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Summary

An adaptive scheme to generate reduced-order models for parametric nonlinear
dynamical systems is proposed. It aims to automatize the POD-Greedy algorithm
combinedwith empirical interpolation. At each iteration, it is able to adaptively deter-
mine the number of the reduced basis vectors and the number of the interpolation
basis vectors for basis construction. The proposed technique is able to derive a suit-
able match between the reduced basis and the interpolation basis vectors, making
the generation of a stable, compact and reliable reduced-order model possible. This
is achieved by adaptively adding new basis vectors or removing unnecessary ones,
at each iteration of the greedy algorithm. An efficient output error estimator plays a
key role in the adaptive scheme. We also propose an improved output error estimator
based on previous work. Upon convergence of the POD-Greedy algorithm, the new
error estimator is shown to be sharper than the existing ones, implicating that a more
reliable reduced-order model can be constructed. The proposed method is tested on
several nonlinear dynamical systems, namely, the viscous Burgers’ equation and two
other models from chemical engineering.
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1 INTRODUCTION

Large-scalemathematical models have become common in detailedmodelling of complex physical and chemical processes. Very
often, these models need to be evaluated repeatedly, for different sets of parameters. To avoid the huge computational burden,
model order reduction (MOR) typically seeks a small-scale system that faithfully approximates the original large-scale system
with parameter variations. The original large-scale system is referred to as the full-order model (FOM) while the small-scale
system is called the reduced-order model (ROM) in the following.
MOR for linear systems has been under investigation for several decades and is well-established [3]. However, methods

for nonlinear systems are still under active research. Existing MOR methods for linear systems could be extended to weakly-
nonlinear systems or systems with structured non-linearities [5, 7]. For general strong nonlinear systems, the snapshot based
methods, e.g., Proper Orthogonal Decomposition (POD), Reduced Basis Method (RBM) are chosen most often. The use of
POD/RBM is often accompanied by an interpolatory strategy for efficient evaluation of the nonlinear function of the ROM.
The idea is instead of evaluating the vector of nonlinearities with the full dimension, only several elements in the vector are
evaluated. The interpolation indices decide which elements should be evaluated. Several interpolation methods are proposed,
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e.g., the Empirical Interpolation Method (EIM)[2], the Discrete Empirical Interpolation Method (DEIM) [8, 13], the hyper-
reduction method in [1]. POD with DEIM, i.e. POD-DEIM, was proposed for MOR of non-parametric nonlinear systems [8],
while RBM combined with EIM (RBM-EIM for short) is often applied to parametric nonlinear systems.
A standard implementation of POD-DEIM is to separately generate the reduced bases (RB) for the state vector and the

interpolation bases for the nonlinear vector using POD and DEIM, respectively. This technique nevertheless does not guarantee
that the ROM and the interpolation bases are as small as possible. In the worst case, the ROMmight be unstable. To avoid these
issues, the authors in [11] introduced a method of adaptively constructing the RB and the DEIM bases. The adaptivity is guided
by an a posteriori output error estimator for the ROM. Finally, a compact and reliable ROM is obtained. The algorithm in [11]
has several drawbacks. Firstly, it is only applicable to non-parametric systems. Secondly, the adaptive scheme is only one-way.
This means, the interpolation bases can only be extended but cannot be shrunk when necessary. Therefore, the number of the
initial basis vectors must be small enough, which could cause more iterations until convergence. Thirdly, the error estimator
used in [11] is not ideally sharp and could be further improved.
For parametric systems, direct implementation of RBM-EIM by separately implementing EIM could give rise to similar

issues as for non-parametric systems caused by POD-DEIM. In addition, the EIM needs FOM simulations at all samples in a
training set, which is time consuming. This issue is also pointed out in [4, 9]. In [10], RBM-EIM is implemented such that both
the reduced basis and the interpolation basis are updated simultaneously. The update was done by trivially adding a single new
member to each of the basis spaces at each iteration step of the POD-Greedy algorithm [14] designed for parametric nonlinear
systems.
Recently, adaptive schemes are proposed in [4, 9] for RB and EIM bases construction. The authors in [9] propose a SER

method of simultaneously enriching the RB and EIM bases for nonlinear but stationary problems. The idea is to start with an
initial FOM solution at one parameter sample to initialize the EIM. The initial EIM is then used for FOM simulation, from
which an initial RB vector is computed. The RB then yields an initial ROM. The ROM solutions at all samples of the parameter
are then projected back to produce the approximate FOM solutions. The EIM is updated from the approximate snapshots of the
nonlinear function being evaluated at the approximate FOM solutions. In the subsequent iterations, the FOM is never simulated.
Instead, only the ROM is updated with the updated EIM, and is then simulated to get the updated approximate FOM solutions,
so that a new loop of updates is triggered. Since only the ROM is simulated for EIM and RB updates, the snapshots used for EI
and RB construction are approximate snapshots. SER can be considered as an approximate RB-EIM method.
A progressive EIM (PREIM) method for nonlinear, dynamical (time-dependent) systems is proposed in [4]. A special case of

the method is a natural extension of the SER method in [9]. The PREIM method evaluates the nonlinear function not only at the
approximate FOM solution, but also at the high-fidelity FOM solution, whenever available. More precisely, if a new sample of
the parameter is selected for RB enrichment, the high-fidelity solution at this sample and the corresponding many time instances
need to be computed to enrich the RB bases. The nonlinear function evaluated at the high-fidelity solution of this sample can
be readily obtained. For other samples in the training set, the nonlinear function is evaluated at the approximate FOM solutions
computed from the ROM. Therefore, this method can be referred to as semi-approximate RB-EIM.
In this work, we propose a new adaptive scheme of RB-(D)EIM basis enrichment for parametric nonlinear systems. As

compared with the adaptive POD-DEIM in [11],

• we have extended the technique to parametric nonlinear systems. The extension is nontrivial, since our adaptive scheme
is constructed based on POD-Greedy [14], tailored for parametric systems. Furthermore, the DEIM/EIM does not need
to be pre-implemented, avoiding solving the FOM at all samples in the training set.

• We have made the adaptivity more flexible. The RB and (D)EIM bases enrichment is now a two-way technique. i.e., it is
not only for adaptive basis extension but also for adaptive basis shrinking according to a user-defined error tolerance of
the ROM, and the user-given initial basis dimensions.

• An improved and sharper output error estimator is derived for both non-parametric and parametric systems, which can be
further used in the proposed adaptive schemes. Radial basis function interpolation is applied to compute the parameter-
dependent inf-sup constant cheaply and fast, so that singular value decompositions of a full dimensional matrix at all
the samples of the parameter are avoided. In [16] the authors propose a Kriging interpolation based method to estimate
the inf-sup constant and also remark on the connections between Kriging and radial basis interpolation. In this work, we
apply the more straightforward method of radial basis interpolation as proposed in [21], where the interpolation points
are adaptively constructed. Adaptivity is nevertheless not considered in [16].
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As compared with SER, PREIM in [4, 9],

• we do not use the approximate state to evaluate the nonlinear function during the RB and EIM construction so that no
extra errors are introduced. For DEIM/EIM, we only use the high-fidelity solutions that are needed for RB enrichment
and are computed by FOM simulation at the parameter samples selected iteratively by the POD-Greedy algorithm. The
nonlinear function is evaluated only at those high-fidelity FOM solutions that are available for free.

• For both methods, SER and PREIM, a new sample is selected for basis enrichment according to the approximation quality
of EIM rather than the ROM quality. Furthermore, the selection process might be time consuming for dynamical systems,
since it is done at every parameter sample in the training set and at each time instance corresponding to each sample. Our
adaptive scheme is based on an efficient output error estimator for the ROM. At each iteration, a new sample is selected
by considering both the EIM error and the RB error. The parameter selection follows POD-Greedy, but the adaptive bases
enrichment is based on the separate contributions of the RB and EIM errors to the whole ROM error, thanks to the error
estimator.

• At each iteration of either SER or PREIM, only one candidate vector is computed for EIM basis enrichment. Our proposed
adaptive scheme makes adaptive EIM construction possible, meaning the number of the new EI basis vectors for basis
extension could vary at each iteration. Moreover, the dimension of both RB and EI basis space can also be adaptively
shrunk according to the error estimator.

• Beyond those aspects, we have made the RB enrichment adaptive, which is not considered in either SER, PREIM or
standard POD-Greedy. This means the number of POD modes to be added to the RB space is adaptively varied at each
POD-Greedy iteration.

Note that in [23] an adaptive POD-Greedy algorithm is also proposed, but with different adaptivity. There, the algorithm focuses
on adaptively enriching the training set of the parameters.

Summary of contributions:
• In Section 3, we propose an improved primal-dual based output error estimator. The error estimator can be seen as being
composed of two parts. The first part is the product of the norms of two residuals: the dual residual and the primal residual.
The second part is associated with the approximate state of the dual system. We show that the norm of the dual residual
(residual of the dual system) can be further reduced by introducing more efficient solvers for the dual system. The second
part of the error estimator can also be reduced by introducing a modified output. Upon convergence of the POD-Greedy
algorithm, the new error estimator is shown to be much sharper than the existing ones.

• In Section 4, an adaptive process for RB-(D)EIM basis generation is proposed, which we call adaptive POD-Greedy-
(D)EIM. Since we improved the existing adaptive POD-DEIM using the improved error estimator and the proposed two-
way approach, we also show the improved adaptive POD-DEIM in this section.

• To efficiently compute the inf-sup constant for error estimation, we apply the radial basis interpolation approach [21] to
approximate the inf-sup constant for parametric systems. It shows good accuracy and speed-up.

• The proposed ideas are tested on several examples in Section 5 including two examples from chemical engineering - a
fluidized bed crystallizer model and a batch chromatographic model.

The remaining part of the paper is organized as follows. In Section 2, the standard algorithms, on which the proposed adaptive
algorithm is built, are reviewed: POD, POD-Greedy, EIM and DEIM. Since the adaptive algorithm is based on an efficient error
estimator, we introduce an improved output error estimator in Section 3. The adaptive POD-Greedy-(D)EIM is proposed in
Section 4. Simulation results are presented in Section 5, and conclusions are given in Section 6.
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2 PRELIMINARIES

In this section, we review existing algorithms for model order reduction of nonlinear parametric systems, which are the building
blocks of the proposed adaptive algorithm. Consider a parametric, nonlinear dynamical system of the following form,

E(�)ẋ(t, �) = A(�)x(t, �) + f (x(t, �), �) + B(�)u(t),
y(t, �) = C(�)x(t, �),

(1)

where

• � ∈ ℝd is a vector of parameters in a parameter domain P ⊂ ℝd ,

• x(t, �), f (x(t, �), �) ∈ ℝN are the state and the state dependent nonlinear vectors respectively,

• u(t) ∈ ℝNI is the input signal,

• y(t, �) ∈ ℝNO is the output/quantity of interest,

• E(�), A(�) ∈ ℝN×N are the system matrices,

• B(�) ∈ ℝN×NI , C(�) ∈ ℝNO×N are the input and output matrices, respectively.

Such systems typically arise from the spatial discretization of parametric partial differential equation (PDEs) through finite
difference, finite element or finite volume methods. SinceN is typically large, we wish to find a system of reduced order r ≪ N ,
that accurately approximates the original system solution.

2.1 Parametric Model Order Reduction via projection
Assume the solution to (1) lies in a low dimensional subspace, then it is possible to construct a matrix V ∈ ℝN×r with low rank
(r ≪ N), whose columns constitute an orthogonal basis that spans this subspace, such that the solution can be approximated by
the basis vectors. Then a ROM can be given via Petrov-Galerkin projection,

Er(�)ẋr(t, �) = Ar(�)xr(t, �) + fr(V xr(t, �), �) + Br(�)u(t),
yr(t, �) = Cr(�)xr(t, �),

(2)

where

• W ∈ ℝN×r is a matrix, whose columns span a test subspace,

• xr(t, �) ∈ ℝr, is the reduced state vector,

• fr(V xr(t, �), �) ∶= W Tf (V xr(t, �), �) ∈ ℝr, is the reduced nonlinear vector,

• Ar(�) ∶= W TA(�)V ∈ ℝr×r, Er(�) ∶= W TE(�)V ∈ ℝr×r are the reduced system matrices,

• Br(�) ∶= W TB(�) ∈ ℝr×NI , Cr(�) ∶= C(�)V ∈ ℝNO×r are the reduced input and output matrices respectively.

For parametric nonlinear dynamical systems, snapshot based methods are widely used to construct the basis vectors in V and
Galerkin projection is often chosen to construct the ROM, i.e.W = V . POD is either used as an independent method or as an
intermediate step in POD-Greedy [14] for ROM construction. Throughout the paper, ‖ ⋅ ‖ refers to the vector 2-norm or the
matrix spectral norm.

2.2 POD and POD-Greedy
Proper orthogonal decomposition (POD) is a procedure of constructing an optimal orthonormal basis that is used to approximate
a given dataset. Consider a matrix X ∈ ℝN×K , consisting of the given data. Let rank(X) = rX . For any l ≤ rX , POD gives rise
to an orthonormal basis {ui}li=1 satisfying the following optimality criterion,

{ui}li=1 = arg min{ũi}li=1

K
∑

j=1

‖

‖

‖

‖

xj −
l

∑

k=1
⟨xj , ũk⟩ũk

‖

‖

‖

‖

2
,

s.t, ⟨ũi, ũj⟩ = �ij , 1 ≤ i, j ≤ l.

(3)
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Algorithm 1 Proper orthogonal decomposition (POD)

Input: Snapshots X =
[

x(t1), x(t2),… , x(tK )
]

, tolerance �POD (a heuristically chosen small value).
Output: POD basis matrix V .

1: Perform X
SVD
←←←←←←←←←←←←←←←←→ UΣW T , Σ ∶=

[

D 0
0 0

]

, D ∶= diag(�1, �2,… , �rX ).

2: Find r, s.t.,
∑rX
i=r+1 �i

/
∑rX
i=1 �i < �POD, rX is the number of non-zero singular values from Σ, V = U (∶ , 1 ∶ r).

The basis vectors {ui}li=1 are called the POD basis, and they are obtained through the Singular Value Decomposition (SVD) of
X. When POD is used to compute the projection matrix V for MOR of a dynamical system, the system is first simulated to obtain
solutions x(t1), x(t2), … , x(tK ) at (selected) time instances t1, t2, … , tK , which are called snapshots, then the POD basis of
the snapshot matrix X ∶= [x(t1), x(t2),… , x(tK )] defines the projection matrix V . Algorithm 1 demonstrates the construction
of V through POD.
For parametric systems, one needs a suitable method to capture the variation in the solution manifold due to the parameter

variations. For this purpose, we adopt the POD-Greedy approach [14]. It relies on POD in time domain and a greedy selection
in the parameter domain; it is a standard implementation of the RBM for parametric dynamical systems. The details are given in
Algorithm 2. A crucial ingredient of the algorithm is the availability of a cheap and sharp error estimator Δ. At each iteration,
the error estimator must be evaluated ntrain times, where ntrain is the cardinality of the parameter training set Ξ [24]. Therefore,
it is important that the error estimator is computed in a rapid and reliable manner.

2.3 EIM and DEIM
From (2), we observe that the complexity of evaluating the nonlinear term fr, still depends on the FOM, since we need to first
evaluate it at V xr ∈ ℝN for a given parameter �. Some interpolation techniques are proposed to reduce this complexity.

Empirical interpolation.
The Empirical InterpolationMethod was introduced in the context of the Reduced Basis Method, in order to reduce the complex-
ity in evaluating nonaffine parameter dependence or nonlinear dependance in the ROM [2, 13]. Both the interpolation indices
and the interpolation basis vectors are chosen in a greedy manner.

Discrete empirical interpolation.
The discrete variant of EIM, i.e. DEIM was introduced in [8]. The main differences of DEIM from EIM include two aspects.
One is the interpolation basis construction: DEIM uses the pre-computed POD basis of the nonlinear snapshot matrix via SVD,
as the interpolation basis, whereas EIM constructs the interpolation basis iteratively through a greedy algorithm and from the
nonlinear snapshots. The other aspect is the interpolation indices selection: DEIM selects the interpolation indices by looking at
the distance between the current interpolation basis vector and its approximation obtained via interpolation using the previous
interpolation basis vectors. However, EIM chooses the interpolation indices based on the distance between the current nonlinear
snapshot vector and its approximation obtained via interpolation using the previous interpolation basis vectors.

Algorithm 2 Standard POD-Greedy [14]
Input: Parameter training set Ξ ⊂ P , tolerance tol.
Output: Basis matrix V .
1: Initialize. V = [ ], �∗ ∈ Ξ.
2: while doΔ(�∗) > tol
3: Simulate FOM at �∗ and obtain snapshots, X = [x(t1, �∗), x(t2, �∗),… , x(tK , �∗)].
4: Update the projection matrix X̄ ∶=

(

X − Proj (X)
) SVD
←←←←←←←←←←←←←←←←→ UΣW T ,  is the subspace spanned by V .

5: V ← orth{V ,U (∶ , 1)}.
6: �∗ ∶= arg max

�∈Ξ
Δ(�).

7: end while
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Algorithm 3 Empirical interpolation method (EIM)[2]
Input: Snapshots of the nonlinear vector at a set of parameter samples,

F =
[

f (x(t1, �1) , �1),… , f (x(tK , �1) , �1),… , f (x(t1, �ns) , �ns),… , f (x(tK , �ns) , �ns)
]

∶= [f1,… , fKns] ∈ ℝN×K⋅ns ,
maximal iteration steps max_iter, tolerance �def, ns is the total number of parameter samples.

Output: EIM basis Uf =
[

�1, �2,… , �l
]

, index matrix P = [e℘1
, e℘2

,… , e℘l
].

1: Initialize Uf = [ ], P = [ ], m = 1.
2: Select the snapshot that maximizes the norm. �1 = arg max

fi
1≤i≤K⋅ns

‖fi‖, the interpolation index is given as the position of the

row element of �1 with maximal magnitude.
[

∼,℘1
]

= max(|�1|), where �1 = [�11, �12,… , �1N ]T . Here, max() refers to the
MATLABⓇ function.

3: The first interpolation basis vector, �1 = �1∕�1,℘1
.

4: Update the interpolation matrix Uf ←
[

Uf , �1
]

, P ← [P , e℘1
].

5: while m ≤ max_iter do
6: m = m + 1.
7: Form the mth EIM interpolation for each snapshot vector in F : m

[

fi
]

= Uf
(

P TUf
)−1P Tfi, i = 1,… , K ⋅ ns.

8: Find f ∗ = arg max
fi

1≤i≤K⋅ns

‖

‖

‖

fi − m[fi]
‖

‖

‖

. Determine residual �m = f ∗ − m[f ∗].

9: if ‖�m‖ < �def then
10: m = m − 1.
11: stop.
12: end if
13:

[

∼,℘m
]

= max(|�m|). Set �m = �m∕�m,℘m

14: Uf ←
[

Uf , �m
]

, P ←
[

P , e℘m

]

.
15: end while

Both EIM and DEIM consider the following approximation for the nonlinear term,

f (x(t, �), �) ≈ Uf c(t, �), (4)

where Uf is the matrix of interpolation vectors and c(t, �) is the vector of the time-parameter dependent coefficients. The
interpolation is achieved by choosing a few interpolation indices where the approximation matches the original function, i.e.

P Tf (x(t, �), �) = P TUf c(t, �), (5)

where P = [e℘1
, e℘2

,… , e℘l
] is a column permutation of the identity matrix, such that the ith column e℘i

, is all zeros except for
the℘i-th row where the value is 1. It stores all the interpolation indices℘1,… ,℘l . We provide both algorithms as Algorithm 3
and Algorithm 4 for the sake of completeness.

ROM after interpolation.
Using either EIM or DEIM, the ROM in (2) can now be evaluated as,

Er(�)ẋr(t, �) = Ar(�)xr(t, �) + V TUf
(

P TUf
)−1P Tf (V xr(t, �), �) + Br(�)u(t),

yr(t, �) = Cr(�)xr(t, �).
(6)

Remark 1. The term V TUf
(

P TUf
)−1 in (6) can be precomputed. In evaluating P Tf (V xr(t, �), �), only a few terms (say,

lEI ≪ N terms) of the nonlinear vector f (V xr(t, �), �) needs to be evaluated, thereby removing the bottleneck in computing
the nonlinear term of the ROM.

Remark 2. Algorithm 2 can be combined with either EIM or DEIM for MOR of nonlinear systems. The interpolation bases are
precomputed before starting the greedy loop. Algorithm 5 illustrates the Standard POD-Greedy-(D)EIM algorithm. Clearly, the
nonlinear vector needs to be evaluated at all samples of � ∈ Ξ, at which the FOM needs to be simulated.
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Algorithm 4 Discrete empirical interpolation method (DEIM)[8]
Input: Snapshots of the nonlinear vector at a set of parameter samples,

F =
[

f (x(t1, �1) , �1),… , f (x(tK , �1) , �1),… , f (x(t1, �ns) , �ns),… , f (x(tK , �ns) , �ns)
]

, �POD, ns is as defined in
Algorithm 3.

Output: DEIM basis Uf , index matrix P = [e℘1
, e℘2

,… , e℘l
].

1: Initialize Uf = [ ], P = [ ].

2: Perform F
SVD
←←←←←←←←←←←←←←←←→ UΣW T , where U ∶= [uf1 , u

f
2 ,… , ufrF ], Σ ∶=

[

Df 0
0 0

]

,

3: Df ∶= diag(�
f
1 , �

f
2 ,… , �frF ).

4: Find l, s.t.,
∑rF
i=l+1 �

f
i
/
∑rF
i=1 �

f
i < �POD, rF is the number of non-zero singular values in Σ.

5: Select the first interpolation index as the position of the row element with maximal magnitude in the first column of U :
℘1 = arg max

j∈{1,2,…,N}
|uf1j|, where u

f
1 = [u

f
11, u

f
12,… , uf1N ]

T .

6: Uf ← uf1 , P ← [e℘1
].

7: for i = 2 to l do
8: Solve (P TUf )c = P T ufi , for c.
9: Form the residual, ri = u

f
i − Uf c.

10: ℘i = arg max
j∈{1,2,…,N}

|rij|. Here, ri = [ri1, ri2,… , riN ]T .

11: Uf ← [Uf , u
f
i ], P ← [P , e℘i

].
12: end for

3 IMPROVED A POSTERIORI OUTPUT ERROR ESTIMATION

Error estimation plays a crucial role in both standard POD-Greedy and the proposed adaptive algorithms. Error estimators for
RBMweremostly proposed based on the weak form of the PDE arising from the finite element discretization [27, 12, 14]. In [29],
an efficient output error estimator was proposed in the discretized vector space, whichmakes the error estimator straightforwardly
applicable to the already discretized systems. There, the authors propose an a posteriori output error estimator for the ROM
in (6). It avoids the accumulation of the residual over time, a phenomenon often seen in other error estimation approaches
[12, 14, 15], and therefore is often much sharper than the other error estimators. Moreover, the error estimator is applicable to
nonlinear dynamical systems. However, we observed that it is still possible to further improve the sharpness and computational
efficiency of the error estimator from different aspects. In the following we briefly review the output error estimation in [29]
and propose an improved output error estimator, as well as a more efficient way of computing the error estimator. For the
sake of concise notation, we do not explicitly show the parameter dependance of the system matrices (E,A,B, C) and vectors
x(t, �), f (x(t, �), �), y(t, �). The same shall also be followed by the corresponding dual system matrices and vectors that will
be introduced below.

3.1 Output error estimator from [29]
In this subsection, we briefly review the output error estimator in [29]. As in [29], we consider systems with single output, i.e.
C ∈ ℝ1×N and y is a scalar in (1).Wewill address the error estimation for multiple outputs in Remark 4. Consider a semi-implicit

Algorithm 5 Standard POD-Greedy-(D)EIM [24]
Input: Parameter training set Ξ ⊂ P , tolerance tol, maximal number of iterations max_iter, snapshot matrix of the nonlinear

vector,
F =

[

f (x(t1, �1) , �1),… , f (x(tK , �1) , �1),… , f (x(t1, �ntrain) , �ntrain),… , f (x(tK , �ntrain) , �ntrain)
]

, recall that ntrain is the
cardinality of the training set Ξ.

Output: Basis matrix V .
1: (D)EIM interpolation basis calculated using Algorithm 3 or Algorithm 4.
2: Call Algorithm 2, where instead of the ROM in (2), the ROM in (6) is simulated at each iteration.
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scheme for the time integration of (1),
Ẽkxk+1 = Ãkxk + Δtkf (xk) + ΔtkBkuk,
yk+1 = Cxk+1.

It is called the primal system. For a sharp estimation of the output error, the following dual system is needed,

(Ẽk)Txk+1du = −CT .

In general, the system matrices may be time-dependent if the time step Δtk changes over time, and therefore they are associated
with the superscript k. If we consider constant time steps for simplicity, i.e. Δtk = Δt, then the superscript k can be removed,
and the primal and dual systems can be simplified to

Ẽxk+1 = Ã + Δtf (xk) + ΔtBuk,
yk+1 = Cxk+1.

(7)

and
ẼTxdu = −CT , (8)

respectively. Note that the dual system becomes a steady system in the simplified case. For clarity we use the simplified case to
describe the error estimator, though it is well defined for the general case, too.
Applying the same time integration scheme to the ROM (2) results in,

Er(�)xk+1r = Ar(�)xkr + Δtfr(V x
k
r ) + ΔtBru

k,
yk+1r = Crxk+1r .

(9)

It is clear that the time-discrete ROM in (9) is exactly the ROM of the primal system. In [29], a ROM of the dual system is
obtained by Galerkin projection using the same projection matrix V as for (2), i.e.

(V T ẼV )Txdur = −V TCT . (10)

The approximate solutions, x̂k+1 ∶= V xk+1r to the primal system and x̂du ∶= V xdur to the dual system, introduce their residuals,
respectively,

rk+1pr = Ãx̂k + Δtf (x̂k) + ΔtBuk − Ẽx̂k+1,

rdu = −CT − ẼT x̂du.
(11)

Using Eqs. (7), (8) and (9) the error in the output can be shown to be bounded as

|yk+1 − yk+1r | ≤ �k+1‖rk+1pr ‖. (12)

Here, �k+1 ∶= �k+1 (‖Ẽ−1
‖‖rdu‖ + ‖x̂du‖). The term

�k+1 ∶=
‖r̃k+1pr ‖

‖rk+1pr ‖

, (13)

where
r̃k+1pr = Ãxk + Δtf (xk) + ΔtBuk − Ẽx̂k+1,

= Ẽ(xk+1 − x̂k+1).
(14)

is an auxiliary residual obtained by replacing x̂k+1 in the “right-hand-side” part (Ãx̂k + Δtf (x̂k) + ΔtBuk) of rk+1pr (see (11))
with the true solution xk+1. It leads to a relation to the state error xk+1 − x̂k+1.

Remark 3. Note that the error bound only depends on the residuals at the current time step tk+1, and avoids the error accumulation
over time. The detailed explanation and proof of the error estimator can be found in [29]. It is proved in [29] that, under mild
assumptions, �k+1 is lower and upper bounded. Upon convergence of the POD-Greedy algorithm, �k+1 should tend to be 1. This
conclusion will be demonstrated numerically in the section on simulation results.
From (12), (14), we note that, at each time instance, the true solution xk+1 is required for computing r̃k+1pr in the expression of

�k+1. This can be avoided by approximating �k+1 with a time-averaged value �̄ obtained as,

�̄ = 1
K

K
∑

i=1
�i, (15)

where �i corresponds to r̃ipr, which requires the true solution xi at time instance ti. If we take ti as the time instances at which
the snapshots are computed for bases enrichment, then xi are exactly the snapshots, which are available for free.
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Furthermore, �̄ is not available for all �. Therefore, when used inside a greedy algorithm, at each iteration, we simply
approximate the value of �̄ with,

�̄ ≈ �̄(�∗),
where �∗ is the parameter chosen at the current iteration of the POD-Greedy algorithm, so that the snapshots at �∗ are available
to compute �̄(�∗).

With the approximations in Remark 3, the error bound becomes an error estimator, i.e.

|yk+1 − yk+1r | ≲ Φ̄‖rk+1pr ‖ =∶ Δ̄, (16)

where Φ̄ ∶= �̄ (‖Ẽ−1
‖‖rdu‖ + ‖x̂du‖).

It can be seen that the error estimator Δ̄ in (16) consists of two parts:

Δ̄1 ∶= �̄(‖Ẽ−1
‖‖rdu‖‖r

k+1
pr ‖)

and
Δ̄2 ∶= �̄‖x̂du‖‖rk+1pr ‖.

The decay rate of Δ̄1 is decided by the two residuals and the decay speed of Δ̄2 depends on the product of the primal residual
norm and the norm of the approximate dual state ‖x̂du‖. We aim to improve the efficiency of the error estimator by considering
each of them. On the one hand, we seek a corrected output so that the second part Δ̄2 is modified to a form with faster decay
rate. On the other hand, we try to use more suitable methods to obtain smaller ‖rdu‖ than that in [29]. In this way, both Δ̄1 and
Δ̄2 could decay faster, which results in sharper error estimation.

3.2 Modified Δ̄2 with corrected output
We consider a correction term to the estimated output quantity given as,

ȳk+1r = yk+1r −
(

x̂du
)T rk+1pr . (17)

Theorem 1. Given the discrete FOM in (7) and the discrete ROM in (9), assuming Ẽ is non-singular at all values of �, we have
the following error bound for the modified output term in (17),

|yk+1 − ȳk+1r | ≤ ‖Ẽ−1
‖‖rdu‖‖r̃

k+1
pr ‖ + ‖x̂du‖‖r

k+1
pr − r̃k+1pr ‖, (18)

Proof. The error in the modified output can be represented as,

yk+1 − ȳk+1r = C(xk+1 − x̂k+1) + (x̂du)T rk+1pr . (19)

Multiplying (xk+1 − x̂k+1)T on both sides of (8) we get,

(xk+1 − x̂k+1)T ẼTxdu = −(xk+1 − x̂k+1)TCT . (20)

Transposing the above equation we obtain,

(xdu)T r̃k+1pr = −C
(

xk+1 − x̂k+1
)

, (21)

where we have made use of (14). Next, we simply substitute (21) into (19), followed by addition and subtraction of the term
(x̂du)T r̃k+1pr to obtain,

yk+1 − ȳk+1r = −(xdu)T r̃k+1pr + (x̂du)T rk+1pr

= −(xdu)T r̃k+1pr + (x̂du)T rk+1pr + (x̂du)T r̃k+1pr − (x̂du)T r̃k+1pr

= −(xdu − x̂du)T r̃k+1pr + (x̂du)T
(

rk+1pr − r̃k+1pr
)

.

(22)

Consider now the dual system residual as given in (11). It can be shown that
rdu = ẼT (xdu − x̂du

)

,
(

xdu − x̂du
)

= Ẽ−T rdu.
(23)

Inserting (23) into (22) yields

yk+1 − ȳk+1r = −(rdu)T (Ẽ)−1r̃k+1pr + (x̂du)T
(

rk+1pr − r̃k+1pr
)

. (24)
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From the triangle and Cauchy-Schwarz inequalities we obtain,

|yk+1 − ȳk+1r | = ‖ − (rdu)T Ẽ−1r̃k+1pr + (x̂du)T (rk+1pr − r̃k+1pr )‖,
≤ ‖Ẽ−1

‖‖rdu‖‖r̃k+1pr ‖ + ‖x̂du‖‖rk+1pr − r̃k+1pr ‖.
(25)

In order to remove the quantity ‖r̃k+1pr ‖ from the error bound to avoid computing the true solution, we propose the following
error estimator. Instead of applying the upper bound rb2 ∶= ‖rk+1pr ‖ + ‖r̃k+1pr ‖ to nr ∶= ‖rk+1pr − r̃k+1pr ‖ in (25), we propose to use
rb1 ∶=

|

|

|

‖rk+1pr ‖ − ‖r̃k+1pr ‖

|

|

|

to approximate nr, i.e.

‖rk+1pr − r̃k+1pr ‖ ≈ |

|

|

‖rk+1pr ‖ − ‖r̃k+1pr ‖

|

|

|

.

This is motivated by the fact that, firstly, applying the upper bound rb2 will result in an upper bound (1 + �̄)‖x̂du‖‖rk+1pr ‖ for
‖x̂du‖rk+1pr − r̃k+1pr ‖ in (25), which is even larger than Δ̄2 in (16). Here we have used the relation in (13), (15). Secondly, we find
that

|rb1 − nr| ≤

{

2�k+1‖rk+1pr ‖, �k+1 > 1
2‖rk+1pr ‖, �k+1 ≤ 1, (26)

whereas,
|rb2 − nr| ≤ [2 + 2�k+1]‖rk+1pr ‖.

This shows that |rb1 − nr| poses a smaller upper bound than |rb2 − nr|, implicating that nr could be better approximated by rb1
than by rb2. Therefore, we have the following error estimation

|yk+1 − ȳk+1r | ≲ ‖Ẽ−1
‖‖rdu‖‖r̃

k+1
pr ‖ + ‖x̂du‖

|

|

|

‖rk+1pr ‖ − ‖r̃k+1pr ‖

|

|

|

= �k+1‖Ẽ−1
‖‖rdu‖‖r

k+1
pr ‖ + |1 − �k+1|‖x̂du‖‖rk+1pr ‖

=
(

�k+1‖Ẽ−1
‖‖rdu‖ + |1 − �k+1|‖x̂du‖

)

‖rk+1pr ‖

≈
(

�̄‖Ẽ−1
‖‖rdu‖ + |1 − �̄|‖x̂du‖

)

‖rk+1pr ‖,

(27)

where the relation in (13) is used to remove ‖r̃k+1pr ‖ from the error estimation. Similarly as for the original error estimator, �k+1

is approximated with the mean value �̄ in (15). We then define Ψ̄ ∶=
(

�̄‖Ẽ−1
‖‖rdu‖ + |1 − �̄|‖x̂du‖

)

to get the following error
estimator:

|yk+1 − ȳk+1r | ≲ Ψ̄‖rk+1pr ‖. (28)
Note that Δ̄2 for the error estimator (16) now becomes |1 − �̄|‖x̂du‖‖rk+1pr ‖ in (28). Although ‖x̂du‖‖rk+1pr ‖ remains unchanged,
the coefficient changes from �̄ to |1 − �̄|. As has been analyzed in Remark 3, when the POD-Greedy algorithm converges, �̄
tends to be 1, so that |1 − �̄| goes to 0, leading to a bound with faster decay rate.

Remark 4. For systems with multiple outputs, we define the dual system as

ẼTxdu = −CT
i ,

where Ci represents the ith row of the output matrix C ∈ ℝNO×N . For error estimation, we consider |yi − (ȳr)i| for each element
i of y. Then we have,

‖yk+1 − ȳk+1r ‖∞ = max
i∈{1,2,…,NO}

|yk+1i − (ȳk+1r )i|.

3.3 Improving the decay rate of Δ̄1
Recall that the error estimator consists of two parts Δ̄1 and Δ̄2, where Δ̄1 = �k+1‖Ẽ−1

‖‖rdu‖‖rk+1pr ‖. In [29], ‖rdu‖ in Δ̄1 is
obtained by reducing the dual system using the projection matrix V for MOR of the primal system, leading to a slowly decaying
‖rdu‖. To achieve faster decay, we propose to use more suitable methods to compute the approximate solution x̂du to the dual
system, according to different problems. The motivation is based on the observation that x̂du is not necessarily computed by
reducing the dual system using MOR. Any appropriate method which can give a good x̂du should be applicable.
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Parametric dual system.
When the dual system has parameter dependence, instead of using the primal system projection matrix V to reduce the dual
system, we construct the dual reduced basis separately. With the dual reduced basis, the dual system solution can be much better
approximated than using the primal reduced basis. Consequently, the computed x̂du will give a residual with smaller norm.
Certainly, this will lead to higher computational cost.

Non-parametric dual system.
In case the dual system is non-parametric (this can happen when the matrix Ẽ is constant), instead of reducing the dual system,
we can use Krylov-space methods, e.g. GMRES, MINRES [22, 25], to iteratively solve the linear dual system and x̂du is just the
approximate solution computed by those methods. While this is done only once, the computational cost is similar to computing
one snapshot and we do not expect much extra computations. This approach leads to much smaller ‖rdu‖ than using the primal
reduced basis to reduce the dual system.

3.4 Efficiently computing the inf-sup constant
In (16), (28), the term ‖Ẽ−1

‖ needs to be calculated. In case of matrix spectral norm ‖ ⋅ ‖2,

‖Ẽ−1
‖2 = �max(Ẽ−1) = 1

�min(Ẽ)
.

�min(Ẽ) is actually the so-called inf-sup constant commonly used in the RBM. Since the matrix Ẽ is parameter-dependent, it
can become expensive to evaluate the smallest singular value for each parameter in the training set Ξ, as a large-scale eigenvalue
problem needs to be solved for every parameter. Some methods have been proposed to make this computationally efficient. A
first attempt was through the Successive Constraints Method (SCM) and its improvement, proposed in [17, 18]. However, SCM
often suffers from a very slow convergence [26]. In this work, we make use of the radial basis interpolation method proposed in
[21]. This approach avoids the slow convergence rates as seen from SCM, while reducing the computational costs drastically.

Radial basis interpolation for the inf-sup constant.
When considering parameter spaces of high dimensions, the radial basis functions are a good candidate for interpolation basis.
To achieve the goal of interpolating the smallest singular values of the matrix Ẽ, ∀� ∈ Ξ, we start with an initial coarse training
set of points � ⊂ Ξ. The large-scale eigenvalue problem is solved for the parameters in this coarse training set and a coarse radial
basis interpolant is formed, following the procedure outlined in [21]. The coarse parameter set � is then enriched in a greedy
manner. At each step, a new parameter from Ξ is chosen and added to � in order to improve the radial basis interpolant. The
new parameter is chosen as the one that maximizes a pre-defined criterion function, ℭ defined over Ξ. The criterion function is
such that it promotes adding new points in locations with highly varying response and ensures positivity of the interpolant. It
was originally proposed in [19] and further adapted in [21] for the purpose of interpolating the smallest singular values. At the
end of each iteration, the relative error (in the ∞ norm) between the current and the previous interpolations for all parameters
in Ξ is computed. This defines the termination condition. Such an adaptive procedure offsets the need for performing SVD
computations on large-scale matrices at all the parameters in Ξ.

4 ADAPTIVITY

In this section, we propose an adaptive scheme for automatically generating the reduced basis and the interpolation basis. The
scheme is based on another separation of the error estimator as detailed below.
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4.1 Error estimation by considering interpolation
In practice, while calculating the residual of the primal system, we approximate the nonlinear term using (D)EIM to avoid the
full dimensional computation. Considering this aspect, the residual of the primal system from (11) is now expressed as

rk+1pr = Ãx̂k + Δtf (x̂k) + Δt[f (x̂k)] − Δt[f (x̂k)] + ΔtBuk − Ẽx̂k+1

=
(

Ãx̂k + Δt[f (x̂k)] + ΔtBuk − Ẽx̂k+1
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=rk+1pr,

+
(

(Δtf (x̂k) − Δt[f (x̂k)])
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=ek

.

Here, [f (⋅)], is the interpolation of the function f (⋅). By considering the separation of rk+1pr in the above equation, the error
estimator in (16) or (28) can be split into two contributions - one from approximating the state by reduced basis vectors (RB
error) and the other from approximating the nonlinear term by interpolation ((D)EIM error), i.e.

|yk+1 − yk+1r | ≲ Φ̄‖rk+1pr,‖

⏟⏞⏟⏞⏟
∶=Δ̄k+1RB

+ Φ̄‖ek‖
⏟⏟⏟
∶=Δ̄k

,
(29)

or
|yk+1 − ȳk+1r | ≲ Ψ̄‖rk+1pr,‖

⏟⏞⏟⏞⏟
∶=Δ̄k+1RB

+ Ψ̄‖ek‖
⏟⏟⏟
∶=Δ̄k

,
(30)

where for convenience of explanation, we use the same names Δ̄k+1RB , Δ̄k for the two parts of either the original error estimator
or the modified one, though we will mainly focus on the modified error estimator in the later analysis.

Mean error estimate:
Note that the above error estimator measures the output error at each time step, which corresponds to many values. For the
proposed adaptive scheme, we need a single value to measure the actual error. Therefore, we define the mean error as below,

1
K

K
∑

i=1
‖yi − ȳir‖ ≤ 1

K

K
∑

i=1

(

Δ̄iRB + Δ̄
i


)

= Δ̄RB + Δ̄ =∶ Δ̄. (31)

Here, i = 1, 2,… , K indicates the time instances ti where the snapshots are taken, Δ̄RB =
1
K

∑K
i=1 Δ̄

i
RB and Δ̄ =

1
K

∑K
i=1 Δ̄

i
 .

With the mean output error estimator, we are ready to propose the adaptive scheme as below.

4.2 Adaptively increasing/reducing the number of RB and EI basis vectors
Consider a user defined tolerance tol for the ROM. At every iteration, we check the relative changes of error estimators Δ̄RB
and Δ̄ in (31) w.r.t the error tolerance tol, respectively, i.e.

Δ̄RB
tol

and
Δ̄

tol
. (32)

It is easy to see that a value in (32) being bigger than 1 implicates the current basis is not accurate enough, and needs to be
extended; otherwise, a value being smaller than 1 means that the current bases are accurate enough, and no new basis vectors
need to be computed. If possible, some old basis vectors could be removed to make the reduced basis/interpolation basis space
as compact as possible. Note that the actual values in (32) could vary from, e.g., 10−10 to 1010. In order to decide how many
basis vectors need to be added/removed, we use the function log, which maps the actual values in (32) to some moderate
values, typically falling into a subinterval of [−10, 10]. We then use the rounded log-mapped values as the indicators for basis
enriching or shrinking. Let lRB,lEI be the number of basis vectors in the RB, (D)EIM projection matrices at the current iteration,
respectively.
For the ROM considered in (2) we update the RB, (D)EIM projection matrices at each iteration of the greedy algorithm based

on the following rule,

ΔlRB ∶= ±1 +
⌊

log
( Δ̄RB
tol

)

⌋

,

ΔlEI ∶= ±1 +
⌊

log
( Δ̄

tol

)

⌋

.
(33)
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Algorithm 6 Adaptive POD-(D)EIM (two-way)
Input: POD, (D)EIM projection basis and interpolation points from Algorithms 1 and 4, respectively:

V ∈ ℝN×lRB , Uf ∈ ℝN×lEI , Index matrix P = [e℘1
, e℘2

,… , e℘l
], initial choice of basis l0RB,l

0
EI, Tolerance tol, zoa.

Output: ROM with updated size (l∗RB,l
∗
EI) .

1: Form V ∗ ∶= V (∶ , 1 ∶ l0RB), U
∗
f ∶= Uf (∶ , 1 ∶ l

0
EI), P

∗ ∶= P (∶ , 1 ∶ l0EI).
2: Determine the dual system solution x̂du, using GMRES.
3: Simulate the ROM constructed using V ∗, U∗

f , P
∗ and compute the error Δ̄ ∶= Δ̄RB + Δ̄ .

4: while Δ̄ ∉ zoa do
5: Determine p =

⌊

log
( Δ̄RB
tol

)

⌋

, d =
⌊

log
( Δ̄
tol

)

⌋

.
6: Trivial updates p0, d0 = ±1, in case p or d = 0, to ensure at least one basis vector is added/removed.
7: PODinc = p0 + p , (D)EIMinc = d0 + d.
8: l∗RB = l

∗
RB + PODinc.

9: l∗EI = l
∗
EI + (D)EIMinc.

10: Ensure l∗EI > l
∗
RB, for stability reasons.

11: Update projection matrices, V ∗ ∶= V (∶ , 1 ∶ l∗RB), U
∗
f ∶= Uf (∶ , 1 ∶ l

∗
EI), P

∗ ∶= P (∶ , 1 ∶ l∗EI).
12: Simulate the updated ROM constructed using V ∗, U∗

f , P
∗ and compute the updated error Δ̄ = Δ̄RB + Δ̄ .

13: end while

Here, Δ̄RB, Δ̄ are defined as in (31). Based on the above update, the number of basis vectors for RB, (D)EIM basis
enriching/shrinking is given as

lRB = lRB + ΔlRB,
lEI = lEI + ΔlEI.

(34)

Remark 5. Recall that a one-way definition of ΔlRB,ΔlEI was proposed in [11], where basis shrinking was not considered.
Finally, the adaptive algorithm must start from a small number of basis vectors to be able to continue. Whereas, both basis
extension and shrinking are covered by (33). The value ±1 tries to ensure at least one basis vector is added (+1)/removed (-1),
in case the rounded value p =

⌊

log
( Δ̄RB
tol

)

⌋

or d =
⌊

log
( Δ̄
tol

)

⌋

is zero, but the values log
( Δ̄RB
tol

)

or log
( Δ̄
tol

)

are nonzero (either
slightly smaller than zero or slightly larger than zero).

4.3 Dealing with stagnation in adaptivity
The goal for adaptivity is to add/delete basis vectors to/from the current RB, EI bases so that the ROM meets the given tol-
erance while being kept as compact as possible. It is observed that in some cases, the convergence of the adaptive algorithm
becomes slow when the estimated error is close to the tolerance. In such situations, the number of additional basis vectors to
be added/deleted is usually one, resulting in a slow convergence. A second issue is that the error estimator could keep oscil-
lating (below and above the error tolerance) upon basis enriching/shrinking. To avoid the above phenomena, we propose to
define a zone-of-acceptance (zoa) for the output error. In particular, we set a new value �∗ < tol. �∗ and tol then define a
zone-of-acceptance: [�∗, tol]. Whenever the estimated error falls into [�∗, tol], the algorithm will terminate. We typically take
�∗ = 0.1 tol.
In the following, we first extend the one-way adaptive algorithm in [11] for non-parametric systems to a two-way algorithm,

then we propose the adaptive POD-Greedy-(D)EIM algorithm for parametric systems.

4.4 Adaptive algorithm for non-parametric systems
In this section, we extend the one-way adaptive scheme in [11] to a two-way process. This means we have the flexibility of
starting our algorithm given any possible number of initial basis vectors. The method is able to suggest the proper number of
basis vectors to be added to or removed from the current basis, and yields a compact and stable ROM, for the given tolerance.
We detail this in Algorithm 6. The constants p0, d0 in Algorithm 6 act as ±1 in Equation (34). See Remark 5.
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Algorithm 7 Adaptive POD-Greedy-(D)EIM
Input: Parameter training set Ξ ⊂ P , Tolerance tol, �POD (or �def).
Output: RB Basis V ∈ ℝN×lRB , (D)EIM basis and interpolation points UEI, PEI ∈ ℝN×lEI .
1: In case of non-parametric dual system, precompute the approximate solution to the dual system (x̂du), using GMRES.
2: Initialize, V = [ ], Vdu = [ ], UEI = [ ], PEI = [ ], lRB = 1, lEI = 1. Initial �∗: a random parameter from Ξ.
3: while doΔ̄(�∗) ∉ zoa
4: Compute FOM at �∗ and obtain snapshots, X = [x(t1, �∗), x(t2, �∗),… , x(tK , �∗)].
5: Update the projection matrix. X̄ ∶= X - Proj (X)

SVD
←←←←←←←←←←←←←←←←→ UΣW T ,  is the subspace spanned by the columns of V .

6: V ← orth{V , U (∶ , 1 ∶ lRB)}.
7: Update_EI.
8: Update_Vdu, in case of parametric dual system.
9: �∗ ∶= arg max

�∈Ξ
Δ̄(�).

10: Adapt_basis_update.
11: end while

Remark 6. In our numerical experiments, we noticed that in some cases, when l∗EI < l∗RB, the ROM is no longer stable.
Therefore, in Step 10 of Algorithm 6 we set the number of EI basis vectors (l∗EI) to be larger than that of the RB basis vectors
(l∗RB).

Remark 7. Note that the inputs of Algorithm 6 are the POD and DEIM basis computed by standard algorithms, where both bases
are conservatively computed to guarantee accuracy of the ROM. The adaptive algorithm chooses proper basis vectors from the
POD and DEIM basis, respectively, in order to construct a more compact and stable ROM. One starts from an initial choice for
the POD and DEIM basis combination. Both basis vectors are then iteratively updated, based on the output error estimator.

4.5 Adaptive algorithm for parametric systems
For standard implementation of the POD-Greedy algorithm combined with interpolation of the nonlinear part, the (D)EIM basis
and interpolation indices are usually pre-computed outside of the greedy loop. This separate basis generation often leads to a less
compact ROM. In addition, (D)EIM needs FOM simulations at all samples in a training set, which is time consuming especially
for problems needing many time steps for one simulation, e.g., the batch chromatographic model presented in Section Section 5.
In [10], POD-Greedy and EIM are implemented such that at each iteration of the greedy algorithm, a single basis vector is
added to the current reduced bases and the interpolation bases, respectively. The most recent work that addresses this issue can
be found in [4, 9]. As has been discussed in the introduction, there are major differences between those existing algorithms and
our proposed algorithm.
Algorithm 7 is the proposed adaptive POD-Greedy-(D)EIM algorithm. Algorithms 8, 9 and 10 are the supporting functions

needed. The basic idea of Algorithm 7 is that starting from the first selected parameter �∗, the RB basis and the (D)EIM basis
are updated simultaneously but not trivially. The number of the RB and (D)EIM basis vectors lRB and lEI are determined by
(34), and updated in the subroutine Adapt_basis_update. The reduced basis matrix V is updated in Step 5 of Algorithm 7,
where instead of using lRB = 1 as in the standard case, lRB is adaptively computed by Adapt_basis_update. The interpolation
basis matrix UEI is updated by the subroutine Update_EI, which essentially implements the interpolation algorithm DEIM or
EIM. The dual system is also reduced by the reduced basis method implemented in the subroutine Update_Vdu. It is clear that
FOM simulations are only needed for those selected parameters �∗, not for all parameters in the training set Ξ. Algorithm 10
determines the number of RB and (D)EIM basis vectors (lRB,lEI), that will be added/removed at each iteration.

Remark 8. orth{V , U (∶ , 1 ∶ lRB)} in Step 5 of Algorithm 7 is an orthogonalization step for the updated RB matrix V . Using
a modified Gram-Schmidt (MGS) procedure is recommended, where the last p columns in V represent the most recently added
basis vectors in the previous iteration. In case of lRB < 0, it allows direct removal of p columns from V , without influencing the
previous basis vectors.

Remark 9. In practice, we can make use of separate tolerances for the RB, (D)EIM error in Algorithm 10, i.e. Step 1 can be
modified as, p =

⌊

log
( Δ̄RB(�∗)

tolRB

)

⌋

, d =
⌊

log
( Δ̄ (�∗)

tolEI

)

⌋

. The tolerance for (D)EIM approximation is usually set a little lower
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Algorithm 8 Update_EI
Input: Snapshots of the nonlinear vector at all parameters so far selected by the greedy algorithm,

F =
[

f (x(t1, �), �), f (x(t2, �), �), … , f (x(tK , �), �)
]

for all selected �, lEI, �POD (or �def).
Output: (D)EIM basis and interpolation points UEI, PEI.
1: max_iter = lEI for Algorithm 3 or set l = lEI in Step 6 of Algorithm 4 and ignore Step 3.
2: Call [Uf, Pf] = EIM(F , max_iter, �def) or [Uf, Pf] = DEIM(F , �svd).

Algorithm 9 Update_Vdu
Input: Vdu, �∗du, tol.
Output: Updated dual projection matrix Vdu.
1: if Δ̄du(�∗du) > tol then
2: Solve full order dual system for chosen parameter �∗du and obtain xdu(�

∗
du).

3: Update Vdu, Vdu ∶= orth{Vdu , xdu(�∗du)}.
4: �∗du ∶= argmax�∈Ξ

Δ̄du(�).
5: end if

Algorithm 10 Adapt_basis_update
Input: lRB, lEI, Δ̄RB(�∗), Δ̄(�∗), tol.
Output: Updated lRB, lEI.
1: p =

⌊

log
( Δ̄RB(�∗)

tol

)

⌋

, d =
⌊

log
( Δ̄ (�∗)

tol

)

⌋

.
2: In case p = 0 or d = 0, enforce trivial update, p0 = ±1 or d0 = ±1.
3: lRB = p0 + p.
4: lEI = lEI + d0 + d.
5: Ensure lEI > (rank(V ) + lRB), for stability reasons.

than that for the RB approximation. This follows from the observation that the nonlinear vector needs to be sufficiently well-
approximated to enable a good state approximation.

5 NUMERICAL RESULTS

In this section we test the proposed adaptive algorithm on three examples. All the examples we consider can be represented in
the general form of (1). We use the same non-parametric model as in [11] to test the extended two-way adaptive Algorithm 6.
Algorithm 7 is tested for the other two parametric models.

5.1 A non-parametric example
The model Fluidized Bed Crystallizer (FBC) is from the field of chemical engineering. Enantiomers are molecules that have
the same physical, chemical properties but occur as mirror images of one another. Due to their similar propoerties, separation
of the two components is not easily achieved using simple techniques, but requires sophisticated methods such as adsorption,
crystallization, etc. For a more in-depth treatment, the reader is referred to [20]. Fig. 1 shows a FBC, which is a long cylindrical
column, with the walls tapering inwards as one approaches the bottom. The chemical mixture that has the two enantiomers
dissolved in it (called racemate) is injected from the bottom. Some seed crystals need to be introduced into the crystallizer
before it begins operation. Seed crystals are essentially the pure crystals of the enantiomer we want to isolate. The seeds are
necessary for triggering the precipitation of the crystals in the racemate. During its operation, the smaller crystals move to the
top of the crystallizer along with the fluid flow. Bigger crystals sink to the bottom from where they are collected and sent to a
crushing device (such as an ultrasonic attentuator) to be crushed to an appropriate size and reintroduced as seed crystals. The
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FIGURE 1Model of the Fluidized bed crystallizer [11].

crystallization process is governed by a set of conservation formulas, called the population balance equations which are PDEs.
The PDE governing the FBC is given as:

Ac(x)
)n
)t
= − )

)x
(

Ac(x)vp(x, L, t)n(x, L, t)
)

+D )
)x

(

Ac(x)
)n
)x

)

− Ac(x)G
)n
)L

+ V̇us

(

nus(L)
∫ ∞
0 nl3dl

∫ ∞
0 nusl3dl

− n(x, L, t)

)

�̂(x − xus), (35)

where

• x denotes the spatial coordinate, L denotes the particle size coordinate,

• Ac(⋅) is the area of cross-section, n is the number size density, i.e., the number of particles per volume of size L at
coordinate x at time t,

• vp is the plug flow velocity,

• D is the dispersion constant, G is the crystal growth factor,

• V̇us is the volume flow to/from the attenuator,

• nus(L) is a constant describing the distribution of the crystals coming from the attenuator.

Equation (35) can be discretized and rewritten into a form as in (7). Table 1 gives the model parameters that we consider for
the full order simulation. After discretization in space, the original system is of a sizeN = 18400. We use Algorithm 6, where
DEIM is used to compute the interpolation basis. The tolerance for the ROM is set as tol = 10−4. The model of the crystallizer
involves a very long time to reach a cyclic state, usually 5000 seconds. However, for snapshot generation, we need only the
transient portion and the first cycle of the steady state since the latter cycles behave very similarly. As a result we only need to
simulate the FOM till 500 seconds for snapshot generation. Algorithm 6 has been used to implement the two-way adaptivity
scheme. We make use of GMRES to solve the associated dual system. It is implemented via the MATLABⓇ function gmres.
Moreover, we use the Incomplete LU (ILU) factorization with a drop tolerance of 10−3 as a preconditioner. The GMRES tolerance
is set to be 10−6.
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TABLE 1 Simulation data for the FBC.

Interpolation N [0, T ] (s) tolerance �POD
DEIM 18400 [0, 500] 10−4 10−10
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FIGURE 2 FBC adaptive increment.

TABLE 2 Simulation results for the FBC example.

Process Initial Final Iterations
lRB lEI lRB lEI

Increase 3 8 16 20 9
Decrease 31 39 17 28 7

Fig. 2a shows the adaptive generation of POD and DEIM basis starting from small initial numbers of lRB,lEI = (3, 8). The
error estimator is below the tolerance after 9 iterations, showing that Algorithm 6 terminates. The adaptive process results in a
final ROM of (lRB,lEI) = (16, 20) basis vectors. The size of the ROM would be r = 60, with (lRB,lEI) = (60, 61), without
adaptivity. Moreover, using the Standard POD algorithm and setting �POD = 10−4 in Algorithm 1 does not guarantee that the
output error of the ROM is also below the tolerance.
For a pair of big initial values: (lRB,lEI) = (31, 39), the iterations of Algorithm 6 are shown in Fig. 3a. In the beginning,

the error estimator is below 10−5, indicating that the ROM is very accurate and there is possibility to further reduce the size of
the ROM. After 7 iterations, the reduced basis vectors from POD as well as the DEIM basis vectors are adaptively adjusted to
(lRB,lEI) = (17, 28). These results have been summarised in Table 2. In Figs. 2a and 3a, the true error is the mean error defined
by the left hand side of (31) and the corresponding error estimator is defined by the right hand side of the same inequality.
In Figs. 2b and 3b, we compare the effectivities of the original and the modified error estimators. On the one hand, both error

estimators show good effectivities and are relatively sharp. On the other hand, the modified error estimator clearly outperforms
the original estimator, especially in the final step of the algorithm. Finally, Figs. 4a and 4b compare the modified error estimator
for the final ROM over all time steps tk, with the true error, in the increasing and decreasing cases, respectively. Fig. 4 not
only shows the sharpness of the modified error estimator, especially for the cyclic state in the time interval [200, 500]s, but also
verifies the reliability of the error estimator.
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FIGURE 3 FBC adaptive decrement.
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FIGURE 4 Final ROM error over all time for the FBC.

5.2 Parametric example
We consider two examples of parametric systems. The first is the viscous Burgers’ equation and the second is a chemical process
called batch chromatography. The former is an example with a parametric dual system while the latter has a non-parametric dual
system.
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TABLE 3 Simulation parameters for the Burgers’ equation.

Interpolation N [0, T ] (s) Parameter training set (Ξ) tolerance �def

EIM 500 [0,2] 100 log-uniformly distributed samples 10−3 10−10in [0.0005,1]
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FIGURE 5 Convergence of the greedy algorithms: Algorithm 5 vs Algorithm 7.

TABLE 4 Runtime comparison for the Burgers’ equation.

Method runtime (s)
Adaptive 606

Non-adaptive 933
(a) Adaptive vs non-adaptive.

Method runtime (s)
SVD 3.7
RBF 0.4

(b) Inf-sup constant computed over training set.

Burgers’ equation
We test the proposed Adaptive POD-(D)EIM-Greedy algorithm on the one-dimensional viscous Burgers’ equation defined in
the domain � ∈ Ω ∶= [0, 1]. The parameter that varies is the viscosity. The equation and initial boundary conditions are given as

)w
)t

+w)w
)�

= �)
2w
)�2

+ s(�, t),

w(�, 0) = 0,
)w(1, t)
)�

= 0,

(36)

where w ∶= w(�, t) ∈ ℝN is the state variable. s(�, t) is the source/input term, � is the viscosity. The output is taken at the last
spatial point in the domain: y = w(1, t). We consider s(�, t) ≡ 1.
The simulation parameters are listed in Table 3. A training set, Ξ is formed by 100 log-uniformly distributed samples in the

parameter domain P ∶= [0.0005 , 1]. The model has N = 500 equations after discretization in space. We make use of EIM to
treat the nonlinear term. We set �def to be 10−10 in Algorithm 7. A time step of Δt = 4 ⋅ 10−4 was used, with the snapshots
collected every 10th time step. In Fig. 5, we compare the Standard POD-Greedy-(D)EIM with the proposed Adaptive POD-
Greedy-(D)EIM algorithm. It can be seen that using the latter leads to a much quicker convergence of the greedy loop: 10
iterations as compared to 16 iterations that the standard greedy algorithm needs. We show the convergence of the modified error
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FIGURE 6 Algorithm 7. (a) Adaptive increment of RB vs EIM basis vectors. (b) Effectivity: Original vs modified estimator.

0 0.5 1 1.5 2
0

0.5

1

1.5

Time (s)

O
u
tp
u
t

FOM

ROM

FIGURE 7 Burgers’ equation output at � = 5. 10−4.

estimator and the true error for both algorithms. In Fig. 5 and Fig. 9a the maximal errors are defined over all the parameters
in the training set Ξ. In particular, Δ̄max ∶= max

�∈Ξ
Δ̄(�), where Δ̄(�) is defined in (31). The maximal true error is defined as:

max
�∈Ξ

1
K

∑K
i=1 ‖y

ti − ȳtir ‖, where ti, with i = 1, 2,… , K , are the time instances where the snapshots are taken. The improved
convergence of Algorithm 7 is a direct consequence of enriching the basis in an adaptive manner.
In Fig. 6a, we plot the successive increments of the RB, EIM basis vectors. Starting from a value of 1 for each, we can see

that the biggest jumps are at the first few steps when the output error is estimated to be large. Subsequent steps moderate the
number of basis vectors to be added, as the algorithm converges. We end up with a final value of (lRB,lEI) = (14, 40) for the
RB, EIM basis respectively. As for the standard implementation, where the EIM basis is precomputed outside the greedy loop,
the resulting ROM has dimension (lRB,lEI) = (16, 154). Thus, our proposed algorithm not only produces a ROM that meets a
certain tolerance, but also leads to a more compact ROM.
In Table 4a, we show the runtime taken for the Adaptive and Non-adaptive greedy algorithms till convergence. The adaptive
algorithm needs much less time. The reduced runtime of the adaptive approach is mainly contributed by the reduced number
of FOM simulations. For the inf-sup constant (the smallest singular value of the system matrix) we apply radial basis function
interpolation. From Table 4b, it is clear that the RBF approach is much faster as compared to using SVD to determine the
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FIGURE 8 The schematic of a batch chromatographic process [29].

smallest singular value of the system matrix. One can imagine, the savings in time would be much more significant for large-
scale systems with N ≫ 500. Fig. 7 shows the output y(t, �) of the FOM and yr(t, �) of the ROM at � = 5. 10−4. The ROM
solution is nearly indistinguishable from the FOM solution.

Batch chromatography model
The last example is from batch chromatography, a process used to separate components of a mixture. We give the schematic
of the process in Fig. 8. The mixture containing two components that need to be separated is periodically injected at one end
of the column. In the column, a static bed of a substance called the stationary phase is present. The injected mixture has to
pass through this stationary phase. Batch chromatography relies on the phenomenon of adsorption. The components that need
to be separated have different adsorption affinities towards the stationary phase and hence tend to move through the column
with varying velocities. The separated components are then collected at the end of the column. The time of collecting the two
components of the original mixture is determined based on the required purity specifications. The dynamic equations for the
process can be given as,

)cz
)t

+ 1 − �
�

)qz
)t

= −
)cz
)x

+ 1
Pe

)2cz
)x2

,

)qz
)t

= L
Q∕�Ac

�z(qeqz − qz),
(37)

where

• cz, qz are the concentrations of the two components (z = a, b) to be separated, in the solid and the liquid phase, respectively,

• � is the column porosity, Pe is the Peclet number, L is the length of the column, Q is the volumetric feed flow rate, Ac is
the cross-section area and �z the mass transfer coefficient,

• qeqz is the adsorption equilibrium and it is the nonlinear term in the equation. It can be given as,

qeqz =
Hz1cz

1 +Ka1c
f
a ca +Kb1c

f
b cb

+
Hz2cz

1 +Ka2c
f
a ca +Kb2c

f
b cb

,

• Hz1,Hz2 are Henry’s constants, Kz1, Kz2 are thermodynamic coefficients and cfz is the feed concentration of each
component (z = a, b).

The PDE defining the batch chromatographic process is discretized using the finite volumemethod in space and a Crank-Nicolson
scheme in time. Thus we have

Eck+1z = Ackz + d
k
z −

1 − �
�

Δtℎkz ,

qk+1z = qkz + Δtℎ
k
z .

(38)
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TABLE 5 Simulation parameters for the batch chromatography equation.

Interpolation N Parameter training set Ξ tolerance �POD

DEIM 1000 60 samples uniformly distributed 10−4 10−10in [0.0667, 0.1667] × [0.5, 2.0]

Here, E,A are both non-parametric tri-diagonal matrices. The injection time tin ∈ [0.5, 2.0] and the volumetric feed flow rate
Q ∈ [0.0667, 0.1667] are the two parameters of interest. dkz depends on tin. In particular,

dkz = d
k
0 (1, 0, 0,… , 0)T ,

where dk0 ∶= ΔxPe
(

Δt
2Δx

+ Δt
P eΔx2

)

�(tk). The term �(tk) can be given as

�(tk) = 1 if tk ∈ [0 , tin], else 0.

ℎkz just corresponds to the right hand side of the second equation in (37), showing its dependency on Q. Additionally, we note
that for this example, we use the Adaptive Snapshot Selection (AdSS) technique [6] to reduce the computational cost of SVD
inside the DEIM algorithm and the greedy loop.

Adaptive Snapshot Selection (AdSS).
For models where the number of time steps is large, it is often cumbersome to perform the SVD on such a large snapshot matrix.
AdSS serves as a pre-treatment step to avoid this difficulty. It is essentially an algorithm to determine the linear dependency of
successive vectors in the snapshot matrix. The angle between a new vector and the last selected vector is evaluated. If it falls
below a tolerance it means that the new vector is almost linearly dependent on the last selected vector and thus can be discarded.
For more details on this approach the reader is referred to [28]. Finally, a much thinner snapshot matrix is obtained, reducing
the costs of SVD in either the DEIM or the POD-Greedy algorithm.
The parameters used for the simulations are shown in Table 5. Since EIM is used for the Burger’s equation, for this example,

we use DEIM as the interpolation method, to show the flexibility of the adaptive algorithm. We set �POD to be 10−10. The system
dimension isN = 1000. We take 60 uniformly distributed parameters � ∶= (Q, tin) from the parameter domain. The simulation
time varies depending on the choice of Q. This is due to the fact that the volumetric feed flow (Q) determines the speed of flow
of the components through the column. This speed in turn determines the time for which the model needs to be simulated per
switching cycle. The tolerance for the ROM error is set as 10−4.
The dual system is a linear algebraic system without parameters, therefore, we propose to use the Krylov method GMRES (with

the same configurations as done for the FBC example in Section 5.1) to compute the approximate solution to the dual system.
The results are to be compared with the one obtained using the primal reduced basis to reduce the dual system.
As for the Burgers’ equation, for the batch chromatography example, we show the convergence of the modified error estimator

and the corresponding true error, taken as the maximum over all parameters in Ξ, for each iteration. As can be seen from Fig. 9a,
the proposed Adaptive POD-Greedy-(D)EIM algorithm results in a quicker convergence as compared to the Standard POD-
Greedy. The Standard POD-Greedy results in a ROM of size (lRB,lEI) = (47, 109) in 47 iterations, whereas the proposed
Adaptive POD-Greedy method leads to a ROM of size (lRB,lEI) = (46, 50) in 29 iterations. In Fig. 9b, the adaptive increase
of the RB, DEIM basis vectors is shown. Similar to the Burgers’ equation, the largest jumps are in the first few steps when the
error is large. In Fig. 10a, we compare the effectivities of the original and the modified error estimators. The modified estimator
offers more efficient results. This is due to the combination of two facts,

• the use of GMRES for solving the dual system leads to a faster decay of the dual residual norm.

• the second term of the modified error estimator is multiplied by the term 1 − �̄. From Fig. 11a we can see that �̄ tends to
one as the iteration proceeds.

In Fig. 10b, we compare the effectivities of the modified error estimator in two cases: in one case, we use the primal reduced
basis to reduce the dual system and get the approximate dual solution (x̂du) from the reduced dual system; while in the other
case, we use the GMRES method to solve the dual system. It is clear that the case of using GMRES results in a smaller effectivity.
This is due to the fact that the residual of the dual system is very small when using a Krylov space method to solve the dual



Chellappa, Feng, Benner : Adaptive Basis Construction and Improved Error Estimation 23

0 10 20 30 40 50

10−7

10−5

10−3

10−1

101

Iterations

M
a
x
im

a
l
er
ro
r

Estimated error (Non-adaptive)

True error (Non-adaptive)

Estimated error (Adaptive)

True error (Adaptive)

Tolerance

(a)

0 10 20 30 40 50
0

10

20

30

40

50

Number of RB basis vectors

N
u
m
b
er

of
D
E
IM

b
as
is

ve
ct
or
s

(b)

FIGURE 9 Batch chromatography example. (a) Convergence of the greedy algorithms: Algorithms 5 and 7. (b) Adaptive
increment of RB vs DEIM basis vectors.
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FIGURE 10 Effectivity comparison inside Algorithm 7 for the batch chromatography example. (a) Effectivity: original vs
modified, (b) Modified error estimator using the primal reduced basis vs GMRES for the dual system.

system. In Fig. 11b, we compare the effectivity of the original error estimator with the modified error estimator, for estimating
the final ROM at the final iteration of Algorithm 7. This shows that the modified error estimator is much sharper for the final
ROM. Finally, it can be seen from Table 6 that the proposed adaptive approach is able to find a more compact ROM in a much
shorter time.
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FIGURE 11 Results of the adaptive process for batch chromatography. (a) The value of �̄(�∗) at selected �∗ at each iteration of
Algorithm 7. (b) Effectivities of the two error estimators in (29) and (30), respectively.

TABLE 6 Runtime comparison for the batch chromatography example.

Method runtime (s)
Adaptive 7140

Non-adaptive 11260

6 CONCLUSIONS

In this work, we propose an adaptive scheme to generate the RB and (D)EIM basis. A good balance between the approximations
of the state and the nonlinear term is achieved, while obtaining a ROM of desired tolerance. Whenever necessary, the proposed
scheme adaptively adds new basis vectors to, or removes redundant basis vectors from the existing RB, (D)EIM projection
matrices, in order to obtain a compact ROM. Expensive FOM simulations at all samples of the training set is avoided. The
adaptive scheme is driven by a suitable a posteriori error estimator, which makes use of an appropriate dual system solver. We
have tested the adaptive approach on several examples from applications. The method is shown to work successfully for both
non-parametric and parametric systems. The Adaptive POD-Greedy-(D)EIM scheme is able to deliver a ROM with much fewer
iterations when compared to the standard approach. Also, we demonstrated that the proposed modified error estimator offers a
better effectivitywhen compared to a similar estimator. The current error estimator is based on a semi-implicit time discretization.
Future work would be to derive an error estimator for implicit time integration schemes involving nonlinear solvers, such as the
Newton method.
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