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Adaptive Basis Scan by Wavelet Prediction for

Single-pixel Imaging
Florian Rousset, Nicolas Ducros, Andrea Farina, Gianluca Valentini, Cosimo D’Andrea and Françoise Peyrin

Abstract—Single pixel camera imaging is an emerging
paradigm that allows high-quality images to be provided by
a device only equipped with a single point detector. A single
pixel camera is an experimental setup able to measure the
inner product of the scene under view –the image– with any
user-defined pattern. Post-processing a sequence of point mea-
surements obtained with different patterns permits to recover
spatial information, as it has been demonstrated by state-of-the-
art approaches belonging to the compressed sensing framework.

In this paper, a new framework for the choice of the patterns
is proposed together with a simple and efficient image recovery
scheme. Our goal is to overcome the computationally demanding
ℓ1-minimization of compressed sensing. We propose to choose
patterns among a wavelet basis in an adaptive fashion, which
essentially relies onto the prediction of the significant wavelet
coefficients’ location.

More precisely, we adopt a multiresolution strategy that
exploits the set of measurements acquired at coarse scales to
predict the set of measurements to be performed at a finer scale.
Prediction is based on a fast cubic interpolation in the image
domain. A general formalism is given so that any kind of wavelets
can be used, which enables one to adjust the wavelet to the type
of images related to the desired application.

Both simulated and experimental results demonstrate the
ability of our technique to reconstruct biomedical images with
improved quality compared to CS-based recovery. Application to
real-time fluorescence imaging of biological tissues could benefit
from the proposed method.

Index Terms—Single-pixel camera, wavelets, compressive sens-
ing, optical imaging, fluorescence imaging.

I. INTRODUCTION

T
HE SINGLE-PIXEL CAMERA (SPC) architecture [1], [2]

enables to build small, low-cost, and high-quality imaging

devices. When compared to CCD or CMOS cameras, several
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advantages stand out. First, single detectors can have a high

efficiency and are therefore able to detect weak light intensity

changes [3]. This can be very useful for medical applications

where tissue absorption can be quite high [4]. Second, small

storage memory is needed given that compression is performed

at the hardware level. This is an important advantage for

applications needing remote imaging (e.g. aerospace remote

sensing) where the data rate for transmission would be low [5],

[6]. Finally, an imaging device based on a single point sensor is

usually cheaper than one based on a sensor array. This makes

the SPC a perfect candidate for infrared imaging [7] where it

would be costly to use a conventional imaging system oper-

ating at these wavelengths [8]. All the mentioned advantages

can benefit to several imaging fields such as 3D imaging [9],

[10], ghost imaging [11], multispectral or hyperspectral imag-

ing [12]–[15], terahertz imaging [16], [17] or video acquisition

[18], [19]. The SPC can also be seen as an excellent candidate

for medical imaging applications. Coupling the unique detector

with a time-correlated single photon counting board allows

one to create a low-cost time-resolved imaging system [15]

(e.g. fluorescence lifetime imaging [20]). It can also be used

for microscopy [21], [22], imaging through scattering me-

dia [23], [24] or for diffuse optics (e.g. intraoperative or skin

lesions detection [25]). Exploitation of several SPC images

is of interest for diffuse optical tomography or fluorescence

molecular tomography [26]–[29], with application to oximetry

and molecular imaging.

The compressive sensing (CS) paradigm [30] has been

widely applied to optical systems [31], [32]. In particular,

since the pioneering work of Duarte and coauthors [1], [2],

SPC has been mainly associated to the CS that provides an

excellent theoretical framework for recovering an image from

SPC measurements. Recently, CS-based SPC found various

applications [5], [6], [9], [10], [12]–[19], [22]–[24], [33].

The computationally expensive image recovery based on ℓ1-

minimization is a drawback that can restrict the applicability

of the SPC, e.g., to real-time applications and/or application

requiring high-resolution images.

A second kind of approach permits a straightforward re-

covery of the image that avoids the ℓ1-minimization. The

acquisition consists in a basis scan (BS), i.e., the SPC progres-

sively acquires the scene under view in a known basis [34]–

[37] (e.g. Hadamard, Fourier or wavelet). The image recovery

simply consists in inverse transforming the measured data.

While BS-SPC offers fast image restoration, it suffers from

long acquisition times and/or is restricted to the acquisition of

low-resolution images since the number of measurements is

given by the number of pixels of the desired image.
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In recent years, adaptive schemes for BS-SPC have

emerged. Adaptive basis scan (ABS) lies on the predictions

of the most significant basis functions for the particular scene

under view. Prediction is generally performed progressively

during the experiment, exploiting the previously acquired data.

Wavelet basis are of particular interest since i) most images

are known to have a sparse representation in such basis and

ii) fast inverse wavelet transform algorithms are available to

restore the image quickly [38], [39].

The ABS framework mainly relies on the prediction step. In

[40], the authors consider Haar’s wavelet and use a thresh-

olding technique together with the Lipschitz exponent method

[39] to decide the coefficients to acquire. A similar approach

with the same wavelet is used in [41] where a more refined

prediction strategy is proven to outperform Deutsch’s method

[40]. Both techniques also rely on the father-son relationship

between wavelet coefficients over resolution scales [39]. The

main disadvantage of the thresholding strategies is the fact

that thresholds are image-dependent and need adjustments.

In [42], the Haar wavelet is also used and the prediction step is

based on the statistical modeling of images and thresholding.

Hybrid methods have also been investigated. In [43], the

authors combine CS and Deutsch’s ABS technique [40] for

ghost imaging and the same approach is proposed in [44] for

hyperspectral imaging. In [45], the authors divide the image

into patches and perform a BS acquisition with Hadamard

functions [46] at different resolutions. The acquisition for a

given patch is decided based on the presence of information

in this region. Moreover, adaptivity in the context of CS have

been studied by several authors. Some argued there is not

much benefit [30] while others claimed that it can reduce the

number of measurements [47] or improve the measurements

accuracy [48], [49].

In this paper, we propose a complete framework for SPC

image acquisition and restoration using a new ABS technique,

which benefits of two main features. First, we present a

threshold-free prediction strategy inspired by the non-linear

wavelet approximation. This is based on our work presented

in [50] where a different prediction strategy was employed.

The second feature is the ability to handle any kind of wavelet

for acquisition. While Haar’s wavelet, which is well adapted

to the SPC technology, has been widely used, we show that

more sophisticated wavelets can provide an improved image

quality. The Matlab implementation of our ABS-WP method

is available online together with several data sets [51]. In

Section II, we present the CS-based conventional approach

for SPC. In Section III, we present our method that we refer

to as Adaptive Basis Scan by Wavelet Prediction (ABS-WP).

We recall the important facts about the wavelet decomposition

before detailing our acquisition strategy. A method to use

any kind of wavelet is also presented. Section IV presents

the conditions in which the experiments were made and

Section V reports the associated results on both simulated and

experimental data. A comparison between ABS-WP and CS

is also given, extending the results in [52]. We discuss the

results in Section VI where it is given some insights about the

system’s possibilities. Finally, our conclusions are reported in

Section VII.

Fig. 1. Optical setup of the single-pixel camera using a DMD. The image is
noted f, pi is a DMD pattern and mi is the corresponding measure.

II. CONVENTIONAL CS-BASED APPROACH

A SPC consists of a spatial light modulator coupled with a

single pixel detector. A common choice is the use of a digital

micromirror device (DMD) as a spatial light modulator as

illustrated in Fig. 1. A lens is added to focus light onto the

single detector. A DMD has thousands of mirrors that can be

independently tilted in two states. The ON state reflects the

light toward the detector whereas the OFF state reflects the

light in the opposite direction. Hence, a DMD can act as a

tunable spatial filter, not only with black-and-white patterns

but also with gray-level patterns. For this, the mirrors flip

between the ON and OFF states in a predefined amount of time

at a very high frequency. This enables contemporary DMD to

produce up to 10-bits grayscales patterns.

A. Single-pixel camera acquisition

A SPC acquisition consists in experimentally measuring

the inner product of an image and some DMD patterns,

sequentially. Let F ∈ R
N×N be a N ×N image whose units

are in photons per second (ph/s) i.e. F is directly considered

as the light source. We note f ∈R
P×1 its vectorized form with

P = N2. The signal mi (ph) measured by the single detector

during the integration time ∆t (s) may be modeled as

mi = ∆tp⊤
i f, (1)

where pi ∈R
P×1 (no unit) is a pattern loaded onto the DMD.

Let P = (p1, . . . ,pI)
⊤ ∈ R

I×P be the matrix containing the

sequence of I DMD patterns {pi ∈ R
P×1, i = 1 . . . I}. The

measurement vector m = (m1, . . . ,mI)
⊤ ∈R

I×1 containing the

sequence of measurements is given by the matrix equation

m = ∆tPf. (2)

The previous equation suggests that implementing a SPC

acquisition requires to solve the following two problems:

(P1) How to choose the set of DMD patterns P?

(P2) How to restore the image f from the measurements m

knowing the patterns P?
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Fig. 2. Scheme of an adaptive acquisition framework for single-pixel camera.

B. Compressive sensing acquisition and restoration

The problem of the acquisition and recovery of a SPC image

by means of CS was originally formulated in [1], [2]. The CS

framework provides an elegant solution to problems P1 and P2

assuming that the image has a sparse representation in some

basis ΛΛΛ. Mathematically,

f = ΛΛΛs (3)

where s ∈R
P×1 is K-sparse, i.e., only K entries of s are non-

zero. Typical choice for ΛΛΛ includes wavelet basis, Fourier

basis, and discrete cosine basis.

Solution to P1: The CS framework allows to consider

only I << P measurements when the DMD patterns (the

sensing matrix in the CS vocabulary) P is chosen as a random

matrix satisfying the so-called restricted isometry property

(RIP) [30], [53]. Henceforth, the entries of P are commonly

chosen from independent and identically distributed realiza-

tions [2], [54] such as

(P)i, j ∼B(µ = 0, p = 1/2) (4)

where B(µ, p) denotes the Bernoulli distribution with mean

µ and probability p. The resulting ±1 patterns are well suited

to the ON/OFF states of the DMD.

Solution to P2: Under certain conditions such that I ≥
O(K log(P/K)), the image can be exactly or closely recovered

with a high probability [30] in the transform domain solving

the following ℓ1-minimization problem:

s∗ = argmin‖s‖1 such that ∆tPΛΛΛs = m. (5)

This is a convex optimization problem that can be solved

efficiently by different algorithms [55], [56]. The image is

finally recovered in the original (image) domain according to

(3), i.e.,

f∗ = ΛΛΛs∗ (6)

Note that a popular alternative to (5) and (6) is to recover

f directly in the image domain considering Total Variation

minimization [57].

f∗ = argmin‖f‖TV such that ∆tPf = m. (7)

III. PROPOSED ADAPTIVE BASIS SCAN BY WAVELET

PREDICTION

A. Adaptive imaging

The method we propose falls into the category of adaptive

approaches. In such an iterative scheme, some of the patterns

sent to the DMD are determined during the acquisition with

a prediction step, as illustrated in Fig. 2. The acquisition

starts with a predetermined set of patterns. The resulting

measurements are exploited to predict a new set of patterns.

When a given criterion is reached, the restoration of the image

is performed.

In an adaptive approach, the image is acquired in a chosen

basis. For instance, one can acquire an image with Fourier

patterns, DCT patterns, wavelet patterns, etc. The adaptivity

regards the elements of the chosen basis that are to be acquired

based on the prediction method. The basis elements that are

not acquired are simply discarded and set to 0. The main

advantage is that the image restoration is straightforward using

the inverse transform of the chosen basis. This enables one to

avoid the computational cost of ℓ1-minimization. The compu-

tational cost is shifted from the recovery to the prediction.

In this paper, we propose to obtain the measurements m

of (1) from wavelet patterns P using a non-linear acquisition

strategy and interpolation techniques. The wavelet transform

has been chosen since it gives sparse signals thus allowing one

to only acquire a small number of measurements I <<P=N2.

B. Wavelet decomposition

The wavelet transform is a very powerful and popular

tool [38], [39]. The discrete wavelet decomposition of an

image f∈R
P×1 with the standard dyadic wavelets separates the

signal into approximation and detail coefficients (horizontal,

vertical or diagonal). The approximation coefficients result

from a low-pass filtering, detail coefficients from a high-pass

filtering [39].

Let j = 1 . . .J be the scale [58] at which the image f is

observed, J being the (coarsest) decomposition level of the

wavelet transform, with 1 ≤ J ≤ log2(N) = R. A location is

specified by the vector k so that

k = (k1,k2) ∈ {1, . . . ,2ℓ}2 with ℓ= R− j (8)

We note f̃ the wavelet transform of f:

f̃ = Wf (9)

with W ∈ R
P×P an orthonormal operator [59]. f̃ ∈ R

P×1

represents the image f in the wavelet domain and each of its

element represents a wavelet coefficient. Each element may be

fully identified and located by its unique triplet i such that

i = {o, j,k} (10)

where o = 0, 1, 2 or 3 represents the approximation, vertical,

horizontal and diagonal coefficients, respectively. Each row

of W corresponds to a unique triplet i. The image f can be

perfectly recovered using the inverse wavelet transform:

f = W−1̃f (11)

The forward or inverse wavelet transform are widely used with

fast algorithms implemented as filter banks [39].

This kind of decomposition was shown to give sparse sig-

nals, allowing one to discard many coefficients at the recovery

step. An efficient approximation of the wavelet transform is

the one where a number I << P of the largest coefficients

are retained among all scales. The other coefficients are

thresholded to 0 and the image restoration using (11) shows

excellent image quality [39]. We will refer to this technique

as the non-linear approximation.
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C. Prediction strategy

Our method ABS-WP is based on the non-linear approx-

imation of the wavelet transform. Our goal is to acquire

the significant wavelet coefficients and we therefore want to

predict the triplets i for each of these elements. The endgame

is to fill the matrix P in (2) with the rows of W corresponding

to the predicted triplet i that we will note ī. In the case of

the SPC, the whole wavelet transform of the object to be

imaged is unknown. Therefore, we perform several non-linear

approximations throughout the different scales of the wavelet

decomposition. More precisely, our strategy decomposes into

five steps. Step 1 works as an initialization whereas steps 2 to

4 are prediction steps and step 5 consists of the acquisition of

the predicted significant wavelet coefficients:

1) The approximation image A j at the lowest scale j = J

is fully acquired. This is a 2ℓ×2ℓ image with ℓ= R− j.

To be precise, this coarse image is acquired with the cor-

responding set of patterns at the approximation wavelet

scale. This can therefore be seen as a basis scan acquiring

the 22ℓ elements.

2) A j ∈ R
2ℓ×2ℓ is oversampled by a factor of two via an

interpolation operator S to give H j = S(A j) ∈R
2ℓ+1×2ℓ+1

.

Among many existing interpolation techniques, we used

the bicubic interpolation [60] for its easy implementation

and fast computation time.

3) The high resolution image H j is one-level wavelet trans-

formed to give H̃ j ∈R
2ℓ+1×2ℓ+1

. This gives the predicted

wavelet detail coefficients at scale j.

4) To predict the triplets ī of the largest elements, we

perform a non-linear approximation by retaining a per-

centage p j of the largest detail coefficients. This gives the

predicted significant coefficients and their corresponding

triplets ī.

5) The coefficients are then experimentally acquired sending

the rows of W corresponding to ī to the DMD.

For the other scales of the wavelet transform, steps 2 to

5 are unchanged. For the step 1 however, instead of the full

acquisition of the approximation image at scale j = J, the

approximation image A j is obtained by the inverse wavelet

transform of the coefficients acquired so far. For each level, a

different value of p j is used giving the set of percentages

P= {pJ , pJ−1, ..., p1}. (12)

Our strategy thus alternates between acquisition of the

wavelet coefficients on the real image and prediction using

an interpolation technique. Figure 3 presents a sketch of the

algorithm of ABS-WP, the number for each step corresponds

to the above steps.

D. Compression rate

The full acquisition of the approximation image A j at

scale j = J leads to the acquisition of n0 = 22L = 4L wavelet

coefficients with L = R−J. Then, we acquire p j percent of the

strongest predicted detail coefficients. Therefore the number of

measurement at each scale j is given by

n j = 3×22l

× p j = 3×4l × p j (13)

Fig. 3. Summary of the acquisition and prediction strategies of ABS-WP.
White boxes corresponds to initialization or general processes, gray boxes to
the prediction, the blue box is the acquisition step and the red one is the
image restoration.

coefficients with ℓ = R − j. We thus can control the total

number of coefficients n acquired for each decomposition level

by modulating the set of percentages P in (12). Using (13), it

can be shown that

n = 4L

[
1+3

J

∑
j=1

4J− j p j

]
(14)

We define the compression rate (CR) as

CR = 1−
n

P
(15)

which is a normalized quantity ranging from 0 to 1. One can

finally recover an image from the n samples using the inverse

wavelet transform.

IV. EXPERIMENTS OVERVIEW

A. Pattern generation

To perform the acquisition, the patterns {pi} that will be

sent to the DMD have to be generated. One pattern can be

obtained as:

pi = W−1vi (16)

where vi is a unit vector chosen from the natural basis {ei}.

In practice, one can create a null image with only the pixel

located at i set to 1, by taking the inverse wavelet transform

of this image, one obtains the corresponding pattern for the

triplet i.

Two practical problems now arise to send such images

to the DMD: the obtained patterns have floating values and

both negative and positive elements that cannot be physically

implemented together on a DMD. To tackle the positivity

problem, we divide pi in its positive and absolute negative

parts so that pi = p+
i −p−

i . Given the linearity of (1), the final

measurement mi is obtained numerically as

mi = m+
i −m−

i (17)
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Fig. 4. Example of a wavelet pattern before and after quantization for b = 8
bits using Le Gall wavelet. (a) Real wavelet pattern pi, (b) positive quantized
part p̂+

i , (c) negative quantized part p̂−
i and (d) quantification error pattern êi.

where

m+
i = ∆tf⊤p+

i and m−
i = ∆tf⊤p−

i (18)

are measured experimentally by the SPC.

Regarding the floating values of the patterns and to use any

kind of wavelet, we perform uniform quantization to convert

the patterns to b-bits patterns, 2b being the maximum available

dynamic range of the DMD. To realize this quantization, we

apply the following transform to each pattern:

p̂i =

⌊
1

qi

pi

⌋
qi =

max(|pi|)

2b −1
(19)

where ⌊.⌋ denotes a rounding operation. Since the patterns

depend on the triplet i of (10), the quantization factor qi

is also a function of the same triplet. We give an example

of pattern in Fig. 4 using Le Gall (CDF 5/3) biorthogonal

wavelet [61], [62]. The quantization leads to an irreversible

loss of information depicted by the quantization error pattern

êi = qip̂i −pi as can be seen by Fig. 4-(d).

Assuming the quantization error can be neglected, the

measurement mi in (17) can be obtained by

mi = qi(m̂
+
i − m̂−

i ) (20)

where

m̂+
i = ∆tf⊤p̂+

i and m̂−
i = ∆tf⊤p̂−

i (21)

are two measurements acquired by the SPC. Note that the

value of qi∆t = ∆ti can directly be employed as an integration

time to obtain correctly-scaled measurements:

m+
i = qi∆tf⊤p̂+

i = ∆tif
⊤p̂+

i and m−
i = ∆tif

⊤p̂−
i (22)

are directly acquired by the SPC and the final measurement is

numerically computed as in (17).

B. Numerical experiments

Different images have been used to perform several sim-

ulations. The well known image of Lena and the peppers

image have been employed since they are commonly used in

image processing. An optical microscopy image of vertebral

bone tissue of a fetus shown in Fig. 5 serves as an indicator

for textured images. Finally, fluorescence imaging being a

target application, we consider the bioluminescence image of

a mouse [63] shown in Fig. 6 superimposed to its ambient

light image.

We compare our ABS-WP method to compressive imaging

(CI) presented in Section II which is the reference nonadaptive

approach. For CI simulations, instead of the ℓ1-minimization

in (5), we directly reconstructed the image f from the mea-

surements m using Total Variation (TV) minimization via

TVAL3 [57] as done in [1], [2]. This is close to performing

ℓ1-minimization in the wavelet domain [54] and it allows for

much faster image restoration. Anisotropic TV with positivity

was employed as it gave the best results in most cases.

We also compare our results to the adaptive method pro-

posed by Dai [41]. In this adaptive method derived from

Haar’s wavelet, a threshold has to be chosen to decide the

relevant coefficients to sample. For each image and compres-

sion rate, the threshold was tackled experimentally to obtain

the best possible PSNR for the restored image.

In noisy simulations, the measurements are corrupted by

Poisson noise. To do that, the noise was applied on the two

measurements of (22) i.e. this equation becomes

m+
i = P(qi∆tf⊤p̂+

i ) and m−
i = P(qi∆tf⊤p̂−

i ) (23)

where P is the Poisson distribution. Changing ∆t in (23)

allows one, for a given image f, to simulate several levels

of noise by changing the number of average photons N0 (ph)

emitted by the object during ∆t. The Poisson noise has indeed

a greater effect when the values of N0 are small.

C. Experimental acquisitions

To demonstrate the ability of our technique to work for real

acquisitions, we performed several experiments. The experi-

mental setup was composed of a supercontinuum pulsed laser

source (SC-450, Fianium) followed by an IF filter with center

wavelength at 650 nm for uniform illumination of the object.

A 1024×768 DMD (DLP7000 - V7001, Vialux) was exploited

to spatially modulate the image with a possibility of loading

b = 8-bits patterns by adjusting the duty cycle for each bit

plane. The light reflected from the DMD is focused by means

of a lens on a single pixel photomultiplier detector (HPM-100-

50, Becker & Hickl GmbH). A time-correlated single photon

counting (TCSPC) board (SPC-130, Becker & Hickl GmbH)

is also coupled to the photomultiplier. As a result, only time-

resolved measurements are considered in this paper since we

aim for applications such as fluorescence lifetime imaging in

the future.

As an object, we chose two Jaszczak phantoms commonly

used in CT. These different targets were printed on white paper

and the obtained diameter was 22 mm. The experimental CCD

image of these targets can be seen in Fig. 7-(a) and Fig. 8-(a).
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Image
PSNR (dB)

b = 4 b = 6 b = 8 b = 10 b = 12 b → ∞

Bones
24.73 29.98 30.87 31.18 31.18 31.18

(256×256)
Mouse

33.20 43.80 47.82 49.18 49.23 49.23
(128×128)

TABLE I
QUANTIZATION EFFECT IN OUR ABS-WP METHOD FOR LE GALL’S

WAVELET FOR DIFFERENT NUMBER OF BITS b FOR A CR OF 80%. THE

LAST COLUMN IS EQUIVALENT TO SIMULATE THE STRATEGY WITHOUT

QUANTIZATION.

For each case, 128×128 pixels patterns were employed thus

giving 128× 128 pixels restored SPC images. The patterns

were resized as 640× 640 pixels patterns to use most of the

DMD’s height. This resizing operation was performed using

a box-shaped kernel which means that no other pixel values

other than those in the patterns were added. In other words,

an area of 5× 5 (640/128 = 5) DMD mirrors was used to

represent one pixel of the 128×128 pattern.

D. Integration time

Concerning the integration time ∆t at the detector, it is,

in theory, only limited by the DMD’s frequency. As pointed

before, a TCSPC is also employed in our setup. The use

of the DMD at its highest speed in this case is limited by

the statistics constraints of photon counting of the TCSPC.

This requires integration time of a few hundred milliseconds

to work properly while having a correct SNR in standard

illumination conditions. In this particular case, the integration

time ∆t at the single-pixel detector is always greater that

what can be obtained without the TCSPC. As a result, in the

following simulations and experimental results, ∆t was kept

constant for each case so that the different techniques (CI,

Dai’s method or ABS-WP) are fairly comparable for a given

number of measurements. Once performed, the measurements

{m̂i} of (21) were post-processed with their different quanti-

zation factor {qi} according to (20) to obtain correctly-scaled

measurements.

V. RESULTS

A. Numerical experiments

1) Influence of the quantization: Table I presents simulation

results showing the quantization effect on two images with our

method when using Le Gall’s wavelet. An example of pattern

using this wavelet can be seen in Fig. 4. The proposed strategy

was simulated exactly as it would be computed by the SPC:

the wavelet coefficients were obtained with the dot product

between the corresponding quantized patterns and the image.

2) Influence of the prediction strategy: Table II presents

the accuracy of the prediction strategy at identifying the

significant wavelet coefficients for Dai’s technique and our

ABS-WP method. For each case presented, the Haar wavelet

was employed since Dai’s technique is derived from this

wavelet. In order to only compare fairly the influence of the

prediction, the set of percentages for each image for ABS-

WP was obtained from Dai’s number of sampled wavelet

Image CR
Correctly matched wavelet coefficients (%)

Dai ABS-WP

Bones 80 62 69

(256×256) 85 59 65

Mouse 80 82 85

(128×128) 85 79 84

TABLE II
ACCURACY OF THE PREDICTION STRATEGY FOR DAI’S TECHNIQUE AND

OUR ABS-WP FRAMEWORK. THE TABLE DISPLAYS THE PERCENTAGES OF

THE WAVELET COEFFICIENTS THAT WERE CORRECTLY PREDICTED AS

SIGNIFICANT COMPARED TO THE TRUE SIGNIFICANT WAVELET

COEFFICIENTS.

Fig. 5. Noise-free simulation of different SPC acquisition techniques on a
256×256 image of bones with a CR of 80%. (a) Ground truth image, images
restored with (b) CI, (c) Dai’s method and (d) our ABS-WP technique. The
PSNRs and parameters associated with these results are given in table III.

coefficients at each scale. Then, the locations of the found

coefficients for both prediction strategies were compared to the

true significant wavelet coefficients obtained from the ground

truth images giving the percentages of accuracy in table II.

3) Influence of the acquisition strategy: Figure 5 gives

simulated visual results of our method compared to CI and

Dai’s method for one test image. In the case of our method,

Le Gall’s wavelet was used since it proved to be the most

efficient wavelet in several cases.

In table III, we present the obtained PSNRs for the different

SPC acquisition techniques at two compression rates and

table IV gives the associated average computation times.

4) Influence of the image: Four different images were con-

sidered: the well-known Lena and peppers images as well as

the bone image depicted in Fig. 5 and the mouse fluorescence

image depicted in Fig. 6. Note that the bone image is high-

frequency while the mouse fluorescence is pretty smooth.

5) Influence of noise: Table V compares the performance

of the different acquisitions strategies considering the noisy

measurements as given by (23). Our ABS-WP method with
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Image CR
PSNR (dB) Dai’s

CI Dai ABS-WP thresholds

Lena (256×256)
80 29.55 29.90 30.33 11.52
85 27.89 28.49 29.59 16.63

Peppers (256×256)
80 34.70 35.06 35.35 7.71
85 32.96 33.42 34.83 11.77

Bones (256×256)
80 29.38 30.24 31.18 12.89
85 28.14 28.59 30.29 17.61

Mouse (128×128)
80 45.36 47.65 49.23 385.65
85 42.18 45.83 49.13 851.10

TABLE III
OBTAINED PSNRS FOR DIFFERENT SPC ACQUISITION TECHNIQUES AT

TWO COMPRESSION RATES ON SEVERAL TEST IMAGES IN A NOISE-FREE

SETTING. THE THRESHOLDS USED FOR DAI’S METHOD ARE GIVEN IN THE

LAST COLUMN. FOR ABS-WP, LE GALL PATTERNS WERE EMPLOYED

WITH P= {0.90,0.80,0.71,0.02} AND P= {0.90,0.80,0.45,0.019} TO GIVE

CRS OF 80% AND 85%.

Image size CR
Time (s)

CI Dai ABS-WP

256×256
80 267.37 0.12 0.43
85 213.62 0.09 0.42

128×128
80 15.50 0.02 0.19
85 13.18 0.02 0.18

TABLE IV
AVERAGE COMPUTATION TIME FOR THE DIFFERENT SPC ACQUISITION

TECHNIQUES FOR THE RESULTS OF TABLE III. THE TIME INCLUDES THE

IMAGE RESTORATION FOR CI AND PREDICTION + RESTORATION FOR

DAI’S METHOD AND OUR TECHNIQUE.

two different wavelets is compared to Dai’s technique and

compressive imaging on the Fig. 6-(a) for different values of

∆t i.e. different levels of noise. A low ∆t leads to a low average

of photons N0 emitted by the object and thus the noise effect

is greater.

B. Experimental acquisitions

Figure 7 presents real SPC acquisitions of a target with our

acquisition strategy (ABS-WP) and compressive imaging as a

comparison. In the case of ABS-WP, we used both Haar and

Le Gall wavelets to show the ability of the DMD to use 8-bits

patterns.

Figure 8 allows to judge the ability of our optical setup to

discern small dots at different compression rates. The printed

dots diameters are about 1 mm for the smallest dots and about

3 mm for the biggest ones. A pixel size of 210 µm was

measured in our setup that can be improved by changing optics

and/or change the patterns’ size.

∆t (s) N0(ph)
PSNR (dB)

CI Dai ABS-WP (Le G.) ABS-WP (Haar)

1 5245 38.99 45.72 47.20 46.05

0.75 3934 39.29 45.61 46.88 45.98

0.5 2623 39.04 45.48 46.54 45.91

0.25 1312 38.47 45.31 45.90 45.71

0.1 525 37.06 44.72 43.99 45.01

TABLE V
NOISY SIMULATIONS FOR DIFFERENT ACQUISITION STRATEGIES AT A CR

OF 85% FOR DIFFERENT VALUES OF ∆t ON THE MOUSE IMAGE OF

FIG. 6-(A). FOR ABS-WP, THE SET OF PERCENTAGES USED FOR LE

GALL’S WAVELET WAS P= {0.90,0.80,0.45,0.019} AND

P= {0.77,0.42,0.24,0.1} FOR HAAR.

Fig. 6. Noise-free simulation of our acquisition strategy on a 128 × 128
bioluminescence image of a mouse. The bioluminescence images have been
overlaid on the ambient light image of the mouse. (a) Ground truth image,
images restored using Le Gall’s wavelet for a CR of (b) 90%, (c) 95% and
(d) 98%. Respectively, PSNRs compared to the ground truth image are 48.25
dB, 41.48 dB and 35.37 dB.

VI. DISCUSSION

Our ABS-WP strategy presented in Section III was designed

to overcome the ℓ1-minimization of CS by acquiring an image

in a wavelet basis. In addition, non-linear approximations are

employed to avoid image-dependent thresholds. In order to use

any possible wavelet, uniform quantization of the patterns is

performed.

Haar wavelet is often considered [40]–[43] since, up to

a scale factor, the patterns have only 0 or 1 values and

the quantization therefore does not impact the image quality.

However in the case of our ABS-WP technique, as can be

seen in table I, this quantization impacts the quality of the

restored image when another wavelet is employed. With a CR

of 80% and for values of b ≤ 10 the restored images have

a smaller PSNR than the one recovered with real patterns

(last column, b → ∞). This difference clearly comes from the

rounding operation in (19) and is irreversible. When b ≥ 10,

this extends the grayscale and we can see that the quantization

error can be considered negligible. As mentioned before, the

quantization factor qi impacts the effective integration time

∆ti = qi∆t at the detector. For the proposed experiments in

this paper, we always kept ∆t constant and post-processed the

measurements by applying qi as depicted in (20) and (21). This

is not the finest possible solution to obtain the best possible

SNR. The optimum solution would be to increase or decrease

the integration time according to the pattern i.e. ∆ti = qi∆t

would act as the new integration time as in (22).

As mentioned previously, the bicubic interpolation was used

for our acquisition strategy. This choice was based on several

experiments with different existing interpolation and super-

resolution techniques [64]. This is surprising since the bicubic
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Fig. 7. Experimental acquisitions with the SPC on the Jaszczak target. (a)
Experimental CCD image of the printed target on a paper, recovered 128×128
pixels images with a CR of 85% (b) for ABS-WP with Haar, (c) for ABS-WP
with Le Gall and (d) using CI. Respectively, the obtained PSNRs compared
to the CCD image after registration are 21.99 dB, 21.65 dB and 21.20 dB.
The dynamic of the SPC images has been rescaled to the dynamic range of
the CCD image for visual comparison.

interpolation tends to smooth edges in general. We could

assume that the location of the significant coefficients should

be better predicted with more sophisticated techniques as in

general, the highest wavelet coefficients are in the vicinity

of the edges [39]. In spite of the smoothness of the bicubic

interpolation, the technique gives very good results to predict

the significant coefficient locations. This is confirmed by the

results of table II where our technique is compared to Dai’s.

It can be seen that our prediction technique performs better

at finding the true significant wavelet coefficients compared to

Dai’s thresholding technique. The results of table II where

provided for Haar’s wavelet since Dai’s method is derived

from it. However, in the case of ABS-WP, the possibility to

use another wavelet can greater improve the image quality

provided that the wavelet was correctly chosen.

Looking at the results of table III where we compare our

method with CI or Dai’s method it can be noted that we obtain

numerically close or better results. As can be seen in Fig. 5, the

TV-minimization leads to the creation of spot patterns when

the image has lots of details and/or textures. Dai’s method,

because of the use of Haar’s wavelet, shows pixelation that

is not present in our technique with Le Gall’s wavelet. The

computation time in table IV also shows the improvement

when an adaptive approach is considered. This improvement

is again greater when bigger images are considered. Dai’s

method is extremely fast since the prediction is simply based

on thresholding.

The thresholds for Dai’s method presented in table III

reveals that they are image-dependent and should be adjusted

Fig. 8. Ability of the system to distinguish dots whose diameters range from
1 mm to 3 mm. (a) Experimental CCD image of the printed target on a paper,
recovered 128×128 pixels images with ABS-WP with Le Gall for a CR of
(b) 75%, (c) 85% and (d) 90%. Respectively, the obtained PSNRs compared
to the CCD image after registration are 22.35 dB, 21.51 dB and 20.85 dB.
The dynamic of the SPC images has been rescaled to the dynamic range of
the CCD image for visual comparison. A pixel size of 210 µm was measured.

for each image. In comparison, for our technique and a fixed

CR, the same set of percentages was used for each image.

Despite the clear difference of the four involved images of

table III, our strategy restores good quality images. This shows

that ABS-WP adapts to the image. In our case, the different

sets of percentages have been set once and for all after learning

from several test images. In practice, one can use in simulation

the non-linear approximation for a given CR on several images

and find the number of retained coefficients in each level j.

The average of the obtained values between the images gives

a good candidate for the set of percentage P. In the case of

CI with TV-minimization, many parameters have to be tuned.

The quality of the restored image dramatically depends on

these choices. It was found that anisotropic TV with positivity

constraint gave the best results.

Figure 6 demonstrates that even with a CR as high as

98% one can recover an excellent image in the case of

smooth images. For smooth images such as this one, only

a few wavelet coefficients are needed to restore the principal

features. The value of J can thus be set closed to the limit

log2(N) and the percentages p j for small values of j can be

set to 0. Such images indeed have very few details, only the

coarser coefficients are sufficient enough to restore an image.

On the contrary, for images with high frequency components,

one should chose high values for the percentage p1 to acquire

the finest details. The choice of the set of percentages P and

the decomposition level J is therefore linked to the type of

object to image and the aimed application.

The noisy simulations of table V show that our technique
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ABS-WP still perform close or better than compressive imag-

ing or Dai’s technique in a real-world setting. However, we

note that the measurements are more rapidly corrupted by

noise in the case of our method with Le Gall’s patterns. This is

because such patterns reflect less light than Haar patterns. The

measurements of (23) are therefore smaller for Le Gall than

Haar leading to a greater effect of the Poisson noise for the

biorthogonal wavelet. In really low-light scenarios, one should

in this case better use the simple Haar wavelet (last row of

table V). In the future, we plan to propose a strategy to modify

any wavelet patterns and reduce the effect of the noise in such

cases.

If we move on to the experimental results, Figure 7 proves

that, as Haar’s wavelet, a more sophisticated wavelet such as

Le Gall’s can be used for acquisition. Visually, Le Gall gives

a better result with a smoother image. The CI creates visible

spots on the restored image. For Haar, the pixelation arises

since p1 was set to a very small value. The choice of the

wavelet is also an important feature of our strategy. Depending

on the object to image, some wavelets are better at sensing

the scene than others i.e. they better capture the information

in fewer coefficients, giving a sparser wavelet transform in

one wavelet basis compared to another. For instance if a

very smooth object is considered, a Battle wavelet would be

much more appropriate than a Haar wavelet and fewer Battle

coefficients would be needed compared to using Haar wavelet.

With ABS-WP, one can choose any wavelet best adapted to

the desired application and object to be acquired.

Finally, Figure 8 provides some insights about the system’s

possibilities. It can be seen that in our actual configuration, the

measurements can discern objects of at least 1 mm provided

that the compression rate is well chosen. For instance, for a

CR of 80% or 85% one can discern the small dots. However,

for 90%, not enough elements have been sampled to restore

the dots. In the case of our method, one can easily keep the

acquisition going by lowering the compression rate after a first

acquisition if the quality of the image is not judged sufficient.

We can indeed keep on filling the wavelet transform of our

image by adding new wavelet coefficients and quickly obtain

a new restored image by inverse wavelet transform.

Some limitations of our ABS-WP framework deals with

the employment of 8-bit (or more) patterns that reduces the

maximum possible acquisition frame rate. For instance, the

DMD in our setup can work at a maximum frequency of 22

kHz in 1-bit mode but only 290 Hz in 8-bit. This means

that, by employing 8-bit wavelet patterns in our ABS-WP

technique, one is not able to work at the highest frame rate.

Depending on the application, this can be a problem. However,

there are many different issues which practically limit the

possibility to reach the DMD frame rate such as the weak SNR

in low-light scenarios. This is particularly true in the field of

biomedical optics where, e.g., fluorescence signal emitted by

specific dyes are weak. Based on the results of Fig. 7 and

table V, in any case, if fast measurements are required, one

can still use Haar’s wavelet with our framework and obtain

better results compared to CI or Dai’s method thanks to a

better prediction (table II).

Overall, ABS-WP needs few parameters making it a fast,

easy to adjust and threshold-free adaptive acquisition tech-

nique. Unlike the CS approach, the perfect recovery of the

signal is not guaranteed in theory unless each wavelet coef-

ficient is acquired. It is however easy to refine the recovered

image for ABS-WP by making a second pass of the algorithm.

In the case of CS, doing such a process is time consuming

because of the TV-minimization that would have to be started

from scratch again. With ABS-WP, this simply allows one

to complete the previously obtained wavelet transform of the

image by sampling new coefficients.

VII. CONCLUSION

We presented a new framework for single-pixel camera

imaging. The philosophy of our approach is inspired by the

non-linear approximation of the wavelet transform. It uses

an interpolation technique to predict the significant wavelet

coefficients that have to be experimentally acquired, while

the other coefficients can be discarded. The main advantage

of the proposed adaptive wavelet approach is to dispose of

the computational overhead of ℓ1-minimization required by

the compressed sensing theory. To our knowledge, this is

the first time that a wavelet other than Haar’s is used for

experimental data in an adaptive strategy for SPC. Employing

more sophisticated wavelets is made possible by uniform

quantization of the wavelet patterns and allows one to choose

the best suited wavelet for the desired application. Simulations

and experimental acquisitions with the proposed methodology

show both good visual and quantitative results and the method

was proven to adapt to different kind of images.

The SPC opens many perspectives in the biomedical field.

In future work, we plan to use this optical setup to perform

time-resolved fluorescence imaging of biological structures.
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