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Backtracking search algorithm (BSA) is a novel evolutionary algorithm (EA) for solving real-valued numerical optimization
problems. In this paper, an adaptive BSA (ABSA) is proposed to solve the optimization problem of an induction magnetometer (IM).
In the adaptive algorithm, the probabilities of crossover and mutation are varied depending on the fitness values of the solutions
to refine the convergence performance. The proposed ABSA will also be compared with basic BSA and other widely used EA
algorithms. Simulation results show that ABSA is better able to solving the IM optimization problems.
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I. INTRODUCTION

E
VOLUTIONARY algorithms (EA) [1], including

covariance matrix adaptation evolution strategy [2],

differential evolution (DE) algorithm [3], particle swarm

optimization (PSO) [4], artificial bee colony (ABC) [5]

algorithm, have been widely used for electromagnetic design

problems [6]. Unlike classical optimization techniques, EAs

are sufficiently flexible to solve different types of problems

in virtue of their global exploration and local exploitation

abilities. EA techniques are typically used to solve non-

linear and non-differentiable problems. EAs radically differ

from one another based on their strategies for generating

and updating trial individuals. Different strategies have a

considerable effect on problem-solving success and speed.

By following the inspirational previous works, many bioin-

spired evolutionary computation methods have been proposed,

developed, and studied for scientific research and engineer-

ing applications. Backtracking search algorithm (BSA) is a

novel EA, which was first proposed by Civicioglu [7] in

2013. This algorithm consists of three basic genetic operators,

which are selection, mutation, and crossover to generate trial

individuals. In contrast to many genetic algorithms, such as

DE and its derivatives, BSAs random mutation strategy, and

a non-uniform crossover strategy, enable it to solve numerical

optimization problems successfully and rapidly.

BSA uses randomly generated populations in calculating

the search-direction matrix, while PSO and ABC do not use

previous generation populations. BSA is a dual-population

algorithm, and the historical populations that include more effi-

cient individuals are well used based on a randomly selected

previous generation. More advanced generations relative to

the historical populations are generated by BSAs crossover
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strategy. This facilitates BSAs generation of more efficient trial

individuals.

Induction magnetometer (IM) is an effective tool for acquir-

ing magnetic field data, which are required with a wide

bandwidth [8]. The lengths and the weights of existing IMs are

inconvenient for geophysicists to use in the wild. In this paper,

we mainly focus on the optimization problem of reducing the

mass and dimension of IMs.

This paper proposes an adaptive BSA to optimize the design

parameters of an IM to minimize its weight. The adaptive

strategy is employed to reinforce the convergence performance

of BSA. It is observed that as the BSA converges, the

fitness distance between each population will become smaller.

Therefore, it would be sensible to incorporate the fitness

distances between individuals into the adaptive updating of

the probability of mutation.

The rest of this paper is organized as follows. Section II

introduces the basic principles of BSA and the adaptive

mechanism. The optimization problem of an IM is presented in

Section III. The comparative experimental results are given in

Section IV, which are carried out to compare the adaptive BSA

(ABSA) with the BSA, PSO, ABC, and DE. Our concluding

remarks are contained in Section V.

II. ADAPTIVE BSA

A. BSA

As presented in [7], BSA is a population-based iterative EA

designed to be a global minimizer, including five processes.

BSA uses three basic genetic operators (selection, mutation,

and crossover) to generate trial individuals. BSA has a random

mutation strategy that uses only one direction individual for

each target individual and randomly chooses the direction

individual from individuals of a randomly chosen previous

generation. BSA uses a non-uniform crossover strategy that

is much more complex than traditional crossover strategies.

The processes of BSA can be described as follows.

First, BSA initializes the population denoted as Pi j ∼

U(low j , up j ), for i = 1, 2, 3 . . . , N and j = 1, 2, 3, . . . , D,

where N and D are the population size and the problem
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dimension, respectively. Each dimension signifies one design

parameter.

Then, BSAs Selection-I stage evaluates the population and

determines the historical population oldP according to the

obtained fitness value

if a < b then oldP := P |a, b ∼ U(0, 1) (1)

where := is the update operation. Equation (1) ensures that

BSA designates a population belonging to a randomly selected

previous generation as the historical population and remembers

this historical population until it is changed.

During each generation, BSAs mutation process generates

the initial form of the trial population using

Mutant = P + F · (oldP − P) (2)

where F is the amplitude control factor that controls the

amplitude of the search-direction matrix. Because the his-

torical population is used in the calculation of the search-

direction matrix, the trial population is generated by taking

partial advantage of its experiences from previous generations.

After the new mutant operation is finished, the crossover

process generates the final form of the trial population T .

The initial value of the trial population is Mutant, which

has been set in the mutation process. Individuals with better

fitness values for the optimization problem are used to evolve

the target population. The first step of the crossover process

calculates a binary integer-valued matrix (H ) of size N · D

that indicates the individuals of T to be manipulated using

the relevant individuals of P . Then, the trial population T is

updated as

Hi,u(1:⌈M ·rnd·D⌉) = 0 |u = permuting((1, 2, 3, . . . , D))

Tn,m := Pn,m

if Hn,m = 1 (3)

where n ∈ {1, 2, 3, . . . , N} and m ∈ {1, 2, 3, . . . , D}.

Two predefined strategies are randomly used in defining

the integer-valued matrix, which is more complex than the

processes used in DE. The first strategy uses mix rate M ,

and the other allows only one randomly chosen individual to

mutate in each trial.

After one generation is finished, in BSAs Selection-II stage,

the global minimizer is updated based on the best individual

of T . The iteration goes until terminal requirement is met.

Then, the global minimizer is the output as the optimal

solution to the problem.

B. Adaptive BSA

The mutation operation in BSA introduces occasional

changes of a random individual position with a specified

mutation probability. The crossover operator, which is quite

different from the crossover strategies used in other EAs, uses

the mix rate parameter to control the number of elements

of individuals that will mutate in a trial. However, the sig-

nificance of amplitude control factor F and mix rate M in

controlling BSA performance has not been acknowledged in

BSA research.

In this paper, an adaptive mechanism is introduced to

improve the performance of BSA by utilizing the global

information and further improve the convergence performance

of BSA [9]. The key idea of the ABSA is adapting the

amplitude control factor F and mix rate M based on the fitness

statistics of population at each generation.

The proposed algorithm is based on the existing adaptive

strategy [3], but introduces a normalized fitness distance

between the current individual and other individuals in the

population to control the probability of mutation. It has been

observed that the difference between the average fitness value

and minimum fitness value of the population f − fmin is likely

to be less for a population that has converged to optimum

solution than that for a population scattered in the solution

space. Therefore, the mix rate would be sensible to incorporate

the fitness distances between individuals into the adaptive

update principle. The values of F and M should be varied

depending on the value of f − fmin. The adaptive strategy for

updating F and M can be described by the following:

M =

{

k1( fc − fmin)/( f̄ − fmin), fc > f̄

k2, fc ≤ f̄
(4)

F =

{

k3( fi − fmin)/( f̄ − fmin), fi > f̄

k4, fi ≤ f̄
(5)

where k1, k2, k3, and k4 have to be less than 1.0 to constrain

F and M to the range of 0.0–1.0, fc is the larger of the fitness

values of the individuals selected for crossover, and fi is the

fitness of the i th individual to which the mutation is applied.

In the basic BSA, the mix rate M and amplitude control factor

F are generally set as 0.9 and 1.0, according to the range of

M and F , k1, k2, k3, and k4 are set as 0.9, 0.9, 1.0, and 1.0.

In (4) and (5), high-fitness solutions are protected, while

solutions with subaverage fitnesses are totally disrupted. This

adaptive strategy can speed up the convergence rate of BSA.

The detailed processes of ABSA are described as follows.

Step 1: Initialization. Number of population size and

maximum number of iterations are, respectively,

assigned as N and Ncmax. The initial population

is randomly generated.

Step 2: Evaluate the population and conduct Selection-I to

determines the historical population.

Step 3: Conduct the mutation operation and generate new

trial population based on the search-direction

matrix.

Step 4: Conduct crossover operation and select the best

individual among the group consisting of the

historical population, the newly generated trial pop-

ulation, and the two individuals produced by the

crossover operation. Replace the historical popula-

tion with the selected one.

Step 5: Evaluate the final trial population, and conduct

Selection-II to update the global minimizer.

Step 6: Conduct adaptive strategy, update F and M accord-

ing to (4) and (5).

Step 7: If the current number of iterations Nc is less than

Ncmax, go back to Step 3. Otherwise the algorithm

is terminated and the global minimizer is the output

as the solution to the optimization problem.

The flow chart of ABSA is shown in Fig. 1.
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Fig. 1. Detailed flow chart of ABSA.

Numerical tests are conducted to examine the relative suc-

cess of ABSA and the comparison algorithms in solving the

numerical optimization. The effectiveness of these algorithms

is investigated here using eight benchmark functions, which

are shown in Table I. The basic statistics of the 30-solutions

obtained by ABSA and the other algorithms are presented in

Table II.

The results obtained from the tests reveal that our proposed

ABSA is statistically more successful than all the other com-

parative algorithms.

III. PROBLEM FORMULATION

In this paper, we focus on the optimization of IM to achieve

the required performance with the least mass. To analyze

the optimization, some reasonable hypotheses are made. The

apparent permeability of an IM is determined by the size of

the core (d and l) and the initial permeability of the core

TABLE I

BENCHMARK PROBLEMS USED IN TEST (DIM: DIMENSION, LOW, UP:

LIMITS OF SEARCH SPACE, M: MULTIMODAL, N: NON-SEPARABLE,

U: UNIMODAL, S: SEPARABLE, E: EXPANDED,

H: HYBRID, C: COMPOSITION)

TABLE II

BASIC STATISTICS OF THE 30-SOLUTIONS OBTAINED BY PSO, ABC,

DE, AND ABSA IN TEST (MEAN: MEAN-SOLUTION,

STD: STANDARD-DEVIATION OF MEAN-SOLUTION,

BEST: THE BEST-SOLUTION, AND RUNTIME:

MEAN-RUN TIME IN SECONDS)

material due to the demagnetization effect. As is shown in

Table I, this optimization problem has four design variables

and one objective variable, and our object is to minimize the

weight cost.

The measuring principle of the IM is based on

Faraday’s law, and the induction voltage (e) of the coil can be
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expressed as

e(t) = −N
d�(t)

dt
= −µapp N S

d B(t)

dt
(6)

where � is the magnetic flux in the core, µapp is the apparent

permeability of the core, N is the turns of the coil, S is the

core cross section, and B is the magnetic flux density.

In the first place, the demagnetizing factor NB can be

calculated as [10]
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Then, the apparent permeability of the core µapp can be

expressed as [11]

µapp =
µr

1 + NB(µr − 1)
. (8)

The effective core cross section S represents the area of

the core material without the adhesive gap, which can be

expressed as

S = π ×

(

d

2

)2

× η. (9)

The relation between the resistance and the self-inductance

of the coils can be evaluated using the parameters listed in

Table III [12]

Lpc =
N2µ0µapp × π ×

(

d
2

)2

l
η (10)

Rsc =
4ρNt

d2
w

[

Nt × (dw + tw)2

κl
+ d + 2tcoil

]

. (11)

The equivalent input magnetic noise level is a function of

variables d , l, dw, and Nt

Bnte(d, l, dw, Nt )

=

√

e2
w + (iw × |Rsc + j2π Lpc|)2 + 4KbTc Rsc

|2πµapp Nt S|
. (12)

The total weight of the IM mainly consists of three parts:

the core Wcore, the coil Wcoil, and the package Wpackage

Wtotal(d, l, dw, Nt ) = Wcore + Wcoil + Wpackage. (13)

The weight of package is supposed to be 1 kg and the other

two parts can be evaluated as

Wcore = ρcπ

(

d

2

)2

lη (14)

Wcoil =
1

2
ρw Nt π

2d2
w

[

Nt (dw + tw)2

2κl
+

d

2
+ tcoil

]

. (15)

The geometrical parameters of the IM are shown

in Fig. 2.

Based on these analyses, the optimization problem of IM

weight can be expressed as the following general optimization

problem:

maximize Wtotal = f (d, l, dw, Nt )

with Bnte(d, l, dw, Nt ) = Nte. (16)

TABLE III

OPTIMIZATION PARAMETERS

Fig. 2. Geometrical parameters of the IM.

IV. EXPERIMENTAL RESULTS

To investigate the feasibility and effectiveness of

the ABSA for solving the optimization of the IM, a

series of comparative simulations is conducted. The

control parameters of BSA and ABSA are shown in

Tables IV and V, respectively. The parameters of other EAs,

including PSO, ABC, and DE, are adopted from [13]–[16],
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TABLE IV

CONTROL PARAMETERS OF BSA

TABLE V

CONTROL PARAMETERS OF ABSA

TABLE VI

CONTROL PARAMETERS OF PSO

TABLE VII

CONTROL PARAMETERS OF ABC

TABLE VIII

CONTROL PARAMETERS OF DE

which are shown in Tables VI–VIII. The population size and

maximum number of iterations of the comparison EAs are

set equal to those of BSA and ABSA.

Comparison of the simulation results between the ABSA

and the basic BSA is illustrated in Tables IX and X. The

statistic result of 50 trials is presented in Table IX. Table X

shows the best solutions of the BSA and other three EAs.

From Table IX, we can conclude that the average value and

stability of ABSA are slightly better than PSO, ABC, and DE.

Among the five, BSA has the lowest standard deviation value,

and ABSA is very close to it. PSO, ABC, and DE are not likely

to precisely find the optimal solution. As a result, ABSA,

which can reliably find solutions close enough to optimum,

is a feasible approach to solve the IM optimization problem.

The first row in Table X presents the global optimum

obtained by these comparison algorithms. All the algorithms

TABLE IX

STATISTIC SIMULATION RESULTS

TABLE X

BEST SOLUTIONS OF ABSA, BSA, PSO, ABC, AND DE

Fig. 3. Evolutionary process comparison of ABSA, BSA, PSO, ABC, and
DE (Nc = 20).

are well capable of obtaining an appreciable approximation

of the global optimum. When the results are examined,

ABSA and PSO are statistically identical, and ABSA has pro-

vided statistically better solutions than the other comparison

algorithms. In addition, we can conclude that the optimal value

of ABSA is slightly better than the other algorithms. The

simulation results also demonstrate that BSA is very likely

to trap in local optima. Moreover, an examination of the

data obtained from the tests shows that ABSA is generally

faster than most of the comparison algorithms. As a result,

ABSA, which can reliably find a solution close enough to

optimum, is a feasible approach to the optimization problem

of IM.

Fig. 3 shows the evolution curves of all the above

algorithms. It can be observed that, using the adaptive strategy,

the iterations for convergence can be reduced greatly, and the
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TABLE XI

SIMULATION RESULTS FOR A BRUSHLESS

DC WHEEL MOTOR OPTIMIZATION

TABLE XII

BEST SOLUTIONS OF PSO, ABC, DE, AND ABSA FOR

A BRUSHLESS DC WHEEL MOTOR OPTIMIZATION

curve of ABSA is always above those of BSA, PSO, ABC,

and DE.

The optimization for an analytical model of a brushless

dc wheel motor has also been chosen as another benchmark

for further test [17]. This benchmark problem has five design

variables and one efficiency value. The efficiency is deter-

mined by these variables, and the object is to maxi-

mize the efficiency. The simulation results are shown in

Tables XI and XII.

From the simulation results, one can conclude that both

these evolution algorithms can obtain an appreciable approx-

imation of the global optimum, yet the average value and

stability of ABSA are better than those of the others.

V. CONCLUSION

BSA is a newly-proposed evolutionary optimization global

search algorithm, which has a clear structure that enables it to

benefit from previous generation populations as it searches for

solutions with better fitness values. In each generation, BSA

produces very efficient trial populations, because the mutation

produces both large amplitude values essential for a global

search and the small amplitude values necessary for a local

search, and the complex crossover operation ensures creation

of new trial individuals. BSA has already proven competent

in solving some constrained benchmark problems.

This paper developed an adaptive BSA with an adaptive

strategy for determination of the global or near-global opti-

mum solution of an electromagnetic optimization problem.

The amplitude control factor and mix rate are varied depending

on the fitness values of the solutions. Simulation results

on optimizing the IM variables verified the feasibility and

effectiveness of our proposed ABSA in comparison with basic

BSA, PSO, ABC, and DE algorithms. ABSA can successfully

solve the complicated optimization problems and exhibit better

convergence, which is especially promising as an EA.
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