAV task in the zoomed-in view mode. The
four subtasks, UAV target identification, UGV route-planning, communications (with embed-
ded verbal situation awareness probes), and change detection (involving unit movement in the
situation map), were displayed in separate windows as shown.
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at various times, at which point the UGV status bar would flash. There were two
reasons why the UGV stopped: it had reached the named AOI or its path was by
blocked by an unknown obstacle. The participant was instructed to then switch to
the UGV display and click on the UGV bar that accessed the view (simulating
video images) from the UGV (Figure 1C). The UGV did not move forward until
the participant selected an action, as follows. If the UGV had reached an AOI, the
participant reconnoitered the area and then restarted the UGV along its preplanned
path by selecting the Continue button. If an obstacle was present, the UGV view
showed a picture of it. (The UGV view was displayed in the same location as the
UAV view on the computer monitor.) When the UGV encountered an obstacle, it
was one of two types, a blocking obstacle (e.g., log, ditch) or a traversable obstacle.
A blocking obstacle required replanning and the participant rerouted the UGV by
selecting the Re-route button. A traversable obstacle required that the participant
had to resume the UGV along its preplanned path by selecting the Continue button.
The difficulty of the UGV monitoring task was kept at a fixed, relatively high level
by requiring the participant to respond to a total of seven UGV stops (three AOIs
and four obstacles, two blocking and two traversable).
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FIGURE 1B The UAV task in the non-zoomed-in view mode and the situation map.
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Communications task 1. Call sign acknowledgment. Participants re-
ceived messages intermittently while performing the UAV and UGV tasks.
Communications were presented both visually in a separate communications
window (see Figure 1A) and acoustically over a speaker. The messages re-
quested updates on the UGV/UAV status and the location of particular targets
(to assess situation awareness, as described further below). Participants also
had to monitor the communications for their own call sign (which they had
been given previously). Twenty call sign messages were presented at random
intervals and had either to be either acknowledged with a key press if the partic-
ipant’s own call sign was presented or, if different, ignored. Call sign acknowl-
edgement had to occur within 5 seconds of the message or else a missed call
sign would result. The difficulty of the communications task was manipulated
by varying the proportion of own call signs relative to the total number of call
signs presented (see below).
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FIGURE 1C The UGV task in zoomed-in view showing possible obstacle.
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Communications task. 2. Verbal situation awareness probes. The com-
munications task also included embedded messages designed to assess the partici-
pants’ situation awareness. The questions were presented during the mission and
required a “Yes” or “No” response from the participant. The questions spanned
Types 1 and 2 of Endsley’s (1995) taxonomy of situation awareness—perception
and comprehension, respectively. Examples were (a) Has the UGV required re-
routing? (b) Are there enemy troops in sector X? (c) Is the UAV in Sector X able to
find targets near enemy units? (d) Are there enemy troops within two grid squares
of sector X?

These questions were presented without any “freezing” or stoppage of the pri-
mary simulated mission. Participants were instructed to respond to the questions
when they occurred and then return to performing the other concurrent tasks.

Change detection task. In many tactical military operations, the operator’s
situation display may often be updated without warning, so that the operator may
miss the change. To capture this, a change detection task was embedded into the
situation map of the Robotic NCO display to obtain a performance probe-based
measure of situation awareness. At unpredictable times during the simulated mis-
sion, and after the situation map had been populated to a degree, an icon on the sit-
uation map (a target previously identified by the participant) changed its location
by two grid squares (~traversing approximately 4° of visual angle). Participants
were instructed that such changes might occur and that if they noticed them to
press the space bar. Only a simple detection response was required, not identifica-
tion or recognition. Eight icon changes were presented at random intervals during
the 5-minute mission. Half of the changes (four) occurred during one of the UGV
stops, when the UGV status bar flashed (transient event condition). The other four
changes occurred while participants were engaged in the UAV task (nontransient
event condition).

It is important to note that participants were told that the UAV, UGV, and verbal
SA communications tasks in this simulation were not independent but coordinated
tasks that supported the overall goal—a reconnaissance mission in which partici-
pants had to be aware of friendly and enemy unit movements and of the positions
of their UAV and UGV assets. The verbal SA queries that were posed over the
communications channel provided an evaluation of how well participants followed
these instructions. Furthermore, participants were told that they would be asked at
the end of the mission to select the best path for a platoon to follow, so that they
could not simply ignore UAV targets or enemy units once identified but had to inte-
grate them into their overall map of the battlefield.

Workload and situation awareness questionnaires. A subjective over-
all rating was given at the end of each 5-minute mission trial on participant’s per-
ceived overall workload (OW) and situation awareness. This was a single number
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from 0 to 100 for each rating. Both OW and situation awareness criteria were
adapted from the NASA-TLX (Hart & Staveland, 1998) and the Cognitive
Compatibility Situation Awareness Technique questionnaire (CC-SART; Taylor,
1990).

Procedure

Following familiarization, training, and practice on the Robotic NCO simula-
tion, participants performed eight simulated missions, each lasting 5 minutes
each. Participants were asked to take the role of a robotic operator in a Mounted
Combat System company (MCS). They were asked to conduct a reconnaissance
mission for the MCS platoon using their UAV and UGV assets. The UAV and
UGV starting point, ending point, and path were preplanned by the experimenter,
and except for UGV reroutes, were not under control of the participant. The UAV
traveled faster than the UGV and provided surveillance information to the partic-
ipant as described previously. The UGV followed its routed path and when an
event occurred, waited for operator input, as described. While supervising the
two robotic assets the operator received communications, either call sign ac-
knowledgments or status queries, and performed the change detection task, as
described previously.

The baseline experiment was a 2 × 2 within-subjects design, with the manipu-
lated factors being the difficulty of the UAV and communications (call sign)
tasks. For the UAV task, task load or difficulty was manipulated by varying the
number of targets. There were 10 targets in the low condition and 20 targets in the
high condition. Task difficulty in the communications task was manipulated by
varying the uncertainty associated with seeing (hearing) one’s own call sign. In
the low uncertainty (low difficulty) condition, 16 of the 20 call signs presented
were the participant’s own call sign; hence, participants had very little uncer-
tainty as to whether their call sign had been presented while engaged in multiple
other tasks. In the high uncertainty (high difficulty) condition, only 4 of the 20
call signs were the participant’s own. As a result, greater vigilance on the part of
the participant was required given the lower probability of own call sign. The two
levels of difficulty on the UAV and communications were factorially combined
to yield four scenarios, each of which was presented twice, resulting in eight total
missions. The order of presentation of mission scenarios was counterbalanced
between participants.

The following dependent variables were measured: (a) UAV target acquisi-
tion: Accuracy (proportion correct) and RT to identify target as friendly or un-
known. (b) UGV route planning: Reaction time (RT) to implement new route
on blocking obstacle event or to observe an AOI and continue UGV. (c) Com-
munications: RT and percent missed for own call sign acknowledgments. (d)
Change detection: Accuracy (proportion correct) and RT to correctly detected
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changes. (e) Situation Awareness: Overall situation awareness as measured by
the CC-SART, and mean number of correct responses on the situation aware-
ness questions presented in the communications task. (f) Overall workload: OW
rating.

RESULTS

Multivariate analyses of variance (MANOVAs) followed by ANOVAs were con-
ducted on the data. The within-subjects variable included in the analyses were
communications task difficulty (uncertainty) and UAV task difficulty. For the
change detection performance analysis, Change Type was also included as a
within-subjects variable.

UAV Target Identification

There was a significant effect of communications task difficulty on UAV target
identification performance, F (2,14) = 8.07, p < .005. ANOVAs that were run to de-
termine whether RT or accuracy (percentage correct) contributed to the main effect
gave a significant effect for RT, F (1,15) = 8.66, p < .01. Surprisingly, mean RT to
UAV targets was significantly lower when communications uncertainty was high
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FIGURE 2 Effects of visual transient and nontransient events on change detection accuracy
under conditions of low and high UAV and communications task difficulty.
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(x = 1.48 s, SE = .03) than when it was low (x = 1.56 s, SE = .05). There were no
other significant effects.

UGV Task Performance

RTs to the UGV stops (continue or reroute) were higher when communications un-
certainty was high than when it was low, but this effect was moderated by a signifi-
cant interaction between UAV task and communications task difficulty, F (1,15) =
5.15, p < .03. Pair-wise comparisons showed that mean RT was lower in the high
UAV/low communications uncertainty condition (x = 3.84 s, SE = .36) than in the
high UAV/high communications uncertainty condition (x = 5.85 s, SE = .56),
p < .001.

Communications Task Performance

There was a significant effect for communications task difficulty on communica-
tions task performance, F (1,14) = 158.7, p < .001. ANOVAs showed a significant
effect only for RT, F (1,15) = 331.5, p < .01. Mean RT for own call sign acknowl-
edgment was significantly higher when communications task uncertainty was high
(x = 3.42 s, SE = .10) than when it was low (x = 2.33 s, SE = .08). There were no
other significant effects.

Change Detection Performance

Overall, change detection accuracy (Figure 2) was relatively poor but was never-
theless affected by the presence (UGV task) or absence (UAV task) of visual tran-
sients (Change Type). There was a significant effect of Change Type, F (1,15) =
13.9, p < .02. Fewer changes were detected when there were visual transients (x =
13.3%, SE = 4.40) compared to when transients were not present (x = 35.2%, SE =
4.20). There was also a significant interaction between Change Type and UAV task
difficulty, F (1,15) = 10.2, p < .001: for transient events, there was no effect of UAV
Task difficulty, possibly because accuracy was near floor (~13%); for nontransient
events, however, change detection accuracy was significantly lower under high
(28.1%) than under low (42.2%) UAV task difficulty, F (1,15) = 6.16, p < .02.

Analyses of change detection RT showed no significant effects of communica-
tions task and UAV task difficulty or of Change Type.

Verbal Situation Awareness Probes

There were no significant effects of level of difficulty for the UAV or communica-
tions tasks on the number of situation awareness questions answered correctly. The
mean number correct (out of 4), irrespective of condition, was 2.67 (SE = .11)
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Situation Awareness and Workload

Results for overall situation awareness showed a significant main effect for the lev-
els of situation awareness, F (2,14) = 5.98, p < .01, as measured by the CC-SART.
Paired comparisons of the data showed that the score for level of processing (x =
3.68, SE = .36) was significantly lower than ease of reasoning (x = 5.68, SE = .31)
and activation of knowledge (x = 5.43, SE = .30), p < .001. Ease of reasoning and
activation of knowledge did not differ significantly.

Results for overall workload showed a significant main effect for the levels of
workload, F (5,11) = 17.81, p < .001. Paired comparisons of the data showed that
mental demand was significantly higher than all the other levels except for effort,
ps < .05. Further, physical demand was significantly lower than all the other levels
except for frustration, ps < .01. Frustration was also significantly lower than all the
other levels, ps < .01. No other comparisons were significant.

DISCUSSION

The baseline experiment was designed to assess performance levels on the Robotic
NCO simulation in response to variation in task load. The goal was to determine an
appropriate overall task difficulty level that could be used to assess effects of adap-
tive automation in a subsequent main experiment. The baseline study was also run
to determine whether change detection performance could be sensitively assessed
in the context of a complex multitask simulation. With respect to the first goal, the
study was successful: appropriate conditions of task loading were identified. How-
ever, the results showed that some task load manipulations had the expected effect
on performance, whereas others did not. For example, high uncertainty on the
communication task led to longer RTs for own call sign acknowledgment, as pre-
dicted. However, unexpectedly the same task difficulty manipulation led to lower
RTs on the UAV target identification task, for unknown reasons. The effects of
UAV and communications task difficulty on performance on the UGV route-plan-
ning task were also generally as expected, with longer RTs to reroute the UGVs un-
der the more difficult conditions. Overall, therefore, the results indicate that a high
number of UAV targets and greater uncertainty in the communications task would
provide a sufficiently challenging level of task difficulty for use in the main experi-
ment.

With respect to the second goal of the baseline experiment, assessment of
change detection performance, the results were encouraging. Change detection ac-
curacy was typically low, ranging from 9.4 to 43.8% across the various conditions
This result indicates that the change blindness effect, which has typically been
demonstrated in simple laboratory tasks or contrived social interactions (Simons &
Ambinder, 2005; but see Durlach, 2004), also occurs with more realistic displays
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relevant to real-world environments. Given that change detection reflects a percep-
tual component of situation awareness, the low values suggest a major potential
source of system inefficiency in multi-UV operations. Despite the low over-
all level, however, change detection performance was, as predicted, poorer for
changes occurring during transient events (UGV task) than during nontransient
events (UAV task). This indicates that the change detection procedure we used was
sensitive and is encouraging with respect to the potential for using it to assess when
adaptive automation might be useful to support the human operator supervising
multiple UVs. Another index of the sensitivity of the change detection task is that
accuracy during nontransient events (UAV task) was reduced when the UAV task
difficulty was increased from low to high, suggesting that the increased attentional
demand associated with more UAV targets was reflected in poorer awareness of
changes in the situation map.

MAIN EXPERIMENT

In the main study we examined the effects of adaptive automation, based on
real-time assessment of operator change detection performance, on performance,
situation awareness, and workload in supervising multiple UVs in the Robotic
NCO simulation under two levels of task load. We used an adaptive automation in-
vocation method first developed by Parasuraman, Mouloua, and Molloy (1996),
known as performance-based adaptation. In this method, individual operator per-
formance (i.e., change detection performance) is assessed in real time and used as
a basis to invoke automation. In contrast, in static or model-based automation, au-
tomation is invoked at a particular point in time during the mission based on the
model prediction that operator performance is likely to be poor at that time
(Parasuraman et al., 1992). This method is by definition not sensitive to within- or
between-individual differences in performance, because it assumes that all opera-
tors are characterized by the model predictions. In performance-based adaptive au-
tomation, on the other hand, automation is invoked if and only if the performance
of an individual operator is below a specified threshold at a particular point in time
during the mission. If a particular operator does not meet the threshold at that time,
automation is invoked. However, if the threshold is exceeded in another operator,
or in the same operator at a different point in the mission, the automation is not in-
voked. Thus, performance-based adaptation is by definition context-sensitive to an
extent.

To demonstrate the potential benefit of adaptive automation, it must be com-
pared not only to performance without automation (manual performance) but to
static automation (Barnes et al., 2006; Parasuraman, 1993). Accordingly, in the
main experiment, we examined performance in the Robotic NCO task under three
conditions: (a) manual; (b) static automation, in which participants were supported
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in the UAV task with an automated target recognition (ATR) system that detected
and identified targets; (c) adaptive automation, in which the ATR automation was
invoked if change detection performance was below a threshold, but not otherwise.
Each of these conditions was combined factorially with two levels of task load, as
manipulated by variation in the difficulty of the communications task.

We predicted that change detection performance and situation awareness as as-
sessed using the verbal situation awareness probes would both be enhanced with
adaptive automation, whereas overall mental workload would be reduced, follow-
ing the logic of Parasuraman et al. (1996, 1999). In turn these benefits would be
greater for the adaptive compared to the static automation condition, with both au-
tomation conditions being superior to manual performance. Finally, we expected
that the selective benefits of adaptive automation, if found, would be greater under
high task load than under low task load.

METHODS

Participants

Sixteen young adults (8 women, 8 men) aged 18–28 years (mean = 21.9) partici-
pated. The experiment lasted approximately 2 hours and participants were paid
$15.00 per hour.

Procedure

Participants performed the same Robotic NCO simulation used in the baseline ex-
periment. There was a fixed, high number of UGV requests (7) and a fixed, high
number of UAV targets (20). These task parameters were combined with either a
low (16 own call signs in 20) or high level of uncertainty (4 own call signs in 20) in
the communications task to create two conditions of overall task load, low and
high. In addition, the change detection procedure of the baseline experiment was
used. Based on the results of the baseline experiment, this combination of task dif-
ficulty variables was considered to represent the most challenging performance
conditions and therefore the most suitable for potential mitigation through adap-
tive automation.

The procedure was the same as the baseline experiment with one exception. At
the beginning of the experiment, participants were told that an automated target
recognition system might be invoked during the missions. They were also given
training on the ATR prior to the main experimental blocks. When the automation
was about to be invoked, the participant received a message (presented both
auditorially through the speaker and visually in the communications window), in-
dicating that the ATR was now available. Note that the ATR automated the func-
tion of target identification, but participants still had to attend to the results of the
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automation. Participants could not simply ignore the UAV task when ATR was pro-
vided because they needed to integrate the information provided by its sensor to
support the overall goal of reconnaissance. As described in the Methods section
previously, they were also given SA queries, some of which asked about the rela-
tive position of the UAV or of identified enemy units. Participants were also in-
structed to monitor the results of the ATR. Finally, they were required at the end of
the mission to evaluate the best platoon path to take following the reconnaissance
mission. Hence, the ATR automation did not simply remove a task but supported
the overall mission goal.

There were three main automation conditions. In the Manual condition, partici-
pants performed all four tasks of the Robotic NCO simulation without automated
support. In the Static Automation conditions participants were supported in the
UAV task with an ATR system, thereby off-loading them of the responsibility of
identifying targets but not of the responsibility of using the UAV sensor informa-
tion or monitoring its path and evaluating its position with respect to friendly and
enemy units. The automation was invoked in the middle (at ~2.5 min) of the 5-min-
ute mission (after four change detection events) in all participants and irrespective
of the level of performance. A similar procedure was used in the Adaptive Auto-
mation condition, except that the Robotic NCO software maintained a running
count of an individual operator’s change detection accuracy. After four change de-
tection events had occurred in the middle (at ~2.5 minutes) of the 5-minute mis-
sion, the current count of detection accuracy was compared to a threshold. If the
threshold was not met, the ATR automation was invoked, but not otherwise. Based
on the results of the baseline experiment as well as pilot work, a threshold of 50%
accuracy was chosen. It was expected with this threshold that many participants
would receive adaptive aiding, with the proportion being higher under high than
low task load. After adaptive automation invocation (or not), the mission contin-
ued as before; that is, the ATR remained on until the end of the block.

The three automation conditions (Manual, Static, Adaptive) were combined
factorially with task load (low or high) for six mission scenarios (each lasting 5
minutes). Each of these conditions was repeated (blocks) in order to see whether
any adaptive automation effects would be reduced with additional practice. The
experiment was therefore a 2 × 3 × 2 within-subjects design. The within-subjects
factors were the uncertainty of the communications task (low or high), automa-
tion condition (Manual, Static, and Adaptive Automation), and block (one and
two).

Each participant completed twelve 5-minute mission blocks. The order of
blocks was counterbalanced. For statistical evaluation of the effects of automation,
mission phase (pre-automation invocation and post-automation invocation—in the
middle of the 5-minute mission) was included as a factor. For comparability, even
though automation was not invoked in the manual condition, performance mea-
sures were calculated for each mission phase in this condition as well.
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The same dependent variables as in the baseline experiment were used, with the
exception that the CC-SART was dropped and only the verbal situation awareness
probes were used. Of the four verbal situation awareness questions, two were given
in each half of every mission. Because of the low number of questions in each half,
only an overall verbal situation awareness accuracy score was computed.

RESULTS

Because the main hypotheses that were tested in this study involved the change de-
tection measure, we report the results for this dependent variable first, followed by
performance on the UAV, UGV, and communications tasks and the subjective
ratings.

MANOVAs and ANOVAs were conducted for the data. The within-subjects
variables included in the statistical analyses were communications task difficulty,
mission phase (pre-post automation), automation condition, and block. Because
there were no significant interactions involving the block factor, the data were col-
lapsed across this factor.

Change Detection Performance

The adaptive ATR was not invoked in three participants in the low task load/adap-
tive automation condition when it was first performed (block 1). The ATR was also
not invoked in one participant in the second block of this condition. In the high task
load/adaptive automation condition, the ATR was invoked in all participants. The
results of the statistical analyses were the same whether these participants were in-
cluded or excluded in the data set. Therefore, we first present results with the data
from all the participants, irrespective of whether the ATR was invoked adaptively
for them in the adaptive automation condition.

Results for the change detection accuracy scores revealed significant main ef-
fects for automation condition, F (2, 30) = 22.8, p < .001; mission phase, F (1, 15)
= 151.3, p <. 001; and communications task difficulty, F (1, 15) = 37.5, p < .001. In
addition, the interaction of mission phase and automation condition was signifi-
cant, F (2,30) = 22.1, p < .001. To examine the interaction further, separate
ANOVAs were computed for both the pre-automation invocation and post-invoca-
tion phases. In the pre-invocation phase before automation was implemented, there
were no significant differences in change detection accuracy between conditions.
However, the effect of automation condition was significant for the post-invoca-
tion phase, F (2,30) = 31.3, p <. .001. As shown in Figure 3, and as verified by
pair-wise comparisons, participants detected significantly more icon changes in
the situation map in the static and adaptive automation conditions compared to the
manual condition, ps < .001. Furthermore, change detection accuracy was signifi-
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cantly higher in the adaptive automation condition than in the static automation
condition, p < .02. Finally, more changes were detected when the uncertainty of the
communications was low (x = 36.0%, SE = 1.22) than high (x = 27.2%, SE = .94).
However, although we predicted a greater effect of adaptive automation on change
detection accuracy under high than low task load, the Automation Condition ×
Communications Task difficulty interaction, F (2, 30) = 1.06, and the Automation
Condition × Mission Phase × Communications Task difficulty interaction, F (2,
30) = 2.24, were not significant.

Overall, there was a marked improvement in change detection accuracy with
automation, from a mean of 22.6% in the manual condition to a mean of 50.3% in
the two automation conditions, a 112% improvement. More importantly, there was
a 54% improvement in change detection performance specifically associated with
adaptive automation, from an accuracy of 42.9% in the static condition to 57.8% in
the adaptive condition.

We also compared change detection performance in those participants for
whom automation was not invoked adaptively with those in whom it was. Recall
that the ATR was not invoked adaptively in three participants in the low task load
condition because they exceeded the threshold (see Figure 4), whereas it was in 13
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FIGURE 3 Effects of static and adaptive automation on change detection accuracy, compared
to manual performance. Values are shown for the pre-automation invocation (Pre) and post-au-
tomation invocation (Post) mission phases.
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others. Figure 4 shows the change detection performance of these two groups in
the pre- and post-invocation mission phases. By definition, the non-ATR group had
superior change detection accuracy to the ATR group in the pre-invocation phase,
as confirmed by a t-test adjusted using Levene’s test for unequal variances (due to
unequal group sample sizes), t = 4.26, p < .05. In the post-invocation phase, how-
ever, the two groups did not differ significantly, t = .1, p > .8. Thus, adaptive auto-
mation had the effect of “bringing up” the performance of the 13 participants to the
level of the three for whom adaptation was not required at that point in the mission.
Figure 4 also shows the mean performance levels of the same non-ATR and ATR
participants in the manual and static automation conditions. This shows the same
pattern of results as in Figure 3 where participants were not subgrouped in this
manner: both static and adaptive automation led to superior performance com-
pared to manual performance, with the adaptive automation condition leading to a
further improvement.
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FIGURE 4 Change detection accuracy in participants for whom automation was not invoked
adaptively (No ATR) and in those for whom it was triggered (ATR), for pre- and post-invocation
periods. The mean performance levels of the same participants (No ATR and ATR) in the man-
ual and static automation conditions are also shown.
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UAV Target Identification

Performance on the UAV target identification task was analyzed only for the first
half of each mission phase, because this function was automated in the second half.
There were no significant differences in target identification accuracy or RT be-
tween the manual, static automation, or adaptive automation conditions. There was
also no significant effect of communications task difficulty on UAV target identifi-
cation performance in the pre-invocation phase.

UGV Route Planning

There were no significant effects or interactions of automation condition or mis-
sion phase on performance of the UGV route planning task. There was a signifi-
cant main effect for communications task difficulty, F (1, 15) = 9.57, p < .007. Re-
sults showed that RTs to the UGV stops (continue or reroute) were higher when
communications uncertainty was high (x = 4.39 s, SE = 0.14) than low (x = 4.26 s,
SE = 0.42).

Communications Task

The main effects of automation condition, F (4,12) = 10.5, p < .001; phase, F
(2,14) = 32.4, p < .001; and communications task difficulty, F (2,14) = 83.7, p <
.001, were significant for communications performance (accuracy and RT). In ad-
dition the Automation Condition × Phase interaction was significant, F (4,12) =
16.3, p < .001. All other interactions and main effects were significant, ps < .01. To
determine whether RT or percentage correct contributed to the significant interac-
tions and main effects, ANOVAs were run. Results revealed that percentage cor-
rect and RT contributed significantly to the main effect of communications task
difficulty, F (1,15) = 51.8, p < .000 and F (1,15) = 70.39, p < .001, respectively. A
greater percentage of call signs were responded to and with greater speed (i.e.,
lower RT) in the low uncertainty communications condition (correct: x = 86.9%,
SE = 1.29; RT: x = 1.29 s, SE = .01) than the high uncertainty communications con-
dition (correct: x = 65.3%, SE = 1.67; RT: x = 1.29 s, SE = .02).

ANOVAs also showed a significant interaction of automation condition and
phase for percent of call signs acknowledged, F (2,30) = 7.07, p < .003. The inter-
action indicates that though there was no significant difference between conditions
in the pre-invocation phase, F < 1.0, there was a significant difference in the
post-invocation phase F (2,30) = 20.9, p < .001. As Figure 5 shows, and as
pair-wise comparisons confirmed, more call signs were responded to correctly in
the static and adaptive automation conditions than in the manual condition, ps <
.003. Furthermore, more call signs were responded to in the adaptive condition
than the static condition, p <. 008.
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ANOVAs showed a significant interaction of automation condition and phase
difficulty for RT to call signs, F (2,30) = 19.55, p < .001. RT did not differ between
conditions in the pre-invocation phase, F < 1.0, but did in the post-invocation
phase, F (2,30) = 23.1, p < .001. Call signs were responded to more quickly (i.e.,
lower RTs) in the adaptive condition (x = 1.27 s, SE = .04) than the static (x = 1.48
s, SE = .02) or manual (x = 1.51 s, SE = .02) condition, ps < .001. There was no sig-
nificant difference for RTs between the manual and static automation conditions.

Situational Awareness Probes

There were significant main effects of phase, F (1,15) = 18.1, p = .001, and auto-
mation condition, F (2,30) = 12.87, p < .001, and a significant interaction of auto-
mation condition and phase, F (2,30) = 9.95, p = .001 for the percentage of situa-
tion awareness questions correctly answered. To examine the interaction further,
ANOVAs were conducted for each level of phase. There was no significant differ-
ence in answer accuracy between conditions prior to automation invocation. There
was a significant difference between automation conditions after automation invo-
cation, F (2,30) = 19.9, p < .001. Pair-wise comparisons showed that showed that
more situation awareness questions were answered correctly in the static (x =
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FIGURE 5 Effects of static and adaptive automation on communications task accuracy, com-
pared to manual performance, for pre- and post-invocation periods.
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58.2%, SE = 5.06) and adaptive automation (x = 65.62, SE = 4.03) conditions than
in the manual condition (x = 29.7%, SE = 4.08), ps < .001 (see Figure 6). The dif-
ference between the adaptive and static automation condition was not significant.

Overall Workload

There was a significant main effect for automation condition for subjective ratings
of overall workload, F (2,30) = 23.5, p < .001. No other main effects or interactions
were significant. Reported workload was lowest in the adaptive automation condi-
tion (x = 23.8, SE = 1.07), intermediate in the static automation condition (x = 32.5,
SE = 2.28), and highest in the manual condition (x = 42.5, SE = 2.78), with all
pair-wise comparisons significant, ps < .001.

Relationships Between Change Detection, Situation
Awareness, and Workload

The interrelationships between change detection, situation awareness, and work-
load are shown in Figure 7, which plots mean values for these measures in the
post-invocation phase as a function of automation condition. Automation, and
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FIGURE 6 Effects of static and automation on accuracy of verbal situation awareness probes,
compared to manual performance, for pre- and post-invocation periods.
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adaptive automation specifically, increased change detection accuracy and re-
duced subjective workload, as indicated by the reciprocal relationship between
these measures illustrated in Figure 7. In addition, automation also enhanced sit-
uation awareness, but though the mean situation awareness scores were greater
for adaptive compared to static automation, these values were not statistically
different.

DISCUSSION

High cognitive workload demands on personnel in military systems working
with multiple UVs has mandated the use of automation support (Barnes et al.,
2006). Because automation does not always achieve the goal of supporting the
operator effectively (C. Billings, 1997; Parasuraman & Riley, 1997; Sarter et al.,
1997), providing context-appropriate aiding—adaptive automation—has been pro-
posed (Miller & Parasuraman, 2007; Parasuraman et al., 1992; Scerbo, 2001). In
the present study, adaptive aiding was provided to participants supervising multi-
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FIGURE 7 Interrelationships between effects of static and adaptive automation on change
detection, situation awareness, and workload. The change detection and situation awareness
measures are indexed by percentage correct, whereas workload was indexed by a subjective rat-
ing from 1 to 100.
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ple UVs, based on real-time assessment of their change detection accuracy. We
compared the effects of manual performance, static automation, and adaptive auto-
mation on workload, situation awareness, and other aspects of task performance.

We predicted that change detection performance and situation awareness would
be enhanced with adaptive automation, whereas overall mental workload would be
reduced, and that these benefits would be specifically associated with adaptive (as
opposed to static) automation. The results supported this prediction. Compared to
manual performance, both static and adaptive automation led to an increase in
change detection accuracy and situation awareness, whereas workload was re-
duced. In addition, in comparison to static automation, there was a further increase
in change detection accuracy and concomitant reduction in workload with adaptive
automation. This last finding is important, because simply demonstrating perfor-
mance benefits due to automation is insufficient; rather, the specific benefit, if any,
of adaptive automation must be shown, over and above that associated with static
automation (Barnes et al., 2006; Parasuraman, 1993). The results thus add to the
growing literature pointing to the efficacy of adaptive automation for reducing or
balancing operator workload and enhancing performance (Inagaki, 2003; D.
Kaber & Riley, 1999; Parasuraman et al., 1999; Scerbo, 2001) and confirm that
these benefits also accrue in the domain of human operator supervision of multiple
UVs in a simulated tactical reconnaissance mission.

There was a reciprocal relationship between the different operator performance
measures in terms of the effects of adaptive automation. Specifically, static auto-
mation led to an increase in both change detection accuracy and situation aware-
ness and a decrease in workload, with a further increase and decrease in these mea-
sures with adaptive automation (see Figure 7). However, it should be noted that the
additional increase in situation awareness with adaptive automation was not statis-
tically significant. Several studies have documented benefits of adaptive automa-
tion for situation awareness (D. B. Kaber & Endsley, 2004). It is possible that the
nonsignificant trend we found might simply reflect the relative insensitivity of our
verbal probe measure, because we provided only two such probes in the post-invo-
cation phase of each mission during which automatic target recognition was imple-
mented. Nonetheless, the substantial benefits for change detection and overall
workload—a 34% enhancement in the case of the former—argue strongly for the
efficacy of adaptive automation. The reduction in overall workload was also re-
flected in better performance of one of the other three subtasks that participants
performed, the communications task. Accuracy in responding to communications
was higher with static automation than with manual performance, and higher still
with adaptive automation. Thus adaptive automation was successful not only in
supporting the human operator in an appropriate context—when their change de-
tection performance was low, pointing to low perceptual awareness of the evolving
mission elements—but also freed up sufficient attentional resources to benefit per-
formance on other less critical but important subtasks.
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The specific advantage that adaptive automation based on assessment of indi-
vidual performance or physiology brings is its sensitivity to within- and be-
tween-individual differences, whereas other approaches such as model-based
adaptive automation are not (Parasuraman et al., 1992). This benefit was appar-
ent when we compared the participants for whom automation was not invoked
adaptively in the low task load condition to those for which automation was trig-
gered. We found that though change detection performance was initially higher
in the former group (the criterion for not invoking automation), both groups had
equivalent levels of change detection accuracy in the post-invocation mission
phase. Thus, in comparison to static automation, adaptive automation, by provid-
ing aid only in certain individuals when they need it, or in the same individual
when he or she needs it at different times, has the effect of “leveling” perfor-
mance between and within individuals, thus providing for more stable system
performance.

What are the practical implications of the research reported in this article? This
work is part of a broader Army science and technology program aimed at under-
standing the performance requirements for human-robot interaction in future bat-
tlefields (Barnes et al., 2006). Initial findings from this project indicate that the pri-
mary tasks that soldiers are required to perform place severe limits on their ability
to monitor and supervise even a single UV, let alone multiple UVs. For example,
Chen, Durlach, Sloan, and Bowens (2008) examined target detection accuracy in
participants given either a single robotic asset (either a UAV, a UGV, or a
teleoperated UGV) or all three assets. Target detection performance was lower
with three than with a single UV, and participants were also less likely to com-
plete their missions in the allotted time. In addition, crew safety may be compro-
mised because soldiers who have to carry out routine tasks such as radio commu-
nications and ensuring local security also have to supervise and manage several
robotic tasks during high workload mission segments (Chen & Joyner, 2009;
Mitchell & Henthorn, 2005). Adaptive automation would therefore be particu-
larly well suited to these situations because of the uneven workload and the re-
quirement to maintain SA for the primary as well as the robotic tasks. Our results
point to the efficacy of adaptive automation for supporting the human operator
under these conditions.
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