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Adaptive Backstepping Control of a Class of Uncertain
Nonlinear Systems With Unknown Backlash-Like

Hysteresis

Jing Zhou, Changyun Wen, and Ying Zhang

Abstract—In this note, we consider the same class of systems as in a pre-
vious paper, i.e., a class of uncertain dynamic nonlinear systems preceded
by unknown backlash-like hysteresis nonlinearities, where the hysteresis is
modeled by a differential equation, in the presence of bounded external dis-
turbances. By using backstepping technique, robust adaptive backstepping
control algorithms are developed. Unlike some existing control schemes for
systems with hysteresis, the developed backstepping controllers do not re-
quire the uncertain parameters within known intervals. Also, no knowledge
is assumed on the bound of the “disturbance-like” term, a combination of
the external disturbances and a term separated from the hysteresis model.
It is shown that the proposed controllers not only can guarantee global sta-
bility, but also transient performance.

Index Terms—Adaptive control, backstepping, hysteresis, nonlinear
system, robust control.

I. INTRODUCTION

Hysteresis exists in a wide range of physical systems and devices,
such as biology optics, electromagnetism, mechanical actuators, elec-
tronic relay circuits and other areas. Control of such systems is typically
challenging. For backlash hysteresis, several adaptive control schemes
have recently been proposed; see, for example, [1] and [2]. In [3]–[5],
an inverse hysteresis nonlinearity was constructed. An adaptive hys-
teresis inverse cascaded with the plant was employed to cancel the ef-
fects of hysteresis. In [1], a dynamic hysteresis model is defined to
pattern a backlash-like hysteresis rather than constructing an inverse
model to mitigate the effects of the hysteresis. However, in [1], the
termmultiplying the control and the uncertain parameters of the system
must be within known intervals and the “disturbance-like” term must
be bounded with known bound. Projection was used to handle the “dis-
turbance-like” term and unknown parameters. System stability was es-
tablished and the tracking error was shown to converge to a residual.

In this note, we develop two simple backstepping adaptive control
schemes for the same class of nonlinear systems as in [1], with bounded
external disturbances included in our case. Besides showing global sta-
bility of the system, the transient performance in terms of L2 norm of
the tracking error is derived to be an explicit function of design param-
eters and thus our scheme allows designers to obtain the closed loop
behavior by tuning design parameters in an explicit way. In the first
scheme, a sign function is involved and this can ensure perfect tracking.
To avoid possible chattering caused by the sign function, we propose
an alternative smooth control law and the tracking error is still ensured
to approach a prescribed bound in this case. In our design, the term
multiplying the control and the system parameters are not assumed to
be within known intervals. The bound of the “disturbance-like” term is
not required. To handle such a term, an estimator is used to estimate its
bound.
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This note is organized as follows. Section II states the problem
of this note and assumptions on the nonlinear systems. Sections III
presents the adaptive control design based on the backstepping tech-
nique and analyzes the stability and performance. Simulation results
are presented in Section IV. Finally, Section V concludes this note.

II. PROBLEM STATEMENT

We consider the same class of systems as in [1]. For completeness,
the system model is given as follows:

x
(n)(t) +

r

i=1

aiYi x(t); _x(t); . . . ; x(n�1)(t) = b!(v) + �d(t)

(1)

where Yi are known continuous linear or nonlinear functions, �d(t) de-
notes bounded external disturbances, parameters ai are unknown con-
stants and control gain b is unknown bounded constant, v is the control
input, !(v) denotes hysteresis type of nonlinearity described by

d!

dt
= �

dv

dt
(cv � !) +B1

dv

dt
(2)

where �; c, and B1 are constants, c > 0 is the slope of the lines satis-
fying c > B1. Based on the analysis in [1], this equation can be solved
explicitly

!(t) = cv(t) + d1(v) (3)

d1(v) = [!0 � cv0]e
��(v�v )sgn _v

+ e
��v sgn _v

v

v

[B1 � c]e��(sgn _v)
d�: (4)

The solution indicates that dynamic (2) can be used to model a class of
backlash-like hysteresis as shown in Fig. 1, where the parameters � =
1; c = 3:1635, and B1 = 0:345, the input signal v(t) = 6:5 sin(2:3t)
and the initial condition !(0) = 0. For d1(v), it is bounded as shown
in [1].

From the solution structure (3) of model (2), (1) becomes

x
(n)(t) +

r

i=1

aiYi x(t); _x(t); . . . ; x(n�1)(t) = �v(t) + d(t)

(5)

where � = bc and d(t) = bd1(v(t))+ �d(t). The effect of d(t) is due to
both external disturbances and bd1(v(t)). We call d(t) a “disturbance-
like” term for simplicity of presentation and useD to denote its bound.

Now, (5) is rewritten in the following form:

_x1 = x2

...

_xn�1 = xn

_xn = �

r

i=1

aiYi x1(t); x2(t); . . . ; x(n�1)(t)

+ �v(t) + d(t)

= a
T
Y + �v(t) + d(t) (6)

where

x1 =x; x2 = _x; . . . ; xn = x
(n�1)

a =[�a1;�a2; . . . ;�ar]
T

Y =[Y1; Y2; . . . ; Yr]
T
:
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Fig. 1. Hysteresis curves.

For the development of control laws, the following assumptions are
made.
Assumption 1: The uncertain parameters b and c are such that � >

0.
Assumption 2: The desired trajectory yr(t) and its (n� 1)th-order

derivatives are known and bounded.
The control objectives are to design backstepping adaptive control

laws such that

• the closed loop is globally stable in sense that all the signals in
the loop are uniformly ultimately bounded;

• the tracking error x(t) � yr(t) is adjustable during the tran-
sient period by an explicit choice of design parameters and
limt!1 x(t) � yr(t) = 0 or limt!1 jx(t) � yr(t)j � �1 for
an arbitrary specified bound �1.

Remark 1: Compared with [1], the uncertain parameters � and ai

are not assumed inside known intervals. The boundD for d(t) is not as-
sumed to be known and it will be estimated by our adaptive controllers.
Also the control objectives are not only to ensure global stability, but
also transient performance.

III. DESIGN OF ADAPTIVE CONTROLLERS

Before presenting the adaptive control design using the backstepping
technique in [6] and [7] to achieve the desired control objectives, the
following change of coordinates is made:

z1 = x1 � yr (7)

zi = xi � y
(i�1)
r � �i�1; i = 2; 3; . . . ; n (8)

where �i�1 is the virtual control at the ith step and will be determined
in later discussion. In the following, two control schemes are proposed.

A. Control Scheme I

To illustrate the backstepping procedures, only the last step of the
design, i.e., step n, is elaborated in details.

• Step 1: We start with the equation for the tracking error z1 ob-
tained from (6) to (8)

_z1 = z2 + �1: (9)

We design the virtual control law �1 as

�1 = �c1z1 (10)

where c1 is a positive design parameter. From (9) and (10), we
have

z1 _z1 = �c1z
2
1 + z1z2: (11)

• Step i(i = 2; . . . ; n � 1): Choose

�i = �cizi � zi�1 + _�i�1 x1; . . . ; xi�1; yr; . . . ; y
(i�1)
r (12)

where ci; i = 2; . . . ; n� 1 are positive design parameters. From
(8) and (12), we obtain

zi _zi = �zi�1zi � ciz
2
i + zizi+1: (13)

• Step n: From (6) and (8), we obtain

_zn = �v(t) + a
T
Y + d(t)� y

(n)
r � _�n�1: (14)

Then, the adaptive control law is designed as follows:

v = ê�v (15)

�v = �cnzn � zn�1 � â
T
Y

� sgn(zn)D̂ + y
(n)
r + _�n�1 (16)
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Fig. 2. Tracking error-Scheme I.

_̂e = ��vzn (17)
_̂a = �Y zn (18)
_̂
D = �jznj (19)

where cn; , and � are three positive design parameters, � is a
positive–definite matrix, ê; â, and D̂ are estimates of e = 1=�; a,
and D. Let ~e = e � ê; ~a = a � â, and ~D = D � D̂. Note that
�v(t) in (14) can be expressed as

�v = �ê�v = �v � �~e�v: (20)

From (14), (16), and (20), we obtain

_zn = �cnzn � zn�1 + ~aTY � sgn(zn)D̂ + d(t)� �~e�v: (21)

We define Lyapunov function as

V =

n

i=1

1

2
z2i +

1

2
~aT��1~a+

�

2
~e2 +

1

2�
~D2: (22)

Then, the derivative of V along with (6) and (15) to (19) is given
by

_V =

n

i=1

zi _zi + ~aT��1 _~a+
�


~e _~e+

1

�
~D _~D

� �
n

i=1

ciz
2

i + ~aT��1(�Y zn � _̂a)

� �


~e(�vzn + _̂e) +

1

�
~D(�jznj � _̂

D) (23)

= �
n

i=1

ciz
2

i (24)

where we have used (11), (13), (21), and the fact that znd(t) �
jznjD to obtain (52).

We then have the following stability and performance results based
on this scheme.
Theorem 1: Consider the uncertain nonlinear system (1) satisfying

Assumptions 1–2. With the application of controller (15) and the pa-
rameter update laws (17)–(19), the following statements hold.

• The resulting closed-loop system is globally stable.
• The asymptotic tracking is achieved, i.e.,

lim
t!1

[x(t)� yr(t)] = 0: (25)

• The transient tracking error performance is given by

k x(t)� yr(t) k2� 1p
c1

1

2
~a(0)T��1~a(0) +

�

2
~e(0)2

+
1

2�
~D(0)2

1=2

: (26)

Proof: From (24), we established that V is non increasing.
Hence, zi; i = 1; . . . ; n; ê; â; D̂ are bounded. By applying the
LaSalle–Yoshizawa theorem in [7] to (24), it further follows
that zi(t) ! 0; i = 1; . . . ; n as t ! 1, which implies that
limt!1[x(t) � yr(t)] = 0.

From (24), we also have that

k z1 k22 =
1

0

jz1(� )j2d� � 1

c1
(V (0)� V (1))

� 1

c1
V (0) (27)
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Fig. 3. Control signal v(t)-Scheme I.

Thus, by setting zi(0) = 0; i = 1; . . . ; n, we obtain

V (0) =
1

2
~a(0)T��1~a(0) +

�

2
~e(0)2 +

1

2�
~D(0)2 (28)

a decreasing function of ; �, and �, independent of c1. This means
that the bound resulting from (27) and (28) is

k z1 k2� 1p
c1

1

2
~a(0)T��1~a(0)+

�

2
~e(0)2 +

1

2�
~D(0)2

1=2

:

(29)
444

Remark 2: From Theorem 1, the following conclusions can be ob-
tained.

• The transient performance depends on the initial estimate errors
~e(0); ~a(0); ~D(0), and the explicit design parameters. The closer
the initial estimates ê(0); â(0), and D̂(0) to the true values e; a,
and D, the better the transient performance.

• The bound for k x(t) � yr(t) k2 is an explicit function of de-
sign parameters and thus computable.We can decrease the effects
of the initial error estimates on the transient performance by in-
creasing the adaptation gains ; �, and �.

• To improve the tracking error performance we can also increase
the gain c1. However, increasing c1 will influence other perfor-
mance such as k _x � _yr k2 as shown later.

Since _V � 0, immediately from (22) we know

V (t) =

n

i=1

1

2
z2i +

1

2
~aT��1~a+

�

2
~e2 +

1

2�
~D2 � V (0):

Then

k zi k1 � 2V (0); i = 1; . . . ; n (30)

k ~a k1 � ��(�) 2V (0) (31)

From (7), (8) for i = 2, and (10), we get

k _x� _yr k2 =k z2 � c1z1 k2
�k z2 k2 +c1 k z1 k2 : (32)

Similar to the proof of (29), we can get k z2 k2� V (0)=
p
c2 and,

thus

k _x � _yr k2� 1p
c2

+
p
c1 V (0) (33)

From (33), we can see that increasing c1 also increase the error k _x �
_yr k2. This suggests fixing the gain c1 to some acceptable value and
adjust the other gains such as ; �, and �.

B. Control Scheme II

In the previous scheme, a discontinuous function sgn(zn) is involved
in the control and this may cause chattering. To avoid this, we now
propose an alternative smooth control scheme.

First, we define a function sgi(zi) as follows:

sgi(zi) =

zi
jzij ; jzij � �i

zi

(�2i � z2i )
n�i+2

+ jzij
; jzij < �i

(34)
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Fig. 4. Tracking error-Scheme II.

where �i(i = 1; . . . ; n) is a positive design parameter. It can be shown
that sgi(zi) is (n � i + 2)th-order differentiable. We also design a
function fi(zi) as

fi(zi) =
1; jzij � �i
0; jzij < �i:

(35)

Then, we can get

sgi(zi)fi(zi) =

1; zi � �i
0; jzij < �i
�1; zi � �i

(36)

To ensure the resultant functions are differentiable, we replace z2i by
(jzij � �i)

n�i+2fi in the Lyapunov functions for i = 1; . . . ; n in Sec-
tion 3.1 and we also replace zi by (jzij � �i)

n�i+1sgi in the design
procedure as detailed here.

• Step 1: We design virtual control law �1 as

�1 = � c1 +
1

4
(jz1j � �1)

nsg1(z1)� (�2 + 1)sg1(z1) (37)

where c1 is a positive design parameter. We choose Lyapunov
function V1 as

V1 =
1

n+ 1
(jz1j � �1)

n+1f1: (38)

Then, the derivative of V1 is

_V1 = (jz1j � �1)
nf1sg1(z1) _z1

� � c1 +
1

4
(jz1j � �1)

2nf1

+ (jz1j � �1)
n(jz2j � �2 � 1)f1 (39)

where (9) and (37) have been used.

• Step 2: We design virtual control law �2 as

�2 = � c2 +
5

4
(jz2j � �2)

n�1sg2(z2)

+ _�1 � (�3 + 1)sg2(z2) (40)

where c2 is positive design parameter. We design Lyapunov func-
tion V2 as

V2 =
1

n
(jz2j � �2)

nf2 + V1: (41)

Then, the derivative of V2 is

_V2 �

2

i=1

(jzij � �i)
2(n�i+1)fi +M2

+(jz2j � �2)
n�1(jz3j � �3 � 1)f2 (42)

whereM2 = �(1=4)(jz1j� �1)
2nf1+(jz1j� �1)

n(jz2j� �2�
1)f1 � (jz2j � �2)

2(n�1)f2. Now, we show that M2 < 0. It is
clear that M2 � 0 for jz2j < �2 + 1. For jz2j � �2 + 1

M2 � �
1

4
(jz1j � �1)

2nf1 +
1

4
(jz1j � �1)

2nf21

+ (jz2j � �2 � 1)2 � (jz2j � �2)
2(n�1)

< (jz2j � �2)
2 � (jz2j � �2)

2(n�1)

= (jz2j � �2)
2(1� (jz2j � �2)

2(n�2)) � 0: (43)

Then, (42) is written as

_V2 � �

2

i=1

ci(jzij � �i)
2(n�i+1)fi

+(jz2j � �2)
n�1(jz3j � �3 � 1)f2: (44)
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Fig. 5. Control signal v(t)-Scheme II.

• Step i (i = 3; . . . ; n � 1): Choose

�i = � ci +
5

4
(jzij � �i)

n�i+1sgi(zi) + _�i�1

� (�i+1 + 1)sgi(zi) (45)

where ci is a positive design parameter.
• Step n: The control law and parameter update laws are designed
as follows:

v = ê�v (46)

�v = �(cn + 1)(jznj � �n)sgn(zn)� âTY

� sgnD̂ + y(n)r + _�n�1 (47)
_̂e = ��v(jznj � �n)fnsgn(zn) (48)
_̂a = �Y (jznj � �n)fnsgn(zn) (19)
_̂
D = �(jznj � �n)fn (50)

where cn; , and � are three positive design parameters, � is a
positive–definite matrix, and ê; â, and D̂ are estimates of e =
1=�; a and D. We define a Lyapunov function as

V =

n

i=1

1

n� i+ 2
(jzij � �i)

n�i+2fi +
1

2
~aT��1~a

+
�

2
~e2 +

1

2�
~D2: (51)

Then, the derivative of V is given by

_V = _Vn�1(jznj � �n)
2fnsgn(zn) _zn + ~aT��1 _~a

+
�


~e _~e+

1

�
~D _~D

� �

n

i=1

ci(jzij � �i)
2(n�i+1)fi

+ ~aT��1(�Y (jznj � �n)fnsgn(zn)� _̂a)

�
�


~e(�v(jznj � �n)fnsgn(zn) + _̂e)

+
1

�
~D(�(jznj � �n)fn �

_̂
D) (52)

= �

n

i=1

ci(jzij � �i)
2(n�i+1)fi (53)

where (6), (37), (40), and (46)–(50) have been used.

Theorem 2: Consider the uncertain nonlinear system (1) satisfying
Assumptions 1 and 2. With the application of controller (46) and the
parameter update laws (48) to (50), the following statements hold.

• The resulting closed-loop system is globally stable.
• The tracking error approaches �1 asymptotically, i.e.,

lim
t!1

jx(t)� yr(t)j = �1: (54)

• The transient tracking error performance is given by

k x(t)� yr(t) k2� �1 +
1

c2n1

1

2
~a(0)T��1~a(0)

+
�

2
~e(0)2 +

1

2�
~D(0)2

1=2n

(55)

with zi(0) = �i; i = 1; . . . ; n.

Proof: Based on (53), the results can be shown by following sim-
ilar steps to that of Theorem 1. 444

Note that similar remarks made in Remark 2 are also applicable here.
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IV. SIMULATION STUDIES

In this section, we illustrate the aforementioned methodologies on
the same example system in [1] which is described as

_x = a
1� e�x(t)

1 + e�x(t)
+ b!(t) (56)

where ! represents the output of the hysteresis nonlinearity. The
actual parameter values are b = 1 and a = 1. Without con-
trol, i.e., !(t) = 0, (56) is unstable as shown in [1], because
_x = (1� e�x(t))=(1 + e�x(t)) > 0 for x > 0, and _x < 0 for x < 0.
The objective is to control the system state x to follow a desired
trajectory yr(t) = 12:5 sin(2:3t) as in [1].

In the simulation of Scheme I, the robust adaptive control law
(15)–(19) was used, taking c1 = 0:9;  = � = 0:1; � = 0:2. The ini-
tial values are chosen as follows: ê(0) = 0:8=3; â(0) = 1:5; D̂(0) =
2; x(0) = 1:05, and v(0) = 0 which are the same as in [1]. The
simulation results presented in the Figs. 2 and 3 are system tracking
error and input.

In the simulation of Scheme II by using the robust adaptive control
law (46)–(50), we choose c1; ; �;�, and the initial values to be same
as before and �1 = 0:1. The simulation results presented in Figs. 4 and
5 are system tracking error and input. Clearly, all the results verify our
theoretical findings and show the effectiveness of the control schemes.

V. CONCLUSION

This note presents two backstepping adaptive controller design
schemes for a class of uncertain nonlinear single-input–single-output
system preceded by unknown backlash-like hysteresis nonlinearities,
where the hysteresis is modeled by a differential equation, in the
presence of bounded external disturbances. In the first scheme, a
sign function is involved and this can ensure perfect tracking. To
avoid possible chattering caused by the sign function, we propose an
alternative smooth control law and the tracking error is still ensured
to approach a prescribed bound in this case. Unlike some existing
control schemes, the developed backstepping controls do not require
the model parameters within known intervals and the knowledge on
the bound of “disturbance-like” term is not required. Besides showing
global stability, we also give an explicit bound on the L2 performance
of the tracking error in terms of design parameters. Simulation results
illustrates the effectiveness of our schemes.

To further improve system performance such as the tracking error,
especially in the case without using sign functions, it is worthy to take
the system hysteresis into account in the controller design, instead of
only considering its effect like bounded disturbances. The first step of
achieving this is perhaps to obtain an efficient adaptive hysteresis in-
verse, which is still unclear and currently under investigation.
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On Compensation of Wave Reflections in Transmission
Lines and Applications to the Overvoltage

Problem AC Motor Drives

Romeo Ortega, Alessandro de Rinaldis, Mark W. Spong,
Sangcheol Lee, and Kwanghee Nam

Abstract—In several practical applications actuators are interconnected
to a controlled plant through long cables. If the actuator operates at a fast
sampling rate (with respect to the propagation delay of the cable) and its
impedance cannot be neglected, wave reflections will occur and the trans-
mitted pulse will be deformed—degrading the control quality. In this note,
exploiting the scattering variables representation of the transmission line,
we provide a framework for the design of active compensators to reduce the
wave reflection problem. The compensators, implementable with regulated
current and voltage sources, can be placed either on the actuator side or
the plant side, and the only required prior knowledge is the transmission
line characteristic impedance and the propagation delay. An adaptive im-
plementation that obviates the need of the lines characteristic impedance,
but still requires the knowledge of the propagation delay, is also presented.
We prove the existence of an ideal scheme that transforms the line into a
pure delay transfer which, unfortunately, yields an ill-posed interconnec-
tion and therefore has to be approximated for its practical application. The
proposed design method is illustrated with a benchmark ac drives example
consisting of a pulsewidth modulation inverter and an induction motor.

Index Terms—Impedance, infinite dimensional systems, motor control,
overvoltage, pulsewidth modulation (PWM) inverter, reflection coefficient,
transmission lines, wave equation.

I. INTRODUCTION

In this note, we are interested in the problem of compensation of
the wave effects that appear when a fast sampling actuator, with non-
negligible impedance, is coupled to the controlled plant through long
feeding cables. In this case, the connecting cables behave as a trans-
mission line inducing a wave reflection that deforms the transmitted
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