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SUMMARY

We show that rate-adaptive multivariate density estimation can be performed using Bayesian
methods based on Dirichlet mixtures of normal kernels with a prior distribution on the kernel’s
covariance matrix parameter. We derive sufficient conditions on the prior specification that guar-
antee convergence to a true density at a rate that is minimax optimal for the smoothness class to
which the true density belongs. No prior knowledge of smoothness is assumed. The sufficient
conditions are shown to hold for the Dirichlet location mixture-of-normals prior with a Gaussian
base measure and an inverse Wishart prior on the covariance matrix parameter. Locally Hölder
smoothness classes and their anisotropic extensions are considered. Our study involves several
technical novelties, including sharp approximation of finitely differentiable multivariate densities
by normal mixtures and a new sieve on the space of such densities.

Some key words: Anisotropy; Dirichlet mixture; Multivariate density estimation; Nonparametric Bayesian method;
Rate adaptation.

1. INTRODUCTION

Asymptotic frequentist properties of Bayesian nonparametric methods have received much
attention recently. It is now recognized that a single fully Bayesian method can offer adap-
tive optimal rates of convergence for large collections of true data-generating distributions
ranging over several smoothness classes. Examples include: signal estimation in the pres-
ence of Gaussian white noise (Belitser & Ghosal, 2003); density estimation and regression
based on a mixture model of spline or wavelet bases (Huang, 2004; Ghosal et al., 2008);
regression, classification and density estimation based on a rescaled Gaussian process model
(van der Vaart & van Zanten, 2009); density estimation based on a hierarchical finite mixture
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model of beta densities (Rousseau, 2010); and density estimation (Kruijer et al., 2010) and
regression (de Jonge & van Zanten, 2010) based on hierarchical, finite mixture models of
location-scale kernels.

Results on adaptive convergence rates for nonparametric Bayesian methods are useful for
at least two reasons. First, they provide frequentist justification of these methods in large
samples, which can be attractive to non-Bayesian practitioners who use these methods because
they are easy to implement, provide estimation and prediction intervals, do not require the
adjustment of tuning parameters, and can handle multivariate data. Second, these results supply
indirect validation that the spread of the underlying prior distribution is well balanced across
its infinite-dimensional support. Such a prior distribution quantifies the rate at which it packs
mass into a sequence of shrinking neighbourhoods around any given point in its support. When
the support of the prior can be partitioned into smoothness classes in the space of continuous
functions, a sharp bound on this rate can be calculated for all support points within each
smoothness class. These calculations have a nearly one-to-one relationship with the asymptotic
convergence rates of the resulting method.

In this article we focus on a collection of nonparametric Bayesian density estimation methods
based on Dirichlet process mixture-of-normals priors. Dirichlet process mixture priors (Ferguson,
1983; Lo, 1984) form a cornerstone of nonparametric Bayesian methodology (Escobar & West,
1995; Müller et al., 1996; Müller & Quintana, 2004; Dunson, 2010), and density estimation
methods based on these priors are among the first Bayesian nonparametric methods for which
convergence results were obtained (Ghosal et al., 1999; Ghosal & van der Vaart, 2001; Tokdar,
2006). However, because of two major technical difficulties, rate adaptation results have not
been available so far and convergence rates remain unknown beyond univariate density estima-
tion (Ghosal & van der Vaart, 2001, 2007). The first major difficulty lies in showing adaptive
prior concentration rates for mixture priors on density functions. Taylor expansions do not suf-
fice because of the nonnegativity constraint on the densities. The second major difficulty is to
construct a suitable low-entropy, high-mass sieve on the space of infinite-component mixture
densities. Such sieve constructions form an integral part of the current technical machinery for
deriving rates of convergence. The sieves that have been used to study Dirichlet process mixture
models, e.g., in Ghosal & van der Vaart (2007), do not scale to higher dimensions and lack the
ability to adapt to smoothness classes (Wu & Ghosal, 2010).

We plug these two gaps and establish rate adaptation properties of a collection of multivariate
density estimation methods based on Dirichlet process mixture-of-normals priors. Our priors
include the commonly used specification of mixing over multivariate normal kernels with a
location parameter drawn from a Dirichlet process having a Gaussian base measure, while
using an inverse Wishart prior on the common covariance matrix parameter of the kernels.
Rate adaptation is established with respect to Hölder smoothness classes. In particular, when
any density estimation method from our collection is applied to independent observations
X1, . . . , Xn ∈ R

d drawn from a density f0 which belongs to the smoothness class of locally
β-Hölder functions, it is shown to produce a posterior distribution on the unknown density
of the Xi that converges to f0 at a rate of n−β/(2β+d)(log n)t , where t depends on β, d and
tail properties of f0. This rate, without the (log n)t term, is minimax optimal for the β-Hölder
class (Barron et al., 1999). It is further shown that if f0 is anisotropic with Hölder smoothness
coefficients β1, . . . , βd along the d axes, then the posterior convergence rate is n−β0/(2β0+d)

times a factor log n, where β0 is the harmonic mean of β1, . . . , βd . Again, this rate is minimax
optimal for this class of functions (Hoffmann & Lepski, 2002).

To the best of our knowledge, such rate adaptation results are new for any kernel-based
multivariate density estimation method. The performance of a non-Bayesian multivariate kernel
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Bayesian density estimation 3

density estimator depends heavily on the difficult choice of a bandwidth and a smoothing kernel
(Scott, 1992). Optimal rates are possible only by using higher-order kernels and choices of band-
width that require knowing the smoothness level. In contrast, our results show that a single
Bayesian nonparametric method based on a single choice of Dirichlet process mixture of nor-
mal kernels achieves optimal convergence rates universally across all smoothness levels.

2. POSTERIOR CONVERGENCE RATES FOR DIRICHLET MIXTURES

2·1. Notation

For any d × d positive definite real matrix �, let φ�(x) denote the d-variate normal den-
sity (2π)−d/2(det �)−1/2 exp(−xT�−1x/2) with mean zero and covariance matrix �. For a
probability measure F on R

d and a d × d positive definite real matrix �, the F-induced loca-
tion mixture of φ� is denoted by pF,� ; that is, pF,�(x) = ∫

φ�(x − z)F(dz) for x ∈ R
d . For a

scalar σ > 0 and any function f on R
d , we let Kσ f denote the convolution of f and φσ 2 I , i.e.,

(Kσ f )(x) = ∫
φσ 2 I (x − z) f (z) dz.

For any finite positive measure α on R
d , let Dα denote the Dirichlet process distribution with

parameter α (Ferguson, 1973); that is, an F ∼Dα is a random probability measure on R
d such that

for any Borel-measurable partition B1, . . . , Bk of R
d , the joint distribution of F(B1), . . . , F(Bk)

is the k-variate Dirichlet distribution with parameters α(B1), . . . , α(Bk).
Let N0 = {0, 1, 2, . . .}, and let �J = {(x1, . . . , xJ ) : xi > 0, i = 1, . . . , J ; ∑J

i=1 xi = 1} be
the J -dimensional probability simplex. Let the indicator function of a set A be denoted by 1l(A).
We write � to mean an inequality up to a constant multiple, where the underlying constant of
proportionality is universal or is unimportant for our purposes. For any x ∈ R, define �x� to be
the largest integer that is strictly smaller than x . Similarly, define �x� to be the smallest integer
strictly greater than x . For a multi-index k = (k1, . . . , kd) ∈ N

d
0 , define k· = k1 + · · · + kd and

k! = k1! · · · kd !, and let Dk denote the mixed partial derivative operator ∂k·/∂xk1
1 · · · ∂xkd

d .
For any β > 0, τ0 � 0 and nonnegative function L on R

d , define the locally β-Hölder class
with envelope L , denoted by Cβ,L ,τ0(Rd), to be the set of all functions f : R

d → R that have
finite mixed partial derivatives Dk f of all orders up to k· � �β�, such that for every k ∈ N

d
0 with

k· = �β�,

|(Dk f )(x + y) − (Dk f )(x)| � L(x) exp(τ0‖y‖2)‖y‖β−�β� (x, y ∈ R
d).

In our discussion, we shall assume that the true density f lies in Cβ,L ,τ0(Rd). This condition is
essentially weaker than the one in Kruijer et al. (2010), where log f ∈ Cβ,L ,0(R) is assumed; see
Lemma B4.

For any d × d matrix A, we denote its eigenvalues by eig1(A) � · · · � eigd(A), its spectral
norm by ‖A‖2 = supx |= 0 ‖Ax‖/‖x‖ and its max norm by ‖A‖max, the maximum of the absolute
values of the elements of A.

2·2. Dirichlet process mixture-of-normals prior

Consider drawing inference on an unknown probability density function f on R
d based

on independent observations X1, . . . , Xn from f . A nonparametric Bayesian method assigns
a prior distribution � on f and draws inference on f based on the posterior distribution
�n(· | X1, . . . , Xn). A Dirichlet process location mixture-of-normals prior � is the distribution
of a random probability density function pF,� where F ∼Dα for some finite positive measure
α on R

d and � ∼ G, a probability distribution on d × d positive definite real matrices.
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We restrict our discussion to a collection of such prior distributions � for which the asso-
ciated Dα and G satisfy the following conditions. Let |α| = α(Rd) and ᾱ = α/|α|. We assume
that ᾱ has a positive density function on the whole of R

d and that there exist positive constants
a1, a2, a3, b1, b2, b3, C1, C2 such that

1 − ᾱ([−x, x]d) � b1 exp(−C1xa1) for all sufficiently large x > 0, (1)

G{� : eigd(�−1) � x} � b2 exp(−C2xa2) for all sufficiently large x > 0, (2)

G{� : eig1(�
−1) < x} � b3xa3 for all sufficiently small x > 0. (3)

We also assume that there exist κ, a4, a5, b4, C3 > 0 such that for any 0 < s1 � · · · � sd and
t ∈ (0, 1),

G{� : s j < eig j (�
−1) < s j (1 + t), j = 1, . . . , d} � b4sa4

1 ta5 exp(−C3sκ/2
d ). (4)

Our assumption on ᾱ is analogous to (11) of Kruijer et al. (2010) and holds, for example,
when ᾱ is a Gaussian measure on R

d . Unlike previous treatments of Dirichlet process mixture
models (Ghosal & van der Vaart, 2001, 2007), we allow a full-support prior on �, including the
widely used inverse Wishart distribution. The following lemma shows that such a G satisfies our
assumptions; see Appendix A for a proof.

LEMMA 1. The inverse Wishart distribution IW(ν, �) with ν degrees of freedom and a positive
definite scale matrix � satisfies (2), (3) and (4) with κ = 2.

From a computational point of view, another useful specification is to consider a G that sup-
ports only diagonal covariance matrices � = diag(σ 2

1 , . . . , σ 2
d ), with each diagonal component

independently assigned a prior distribution G0. By choosing an inverse gamma distribution as
G0, we get a G that again satisfies (2), (3) and (4) with κ = 2. Alternatively, we could take G0
to be the distribution of the square of an inverse gamma random variable. Such a G0 leads to a
G that satisfies (2), (3) and (4) with κ = 1. This difference in κ matters, with smaller κ leading
to optimal convergence rates for a wider class of true densities.

2·3. Convergence rates results

Let � be a Dirichlet process mixture prior as defined in § 2·2, and let �n(· | X1, . . . , Xn)

denote the posterior distribution based on n observations X1, . . . , Xn modelled as Xi ∼ f ,
f ∼ �. Let {εn}n�1 be a sequence of positive numbers with limn→∞ εn = 0. Also, let ρ denote
a suitable metric on the space of probability densities on R

d , such as the L1 metric ‖ f − g‖1 =∫ | f (x) − g(x)| dx , or the Hellinger metric dH( f, g) = [
∫ { f 1/2(x) − g1/2(x)}2 dx]1/2. Fix any

probability density f0 on R
d . For the density estimation method based on �, we say that its

posterior convergence rate at f0 in the metric ρ is εn if for any M < ∞,

lim
n→0

�n [{ f : ρ( f0, f ) > Mεn} | X1, . . . , Xn] = 0 almost surely, (5)

whenever X1, X2, . . . are independent and identically distributed with density f0.
Although (5) only establishes (εn)n�1 as a bound on the convergence rate at f0, it serves as

a useful calibration when checked against the optimal rate for the smoothness class to which f0
belongs. It is known that the minimax rate associated with a β-Hölder class is n−β/(2β+d). We
establish (5) for this class with εn as n−β/(2β+d), up to a factor that is a power of log n. A formal
result requires some additional conditions on f0, as summarized in Theorem 1.
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Bayesian density estimation 5

THEOREM 1. Suppose that f0 ∈ Cβ,L ,τ0(Rd) is a probability density function satisfying

P0
(|Dk f0|/ f0

)(2β+ε)/k· < ∞ (k ∈ N
d
0 , k· � �β�), P0

(
L/ f0

)(2β+ε)/β
< ∞ (6)

for some ε > 0, where P0g = ∫
g(x) f (x) dx denotes the expectation of g(X) under X ∼ f0.

Further, suppose that there exist positive constants a, b, c and τ such that

f0(x) � c exp(−b‖x‖τ ) (‖x‖ > a). (7)

For the prior � constructed in § 2·2, (5) holds in the Hellinger or the L1 metric with εn =
n−β/(2β+d∗)(log n)t , where t > {d∗(1 + 1/τ + 1/β) + 1}/(2 + d∗/β) and d∗ = max(d, κ).

We prove this result by verifying a set of sufficient conditions presented originally in
Ghosal et al. (2000) and subsequently modified by Ghosal & van der Vaart (2007). For ε > 0 and
any subset A of a metric space equipped with a metric ρ, let N (ε, A, ρ) denote the ε-covering
number of A, i.e., N (ε, A, ρ) is the smallest number of balls of radius ε needed to cover A.
The logarithm of this number is referred to as the ε-entropy of A. Also, define K( f0, ε) =
{ f :

∫
f0 log( f0/ f ) < ε2,

∫
f0 log2( f0/ f ) < ε2 }, the Kullback–Leibler ball around f0 of size

ε. Ghosal & van der Vaart (2007) showed that (5) holds whenever there exist positive constants
c1, c2, c3 and c4, a sequence of positive numbers (ε̃n)n�1 with ε̃n � εn and limn→∞ nε̃2

n = ∞,
and a sequence of compact subsets (Fn)n�1 of probability densities such that

log N (εn,Fn, ρ) � c1nε2
n , (8)

�(Fc
n) � c3 exp{−(c2 + 4)nε̃2

n}, (9)

�{K( f0, ε̃n)} � c4 exp(−c2nε̃2
n). (10)

The sequence of sets Fn is often called a sieve, and the Kullback–Leibler ball probability in (10)
is called the prior thickness at f0. In Theorem 4 we show that (10) holds for � =Dα × G with
ε̃n = n−β/(2β+d∗)(log n)t0 , where t0 = {d∗(1 + 1/τ + 1/β) + 1}/(2 + d∗/β). In Theorem 5 we
show that (8) and (9) hold with ε̃n as before and εn = n−β/(2β+d∗)(log n)t for every t > t0. The
following sections lay out the machinery needed to establish these two fundamental results.

When κ = 1, the rate in Theorem 1 equals the optimal rate n−β/(2β+d) up to a factor of log n.
However, the commonly used inverse Wishart specification of G leads to κ = 2, and hence
Theorem 1 gives the optimal rate only for d � 2. We will see later that κ has a bigger impact
on rates of convergence for anisotropic densities.

Our result also applies to a finite mixture prior specification � where the density function f is
represented by f (x) =∑H

h=1 ωhφ�(x − μh) and priors are assigned on H , �, ω = (ω1, . . . , ωH )

and μ1, . . . , μH . We assume � ∼ G, which satisfies (2), (3) and (4), and that there exist posi-
tive constants a4, b4, b5, b6, b7, C4, C5, C6, C7 such that b4 exp{−C4x(log x)τ1} � �(H � x) �
b5 exp{−C5x(log x)τ1} for sufficiently large x > 0, while for every fixed H = h,

�(μi /∈ [−x, x]d) � b6 exp(−C6xa4) for sufficiently large x > 0 (i = 1, . . . , h),

�(‖ω − ω0‖ � ε) � b7 exp{−C7h log(1/ε)} for all 0 < ε < 1/h and all ω0 ∈ �h .

Theorem 2 summarizes our findings for a finite mixture prior. Its proof is similar to that of
Theorem 1 except that in verifying (9) we need exp{−H(log H)τ1} � exp{−nε̃2

n}. Together
with H = �nε2

n/(log n)�, we have ε2
n(log n)τ1−1 � ε̃2

n , leading to ε̃n = n−β/(2β+d∗)(log n)t0 where
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6 W. SHEN, S. T. TOKDAR AND S. GHOSAL

t0 = {d∗(1 + 1/τ + 1/β) + 1}/(2 + d∗/β) and εn = n−β/(2β+d∗)(log n)t with t > t0 + max
{0, (1 − τ1)/2}.

THEOREM 2. Suppose that f0 ∈ Cβ,L ,τ0(Rd) is a probability density function satisfying (6)
and (7) for some positive constants a, b, c, τ and ε. For a finite mixture prior � as above,
(5) holds in the Hellinger or the L1 metric with εn = n−β/(2β+d∗)(log n)t for every t > {d∗(1 +
1/τ + 1/β) + 1}/(2 + d∗/β) + max{0, (1 − τ1)/2}, where d∗ = max(d, κ).

3. PRIOR THICKNESS RESULTS

Functions in Cβ,L ,τ0 can be approximated by mixtures of φσ 2 I with an accuracy that improves
with β. We establish this through the following constructions and lemma, which are adapted
from Lemma 3.4 of de Jonge & van Zanten (2010) and univariate approximation results of
Kruijer et al. (2010). The proofs are given in Appendix A.

For each k ∈ N
d
0 , let mk denote the kth moment mk = ∫

ykφ1(y) dy of the standard normal
distribution on R

d . For n ∈ N
d
0 , define two sequences of numbers by the following recursion. If

n· = 1 set cn = 0 and dn = −mn/n!, and for n· � 2 define

cn = −
∑

n=l+k
l·�1, k·�1

(−1)k·

k!
mkdl, dn = (−1)n·mn

n!
+ cn. (11)

Given β > 0 and σ > 0, define a transform Tβ,σ on f : R
d → R with derivatives up to order

�β� by

Tβ,σ f = f −
∑
k∈N

d
0

1�k·��β�

dkσ
k· Dk f.

LEMMA 2. For any β, τ0 > 0, there is a positive constant Mβ such that any f ∈ Cβ,L ,τ0(Rd)

satisfies |{Kσ (Tβ,σ f ) − f }(x)| < Mβ L(x)σβ for all x ∈ R
d and all σ ∈ (0, 1/(2τ0)

1/2).

Lemma 2 applies to any function f ∈ Cβ,L ,τ0 , not necessarily a probability density, and the
mixing function Tβ,σ f need not be a density and could be negative. Fortunately, when f is a
probability density, we can derive a density hσ from Tβ,σ f so that Kσ hσ provides an order-σβ

approximation to f . The construction of hσ can be viewed as a multivariate extension of results
in Kruijer et al. (2010, § 3). The main difference is that we establish approximation results under
the Hellinger distance and employ Taylor expansions on f0 instead of log f0, which lead to a
more elegant proof.

THEOREM 3. Let f0 ∈ Cβ,L ,τ0(Rd) be a probability density function and write fσ = Tβ,σ f0.
Suppose that f0 satisfies (6) for some ε > 0. Then there exist s0 > 0 and K > 0 such that for any
0 < σ < s0, gσ = fσ + (1/2) f0 1l{ fσ < (1/2) f0} is a nonnegative function with

∫
gσ (x) dx < ∞

and the density hσ = gσ /
∫

gσ (x) dx satisfies d2
H( f0, Kσ hσ ) � Kσ 2β.

The next result trades gσ for a compactly supported density hσ whose convolution with φσ 2 I
inherits the same order-σβ approximation to f0. We need the tail condition (7) on f0 to obtain a
suitable compact support.
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PROPOSITION 1. Let f0 ∈ Cβ,L ,τ0(Rd) be a probability density function satisfying (6) and
(7) for some positive constants ε, a, b, c and τ . For any σ > 0, define Eσ = {x ∈ R

d : f0(x) �
σ (4β+2ε+8)/δ}. Then there exist s0, a0, B0, K0 > 0 such that for every 0 < σ < s0, P0(Ec

σ ) �
B0σ

4β+2ε+8, Eσ ⊂ {x ∈ R
d : ‖x‖ � aσ } where aσ = a0{log(1/σ)}τ , and there is a probability

density h̃σ with support inside {x ∈ R
d : ‖x‖ � aσ } satisfying dH( f0, Kσ h̃σ ) � K0σ

β .

Proposition 1 paves the way to calculating prior thickness around f0, because the probability
density Kσ h̃σ can be well approximated by densities pF,� with (F, �) chosen from a suitable
set. Towards this, we present the final theorem of this section and a proof of it that overlaps with
§ 9 of Ghosal & van der Vaart (2007). However, our proof requires new calculations to handle a
non-compactly supported f0 and a matrix-valued �.

THEOREM 4. Let f0 ∈ Cβ,L ,τ0(Rd) be a bounded probability density function satisfying (6)
and (7) for some positive constants ε, a, b, c and τ . Then, for some A, C > 0 and all sufficiently
large n,

(Dα × G)

{
(F, �) : P0 log

f0

pF,�

� Aε̃2
n , P0

(
log

f0

pF,�

)2

� Aε̃2
n

}
� exp(−Cnε̃2

n) (12)

where ε̃n = n−β/(2β+d∗)(log n)t with any t � {d∗(1 + 1/τ + 1/β) + 1}/(2 + d∗/β).

Proof. Let δ, s0, a0 and K0 be as in Proposition 1. Take n large enough so that ε̃n < sβ
0 . Fix

σβ = ε̃n{log(1/ε̃n)}−1 and, as in Proposition 1, define Eσ = {x ∈ R
d : f0(x) � σ (4β+2ε+8)/δ} and

aσ = a0{log(1/σ)}1/τ . Recall that P0(Ec
σ ) � B0σ

4β+2ε+8 for some constant B0 and that Eσ ⊂
{x ∈ R

d : ‖x‖ � aσ }. Apply Proposition 1 to find h̃σ with support Eσ such that dH( f0, Kσ h̃σ ) �
K0σ

β . Find b1 > max{1, 1/(2β)} such that ε̃b1
n {log(1/ε̃n)}5/4 � ε̃n .

By Corollary B1, there is a discrete probability measure Fσ =∑N
j=1 p jδz j with at most N �

D0σ
−d{log(1/σ)}d/τ {log(1/ε̃n)}d � D1σ

−d{log(1/ε̃n)}d+d/τ support points inside {x ∈ R
d :

‖x‖ � aσ }, and with at least σ ε̃2b1
n separation between any zi |= z j such that dH(Kσ h̃σ , Kσ Fσ ) �

A1ε̃
b1
n {log(1/ε̃n)}1/4 for some constants A1 and D1.

Place disjoint balls U j centred at z1, . . . , zN with diameter σ ε̃2b1
n each. Extend {U1, . . . , UN }

to a partition {U1, . . . , UK } of {x ∈ R
d : ‖x‖ � aσ } such that each U j ( j = N + 1, . . . , K ) has

a diameter of at most σ . This can be done with K � D2σ
−d{log(1/ε̃n)}d+d/τ for some con-

stant D2. Further extend this to a partition U1, . . . , UM of R
d such that a1(σ ε̃2b1

n )d � α(U j ) � 1
for all j = 1, . . . , M , for some constant a1. We can still have M � D3σ

−d{log(1/ε̃n)}d+d/τ �
D4ε̃

−d/β
n {log(1/ε̃n)}sd with s = 1 + 1/β + 1/τ , for some constants D3 and D4. None of these

constants depends on n or σ .
Define p j = 0 ( j = N + 1, . . . , M). Let Pσ denote the set of probability measures F on R

d

with
∑M

j=1 |F(U j ) − p j | � 2ε̃2db1
n and min1� j�M F(U j ) � ε̃4db1

n /2. Observe that

M ε̃2db1
n � D4

[
ε̃b1−1/(2β)

n {log(1/ε̃n)}s/2]2d � 1,

min
1� j�M

α(U j )
1/2 � a1/2

1 ε̃2db1
n {ε̃b1−1/(2β)

n log(1/ε̃n)}−d � (a1/D4)
1/2 ε̃2db1

n ,

provided n has been chosen large enough. By Lemma 10 of Ghosal & van der Vaart (2007),
Dα(Pσ ) � C1 exp{−c1 M log(1/ε̃n)} � C1 exp[−c2ε̃

−d/β
n {log(1/ε̃n)}sd+1] for some constants

C1 and c2 that depend on α(Rd), a1, D4, d and b1. Also, let Sσ denote the set of all d × d
nonsingular matrices � such that all eigenvalues of �−1 lie between σ−2 and σ−2(1 + σ 2β).
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8 W. SHEN, S. T. TOKDAR AND S. GHOSAL

By (4), G(Sσ ) � σ D5 exp(−D6/σ
κ) � C3 exp[−c3ε̃

−κ/β
n {log(1/ε̃n)}sκ+1] for some constants

C3 and c3. Any � ∈ Sσ satisfies det(�−1) � σ−2d , yT�−1y � 2‖y‖2/σ 2 for any y ∈ R
d and

|tr(σ 2�−1) − d − log det(σ 2�−1)| < dσ 2β .
Apply Lemma B1 with Vi = Ui (i = 1, . . . , N ) and V0 =⋃

j>N U j to conclude that for any

F ∈Pσ , dH(Kσ Fσ , Kσ F) � A2ε̃
b1
n for some universal constant A2, and hence

dH( f0, Kσ F) � dH( f0, Kσ h̃σ ) + dH(Kσ h̃σ , Kσ Fσ ) + dH(Kσ Fσ , φσ 2 I ∗ F)

� K0σ
β + A1ε̃

b1
n {log(1/ε̃n)}1/4 + A2ε̃

b1
n � A3σ

β

for some constant A3. Therefore, for any F ∈Pσ and � ∈ Sσ , dH( f0, pF,�) � dH( f0, Kσ F) +
dH(pF,σ 2 I , pF,�) � A4σ

β for some constant A4, because dH(pF,σ 2 I , pF,�) � |tr(σ 2�−1) −
d − log det(σ 2�−1)|1/2 for any F . Moreover, for every x ∈ R

d with ‖x‖ < aσ ,

pF,�(x)

f0(x)
� K1

σ d

∫
‖x−z‖�σ

exp

(
−‖x − z‖2

σ 2

)
F(dz) � K2

σ d
F(UJ (x)) � K3

ε̃4db1
n

σ d

for some constants K1, K2 and K3, where J (x) denotes the index j ∈ {1, . . . , K } for which x ∈
U j . The penultimate inequality holds because UJ (x) with diameter no larger than σ must be a
subset of a ball of radius σ around x . Also, for any x ∈ R

d with ‖x‖ > aσ ,

pF,�(x)

f0(x)
� K1

σ d

∫
‖z‖�aσ

exp

(
−‖x − z‖2

σ 2

)
F(dz) � K4

σ d
exp(−4‖x‖2/σ 2)

for some constant K4, because ‖x − z‖2 � 2‖x‖2 + 2‖z‖2 � 4‖x‖2 and F({x ∈ R
d : ‖x‖ �

aσ }) � 1 − 2ε̃2db1
n . Set λ = K3ε̃

4db1
n /σ d , and notice that log(1/λ) � K5 log(1/ε̃n) for some con-

stant K5. For any F ∈Pσ and � ∈ Sσ ,

P0

{(
log

f0

pF,�

)2

1l

(
pF,�

f0
< λ

)}
� K6

σ 4

∫
‖x‖>aσ

‖x‖4 f0(x) dx

� K6

σ 4
(P0‖X‖8)1/2 P0(Ec

σ )1/2 � K7σ
2β+ε

for some constant K7, since P0‖X‖m < ∞ for all m > 0 because of the tail condition (7).
Given n sufficiently large, we have λ < e−1 and hence log( f0/pF,�)1l(pF,�/ f0 < λ) �
{log( f0/pF,�)}21l(pF,�/ f0 < λ). Therefore P0{log( f0/pF,�)1l(pF,�/ f0 < λ)} � K7σ

2β+ε .
Now apply Lemma B2 to conclude that both P0{log( f0/pF,�)} and P0{log( f0/pF,�)}2 are
bounded by K8 log(1/λ)2σ 2β � K9σ

2β{log(1/ε̃n)}2 � Aε̃2
n for some positive constant A.

Therefore

(Dα × G)

[
P0 log

f0

pF,�

� Aε̃2
n , P0

(
log

f0

pF,�

)2

� Aε̃2
n

]

�Dα(Pσ )G(Sσ )

� C4 exp
[
−c4ε̃

−d∗/β
n

{
log(1/ε̃n)

}sd∗+1
]
.

This gives (12), provided that ε̃
−d∗/β
n {log(1/ε̃n)}sd∗+1 � nε̃2

n . With ε̃n = n−β/(2β+d∗)(log n)t , the
condition is satisfied if t � (sd∗ + 1)/(2 + d∗/β). �
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Bayesian density estimation 9

4. SIEVE CONSTRUCTION

In the following proposition, based on the stick-breaking representation of a Dirichlet process,
we give an explicit definition of the sieve and derive upper bounds for its entropy and the prior
probability of its complement. This result serves as the main tool in obtaining adaptive posterior
convergence rates; a proof is given in Appendix A.

PROPOSITION 2. Fix ε, a, σ0 > 0 and integers M, H � d. Define

Q=
{

pF,� with F =
∞∑

h=1

πhδzh :
zh ∈ [−a, a]d , h � H ; ∑h>H πh < ε;
σ 2

0 � eig j (�) < σ 2
0

(
1 + ε2/d

)M
, j = 1, . . . , d

}
. (13)

Then:

(i) log N (ε,Q, ρ) � K [d H log{a/(σ0ε)} − H log ε + log M + Mε2] for some constant K ,
where ρ is either the Hellinger or the L1 metric;

(ii) (Dα × G)(Qc) � b1 H exp{−C1aa1} + {(e|α|/H) log(1/ε)}H + b2 exp{−C2σ
−2a2
0 } +

b3σ
−2a3
0 (1 + ε2/d)−2Ma3 , with the constants as defined in (1)–(4).

The sieve defined here can easily adapt to different rates of convergence of the form εn =
n−γ (log n)(d+1+s)/2 for 0 < γ � 1/2 and s > 0. The extreme case of γ = 1/2 corresponds to the
class of Gaussian mixtures (Ghosal & van der Vaart, 2001). For a β-Hölder-class convergence
rate we need to work with γ = β/(2β + d∗). The following theorem makes this precise.

THEOREM 5. Fix γ ∈ (0, 1/2) and a pair of numbers t and t0 such that t > t0 � (d + 1)/2.
For n � 1, take εn = n−γ (log n)t and ε̃n = n−γ (log n)t0 , and define Fn as Q in (13) with ε = εn,
H = �nε2

n/(log n)� and M = aa1 = σ
−2a2
0 = n. Then Fn satisfies (8) and (9) for all large n, for

some c1, c3 > 0 and every c2 > 0.

Proof. By Proposition 2,

log N (ε̄n,Fn, ρ) � K {dn1−2γ (log n)2t + n1−2γ (log n)2t + log n + n1−2γ (log n)2t }
� c1n1−2γ (log n)2t = c1nε2

n

for some c1 > 0, and hence (8) holds. By the second assertion of the same proposition,

(Dα × G)(Fc
n) � b1n1−2γ (log n)2t−1 exp(−b1n) + n−(1−2γ )n1−2γ (log n)2t−1

+ b2 exp(−C2n) + b3na3/a2 exp{−2a3n log(1 + ε̄2
n/d)}

� c3 exp{−(1 − 2γ )n1−2γ (log n)2t } � c3 exp{−(c2 + 4)n1−2γ (log n)2t0}
for all large n, some c3 > 0 and every c2 > 0. �

5. ANISOTROPIC HÖLDER FUNCTIONS

Anisotropic functions are those that have different orders of smoothness along different axes.
The isotropic result presented earlier gives adaptive rates corresponding to the least smooth
direction. Sharper results can be obtained by explicitly factoring in the anisotropy. For any
a = (a1, . . . , ad) and b = (b1, . . . , bd), let 〈a, b〉 denote a1b1 + · · · + adbd ; for y = (y1, . . . , yd),
let ‖y‖1 denote the L1-norm |y1| + · · · + |yd |. For a β > 0, an α = (α1, . . . , αd) ∈ (0, ∞)d with
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10 W. SHEN, S. T. TOKDAR AND S. GHOSAL

α. = d, and an L : R
d → (0, ∞) satisfying L(x + y) � L(x) exp(τ0‖y‖2

1) for all x, y ∈ R
d and

some τ0 > 0, the α-anisotropic β-Hölder class with envelope L is defined to be the set of all
functions f : R

d → R that have continuous mixed partial derivatives Dk f of all orders k ∈ N
d
0

with β − αmax � 〈k, α〉 < β where αmax = max(α1, . . . , αd), such that

|Dk f (x + y) − Dk f (x)| � L(x) exp(τ0‖y‖2
1)

d∑
j=1

|y j |min(β/α j −k j ,1) (x, y ∈ R
d).

We denote this set of functions by Cα,β,L ,τ0(Rd). Here β refers to the mean smoothness and α the
anisotropy index. An f ∈ Cα,β,L ,τ0 has partial derivatives of all orders up to �β j� along axis j ,
where β j = β/α j , and β is the harmonic mean d/(β−1

1 + · · · + β−1
d ) of these axial smoothness

coefficients. In the special case of α = (1, . . . , 1), the anisotropic set Cα,β,L ,τ0(Rd) equals the
isotropic set Cβ,L ,τ0(Rd).

THEOREM 6. Suppose that f0 ∈ Cα,β,L ,τ0(Rd) is a probability density function satisfying

P0
(|Dk f0|/ f0

)(2β+ε)/〈k,α〉
< ∞ (k ∈ N

d
0 , 〈k, α〉 < β), P0

(
L/ f0

)(2β+ε)/β
< ∞

for some ε > 0 and that (7) holds for some constants a, b, c, τ > 0. If � is as in § 2·2, then the
posterior convergence rate at f0 in the Hellinger or the L1 metric is εn = n−β/(2β+d∗)(log n)t ,
where t � {d∗(1 + τ−1 + β−1) + 1}/(2 + d∗/β) and d∗ = max(d, καmax).

A proof, given in Appendix A, is similar to the proofs of the results presented in § 3, except that
to obtain an approximation to f0, we replace the single bandwidth σ with bandwith σα j along
the j th axis. An f0 satisfying the conditions of the above theorem also satisfies the conditions of
Theorem 1 with smoothness index β/αmax, which is strictly smaller than β as long as not all of
the α j are equal to 1. Therefore, when the true density is anisotropic, Theorem 6 indeed leads to
a sharper convergence rate result.

With the standard inverse Wishart prior G, we have κ = 2, and consequently the optimal
rate n−β/(2β+d) is recovered up to a log n factor only when αmax � d/2. Therefore, in a two-
dimensional case, only the isotropic case is addressed, and for higher dimensions we get optimal
results for a limited amount of anisotropy. But, when κ � 1, as in the case of a diagonal � with
squared inverse gamma diagonal components, Theorem 6 provides optimal rates for any dimen-
sion and any degree of anisotropy, because αmax can never exceed d.
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APPENDIX A

Proof of Lemma 1. Let � ∼ IW(ν,�) and suppose � = I . It is well known that tr(�−1) ∼ χ2
νd , the

chi-squared distribution with νd degrees of freedom. The cumulative distribution function F(x; k) of χ2
k

satisfies 1 − F(zk; k) � {z exp(1 − z)}k/2 for all z > 1. Therefore, for all x > νd,

pr{eigd(�
−1) > x} � pr{tr(�−1) > x} �

( x

νd

)νd/2
exp{(νd − x)/2} � b2 exp(−C2x)
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Bayesian density estimation 11

for some constants b2 and C2. Furthermore, the joint probability density of eig1(�
−1), . . . , eigd(�

−1) is

f (x1, . . . , xd) = cd,ν exp

⎛
⎝−

∑
j

x j/2

⎞
⎠ d∏

j=1

x (ν+1−d)/2
j

∏
j<k

(xk − x j )

over the set {(x1, . . . , xd) ∈ (0,∞)d : x1 � · · · � xd}, for a known constant cd,ν . Since
∏

j<k(xk − x j ) �∏
j<k xk =∏d

k=2 xk−1
k , the probability density of eig1(�

−1) satisfies

f (x1) � cd,νx (ν+1−d)/2
1 exp(−x1/2)

d∏
k=2

{∫ ∞

0
x (ν+1−d)/2+k−1

k exp(−xk/2) dxk

}

= c̃d,νx (ν+1−d)/2
1 exp(−x1/2)

for all x1 > 0 and some positive constant c̃d,ν . Therefore, for any x > 0,

pr
{

eig1(�
−1) < x

}
� c̃d,r

∫ x

0
x (ν+1−d)/2

1 dx1 � b3xa3

for some positive constants a3 and b3.
Next, notice that the set on the left-hand side of (4) contains all � which have eig j (�

−1) ∈ I j =(
s j {1 + ( j − 1/2)t/d}, s j (1 + j t/d)

)
( j = 1, . . . , d) and that for any positive integers k > j , x j ∈ I j

and xk ∈ Ik implies that xk − x j > sk{1 + (k − 1/2)t/d} − s j (1 + j t/d) � s1t/(2d). Therefore

pr{s j < eig j (�
−1) < s j (1 + t), j = 1, . . . , d}

�
∫

Id

· · ·
∫

I1

cd,ν exp

⎛
⎝−

∑
j

x j/2

⎞
⎠ d∏

j=1

x (ν+1−d)/2
j

∏
j<k

(xk − x j ) dx1 · · · dxd

� cd,ν exp (−dsd) sd(ν+1−d)/2
1 {t/(2d)}d(d−1)/2

∫
Id

· · ·
∫

I1

dx1 · · · dxd

= cd,ν exp (−dsd) sd(ν+1−d)/2
1 {t/(2d)}d(d−1)/2{s1t/(2d)}d ,

which gives (4) for some positive constants a4, a5, b4 and C3.
If � |= I , by applying the above results for �−1� ∼ IW(ν, I ) one sees that the conclusion holds for a

different set of constants. �

Proof of Lemma 2. From multivariate Taylor expansion of any f ∈ Cβ,L ,τ0(Rd),

f (x − y) − f (x) =
∑

1�k·��β�

(−y)k·

k!
(Dk f )(x) + R(x, y),

with the residual satisfying |R(x, y)| � K1L(x) exp(τ0‖y‖2)‖y‖β for every x, y ∈ R
d and for a universal

constant K1. Therefore, for any σ ∈ (0, 1/(2τ0)
1/2),

{Kσ (Tβ,σ f ) − f }(x) =
∫

φσ 2 I (y){ f (x − y) − f (x)} dy −
∑

2�k·��β�
dkσ

k· {Kσ (Dk f )}(x)

=
∫

φσ 2 I (y)R(x, y) dy +
∑

2�k·��β�
σ k·

[
(−1)k·mk

k!
(Dk f )(x) − dk{Kσ (Dk f )}(x)

]
.

(A1)

The first term of (A1) is bounded by K2L(x)σ β for some universal constant K2. If β � 2, then the second
term of (A1) does not exist and we get a proof with Mβ = K2. For β > 2 we use induction on �β�.
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12 W. SHEN, S. T. TOKDAR AND S. GHOSAL

From (11) we can rewrite the second term of (A1) as

∑
2�k·��β�

[
(−1)k·mkσ

k·

k!
{Dk f − Kσ (Dk f )}(x) − ckσ

k· {Kσ (Dk f )}(x)

]
.

For each 1 � k· � �β�, the induction hypothesis implies that Dk f ∈ Cβ−k·,L ,τ0(Rd) and

Dk f − Kσ (Dk f ) = {Dk f − Kσ Tβ−k·,σ (Dk f )} + Kσ {Tβ−k·,σ (Dk f ) − Dk f }

with |{Dk f − Kσ Tβ−k·,σ (Dk f )}(x)| � Mβ−k· L(x)σ β−k· for all x ∈ R
d . This establishes the claim with

Mβ = K2 + ∑
2�k·��β�(mk/k!)Mβ−k· , because

∑
2�k·��β�

[
(−1)k·mkσ

k·

k!
{Tβ−k·,σ (Dk f ) − Dk f } − ckσ

k· Dk f

]

=
∑

2�k·��β�

⎧⎨
⎩ (−1)k·mkσ

k·

k!

∑
1� j·��β�−k·

d jσ
j· Dk+ j f − ckσ

k· Dk f

⎫⎬
⎭

=
∑

3�n·��β�

⎧⎪⎨
⎪⎩

∑
n = l+k

l·�1,k·�2

(−1)k·

k!
mkdl − cn

⎫⎪⎬
⎪⎭ σ n· Dn f = 0

identically by the definitions of cn and dn . �

Proof of Theorem 3. Fix s0 ∈ (0, 1/(2τ0)
1/2) such that

∑
1�k·��β� |dk | | log σ |−k·/2 < 1/2 and

σ ε | log σ |(2β+ε)/2 < 1 for all 0 < σ < s0. For any σ ∈ (0, s0), define

Aσ =
{

x :
|Dk f0(x)|

f0(x)
� σ−k· | log σ |−k·/2, k· � �β�; L(x)

f0(x)
� σ−β | log σ |−β/2

}

and notice that, by Markov’s inequality,

P0(Ac
σ ) �

∑
k·��β�

P0

{ |Dk f0(X)|
f0(X)

> σ−k· | log σ |−k·/2

}
+ P0

{
L(X)

f0(X)
> σ−β | log σ |−β/2

}

=
∑

k·��β�
P0

{(|Dk f0|/ f0

)(2β+ε)/k·
> σ−(2β+ε)| log σ |−(2β+ε)/2

}

+ P0{(L/ f0)
(2β+ε)/β > σ−(2β+ε)| log σ |−(2β+ε)/2}

� σ 2β+ε | log σ |(2β+ε)/2

⎧⎨
⎩

∑
k·��β�

P0

(|Dk f0|/ f0

)(2β+ε)/k· + P0 (L/ f0)
(2β+ε)/β

⎫⎬
⎭ ,

which is bounded by K1σ
2β for some constant K1. Also, for any x ∈ Aσ ,

|( fσ − f0)(x)| �
∑

1�k·��β�
|dk |σ k· |Dk f0(x)| � f0(x)

∑
1�k·��β�

|dk | | log σ |−k·/2 � 1

2
f0(x).

Consequently, fσ � f0/2 on Aσ . Because of integrability conditions on Dk f0/ f0, it turns out that in cal-
culating

∫
Dk f0(x) dx for any 1 � k· � �β�, one can integrate under the derivative and conclude that
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Bayesian density estimation 13∫
Dk f0(x) dx = 0 as f0 is a density. So

∫
fσ (x) dx = 1, and for some constant K2 and all σ < s0,

1 �
∫

gσ (x) dx � 1 + 1

2

∫
f0(x) 1l{ fσ (x) < f0(x)/2} dx � 1 + 1

2
P0(Ac

σ ) � 1 + K2σ
2β.

Thus
∫

gσ (x) dx < ∞ and hσ is a well-defined probability density function on R
d .

To prove the final result of Theorem 3, write rσ = (1/2) f0 1l{ fσ < (1/2) f0} and cσ = ∫
gσ (x) dx ; note

that for a, b > 0 we have (a1/2 − b1/2)2 = (a − b)2/(a1/2 + b1/2)2 � (a − b)2/(a + b) and hence

d2
H( f0, Kσ hσ ) �

∫
( f0 − Kσ hσ )2(x)

f0(x) + (Kσ hσ )(x)
dx

= 1

cσ

∫
(cσ f0 − Kσ gσ )2(x)

cσ f0(x) + (Kσ gσ )(x)
dx

� 3
∫

(cσ − 1)2 f 2
0 (x) + ( f0 − Kσ fσ )2(x) + (Kσ rσ )2(x)

cσ f0(x) + (Kσ gσ )(x)
dx

� 3

{∫
(cσ − 1)2 f0(x) dx +

∫
( f0 − Kσ fσ )2(x)

f0(x)
dx +

∫
(Kσ rσ )2(x)

(Kσ gσ )(x)
dx

}

� 3

{
K 2

2 σ 4β + M2
βσ 2β P0 (L/ f0)

2 +
∫

(Kσ rσ )(x) dx

}
,

because 1 � cσ � 1 + K2σ
2β , |( f0 − Kσ fσ )(x)| < Mβ L(x)σ β and Kσ rσ � Kσ gσ since rσ � gσ . By

Jensen’s inequality, P0(L/ f0)
2 � {P0(L/ f0)

(2β+ε)/β}β/(β+ε/2) < ∞. Also,
∫

(Kσ rσ )(x) dx is

1

2

∫ ∫
φσ 2 I (x − y) f0(y) 1l{ fσ (y) < f0(y)/2} dx dy = 1

2

∫
f0(y) 1l{ fσ (y) < f0(y)/2} dy,

which is bounded by P0(Ac
σ ) � K1σ

2β . �

Proof of Proposition 1. Define gσ and hσ as in the statement of Theorem 3. This theorem implies
that there are s1, K > 0 such that d2

H( f0, Kσ hσ ) � Kσ 2β for all 0 < σ < s1. The tail condition on f0

implies existence of a small δ > 0 such that B0, which is defined as P0( f −δ
0 ), satisfies B0 < ∞.

Let s2 ∈ (0, 1/(2τ0)
1/2) be such that {(4β + 2ε + 8)/(bδ)} log(1/s2) > max{(1/b) log c, aτ /2}. Set s0 =

min(s1, s2) and pick any σ ∈ (0, s0). Define Eσ = {x ∈ R
d : f0(x) � σ (4β+2ε+8)/δ} and aσ = a0 log(1/σ)1/τ

with a0 = {(8β + 4ε + 16)/(bδ)}1/τ . Then aσ > a and Eσ ⊂ {x ∈ R
d : ‖x‖ � aσ }.

By Markov’s inequality, P0(Ec
σ ) = P0{ f0(X)−δ > σ−(4β+2ε+8)} � B0σ

4β+2ε+8 � B0σ
2β+ε; conse-

quently, by (6) and applications of Hölder’s inequality,∫
Ec

σ

gσ (x) dx � 3

2

∫
Ec

σ

f0(x) dx +
�β�∑
k·=1

σ k· |dk |
∫

Ec
σ

|Dk f0(x)| dx

� 3

2
P0(Ec

σ ) +
�β�∑
k·=1

σ k· |dk |
{

P0

(|Dk f0|/ f0

)(2β+ε)/k·
}k·/2β+ε

P0(Ec
σ )(2β+ε−k·)/(2β+ε),

which is bounded by B1σ
2β+ε for some constant B1 that does not depend on σ . Hence

∫
Ec

σ
hσ (x) dx �∫

Ec
σ

gσ (x) dx � B1σ
2β+ε .

Define h̃σ to be the restriction of hσ to Eσ , that is, h̃σ (x) = hσ (x) 1l(x ∈ Eσ )/
∫

Eσ
h(x) dx . Then

dH(Kσ hσ , Kσ h̃σ ) � dH(hσ , h̃σ ) = [2 − 2{∫Eσ
hσ (x) dx}1/2]1/2 = O(σ β+ε/2). This completes the proof,

because dH( f0, Kσ h̃σ ) � dH( f0, Kσ hσ ) + dH(Kσ hσ , Kσ h̃σ ). �

Proof of Proposition 2. Let R̂ be a (σ0ε)-net of [−a, a]d , Ŝ an ε-net of the H -simplex SH = {p =
(p1, . . . , pH ) : ph � 0,

∑H
h=1 ph = 1}, and Ô an δ-net of Od , the group of d × d orthogonal matrices

 at D
 H

 H
ill L

ibrary - A
cquis D

ept S on June 27, 2013
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/


14 W. SHEN, S. T. TOKDAR AND S. GHOSAL

equipped with the spectral norm ‖·‖2, where δ = ε2/{3d(1 + ε2/d)M}. It is well known that the cardi-
nalities of these nets are such that card(R̂) � {a/(σ0ε)}d , card(Ŝ) � ε−H and card(Ô) � δ−d(d−1)/2.

Pick any pF,� ∈Q with F =∑∞
h=1 zhδzh , and let the spectral decomposition of �−1 be P�PT where

� = diag(λ1, . . . , λd) and P is an orthogonal matrix. Find ẑ1, . . . , ẑH ∈ R̂, π̂ = (π̂1, . . . , π̂H ) ∈ Ŝ, P̂ ∈ Ô
and m̂1, . . . , m̂d ∈ {1, . . . , M} such that

max
1�h�H

‖zh − ẑh‖ < σ0ε,

H∑
h=1

|π̃h − π̂h | < ε where π̃h = πh

1 − ∑
l>H πl

(1 � h � H),

‖P − P̂‖2 � ε2,

λ̂ j = {σ 2
0 (1 + ε2/d)m̂ j −1}−1 satisfies 1 � λ̂ j/λ j < 1 + ε2/d ( j = 1, . . . , d).

Take F̂ =∑H
h=1 π̂hδẑh and �̂ = (P̂�̂P̂T)−1 where �̂ = diag(λ̂1, . . . , λ̂d). Also define �̃ = (P̂�P̂T)−1 and

Q = P̂T P . By the triangle inequality,

‖pF,� − pF̂,�̂‖1 � ‖pF,� − pF,�̂‖1 + ‖pF,�̂ − pF̂,�̂‖1. (A2)

The first term on the right-hand side can be bounded by∫
‖φ�(· − z) − φ�̂(· − z)‖1 dF(z) = ‖φ� − φ�̂‖1 � ‖φ� − φ�̃‖1 + ‖φ�̃ − φ�̂‖1.

Since the total variation distance is bounded by 21/2 times the square root of the Kullback–Leibler
divergence, we have ‖φ�̃ − φ�̂‖1 � {tr(�̂−1�̃) − log det(�̂−1�̃) − d}1/2. But tr(�̂−1�̃) = tr(�̂�−1) =∑d

j=1 λ̂ j/λ j < d + ε2 and det(�̂−1�̃) =∏d
j=1(λ̂ j/λ j ) > 1. Thus ‖φ�̃ − φ�̂‖1 � ε. For the other term,

we have ‖φ� − φ�̃‖1 � {tr(�−1�̂) − log det(�−1�̂) − d}1/2 = {tr(Q�QT�−1 − I )}1/2 because �−1�̂ =
P�PT P̂�−1 P̂T has determinant 1 and trace equal to that of Q�QT�−1. Write Q = I + B. Then ‖B‖max �
‖B‖2 = ‖P̂T P − I‖2 = ‖P − P̂‖2 � δ and hence

tr(Q�QT�−1 − I ) = tr(B + �BT�−1 + B�BT�−1) � 3d ‖B‖max
max(λ1, . . . , λd)

min(λ1, . . . , λd)
� ε2.

Hence the first term on the right-hand side of (A2) is bounded by 2ε. The last term of (A2) equals∥∥∥∥∥
∑
h>H

πhφ�̂(· − zh) +
H∑

h=1

πh{φ�̂(· − zh) − φ�̂(· − ẑh)} +
H∑

h=1

(πh − π̂h)φ�̂(· − ẑh)

∥∥∥∥∥
1

�
∑
h>H

πh +
H∑

h=1

πh‖φ�̂(· − zh) − φ�̂(· − ẑh)‖1 +
H∑

h=1

|πh − π̂h |.

The first term above is smaller than ε, and so is the second term because

‖φ(· − zh) − φ(· − ẑh)‖1 �
(

2

π

)1/2

‖�̂−1/2(zh − ẑh)‖ � ε.

The last term is less than or equal to (1 − ∑
h>H πh)

∑H
h=1 |π̃h − π̂h | + ∑

h>H πh
∑H

h=1 π̂h � 2ε. Thus a
(6ε)-net of Q, in the L1 topology, can be constructed with p̂ = pF̂,�̂ as above. The total number of such p̂
is bounded by a multiple of {a/(σ0ε)}d Hε−Hδ−d(d−1)/2 Md . This proves the first assertion with ρ = ‖·‖1,
because M log(1 + ε2/d) � Mε2 and the constant factor 6 can be absorbed into the bound. The same holds
when ρ is the Hellinger metric, because it is bounded by the square root of the L1 metric.
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Bayesian density estimation 15

For the second assertion, we know that a Dirichlet process F ∼Dα can be represented by Sethuraman’s
stick-breaking process as

F =
∞∑

h=1

πhδZh , πh = Vh

∏
j<h

(1 − Vj ), (A3)

where δx is the Dirac measure at x , {Vh, h � 1} are independent beta-distributed random variables with
parameters 1 and |α| = α(Rd), {Zh, h � 1} are independently distributed according to the probability
measure ᾱ = α/|α|, and these two sets of random variables are mutually independent. Hence pF,� =∑∞

h=1 πhφ�(· − Zh) with πh and Zh as described in (A3). Therefore, with � denoting the Dirichlet mixture
prior of § 2·2, we have

�(Qc) � H ᾱ([−a, a]d)c + pr

(∑
h>H

πh > ε

)
+ pr{eigd(�

−1) > σ−2
0 }

+ pr

{
eig1(�

−1) � σ−2
0

(
1 + ε2

d

)−M
}

.

The first term is bounded by b1 H exp(−C1aa1) by the assumption on α. Because W = −∑H
h=1 log(1 − Vh)

is gamma-distributed with parameters H and |α|, we have

pr

(∑
h>H

πh > ε

)
= pr

(
W < log

1

ε

)
� (−|α| log ε)H

�(H + 1)
�
(

e|α|
H

log
1

ε

)H

by Stirling’s formula. The last two terms are bounded by a multiple of b2 exp{−C2σ
−2a2
0 } +

b3σ
−2a3
0

(
1 + ε2/d

)−Ma3 . This proves the second assertion. �

Proof of Theorem 6. For any σ > 0, define the transformation Tα,β,σ on Cα,β,L ,τ0(Rd) as

Tα,β,σ f = f −
∑

k∈N
d
0 : 1�〈k,α〉<β

dkσ
〈k,α〉 f.

Also, define Kα,σ f to be the convolution of f and the normal density with mean zero and variance
diag(σ 2α1 , . . . , σ 2αd ). The anisotropic analogue of Lemma 2 is that there exists a constant Mα,β such that for
any f ∈ Cα,β,L ,τ0 and any σ ∈ (0, 1/(2τ0)

1/2αmax), |{Kα,σ (Tα,β,σ f ) − f }(x)| < Mβ L(x)σ β for all x ∈ R
d .

This follows the lines of our proof of Lemma 2, starting from the anisotropic Taylor approximation

f (x + y) − f (x) =
∑

1�〈k,α〉<β

(−y)k

k!
(Dk f )(x) + R(x, y),

where the residual R(x, y) is bounded in absolute value by a sum over terms of the form

|y|k
k!

∣∣∣(Dk f )(x1, . . . , x j−1, x j + ξ j , x j+1 + y j+1, . . . , xd + yd)

− (Dk f )(x1, . . . , x j−1, x j , x j+1 + y j+1, . . . , xd + yd)

∣∣∣
� L(x) exp(τ0‖y‖2

1) |y|k |y j |min(β/α j −k j ,1)/k!,

with j such that β > 〈k, α〉 > β − α j . Consequently,
∫ |R(x, y)|φdiag(σ 2α)(y) dy � K1L(x)σ β for some

constant K1. Applying the rest of the induction argument in our proof of Lemma 2, we obtain the point-
wise error bound between f0 and Kα,σ (Tα,β,σ f ). Then it leads to exact analogues of Theorem 3 and
Proposition 1, giving a h̃σ with support inside {x ∈ R

d : ‖x‖ � a0{log(1/σ)}τ } satisfying dH( f0, Kα,σ h̃σ ) �
K0σ

β for some constant K0. Next, the arguments in the proof of Theorem 4 can be replicated, with
Pσ built around a discrete Fσ =∑N

j=1 p jδz j with N � D1σ
−d{log(1/ε̃n)}d+d/τ support points such that
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16 W. SHEN, S. T. TOKDAR AND S. GHOSAL

dH(Kα,σ h̃σ , Kα,σ Fσ ) � A1ε̃
b1
n {log(1/ε̃n)}1/4. We also need to define Sσ as the set of � such that eig j (�

−1)

lies between σ−2α j and σ−2α j (1 + σ 2β) for each j = 1, . . . , d. The prior probability of this set under
G is bounded from below by C3 exp[−c3ε̃

−καmax/β
n {log(1/ε̃n)}sκ+1], which contributes the καmax term in

d∗ = max(d, καmax). �

APPENDIX B

Supplementary results

THEOREM B1. Let P0 be a probability measure on {x ∈ R
d : ‖x‖ � a} ⊂ R

d . For any ε > 0 and σ >

0, there is a discrete probability measure Fσ on {x ∈ R
d : ‖x‖ � a} with at most Nσ,ε = D[{(a/σ) ∨

1} log(1/ε)]d support points, such that ‖pP0,σ − pFσ ,σ‖∞ � ε/σ d and ‖pP0,σ − pFσ ,σ ‖1 � ε{log(1/ε)}1/2

for some universal constant D.

Proof. The proof is a straightforward extension to d dimensions of Lemma 2 of Ghosal & van der Vaart
(2007) and Lemma 3.1 of Ghosal & van der Vaart (2001). For any probability distribution F on R

d , there
exists a discrete distribution F ′ with at most {(2k − 2)d + 1} support points such that the mixed moments
zl1

1 zl2
2 · · · zld

d are matched up for every 1 � li � 2k − 2 (i = 1, . . . , d). This power of d propagates all the
way through the required extensions and appears in Nσ,ε in the statement of the current theorem. �

COROLLARY B1. Let P0 be a probability measure on {x ∈ R
d : ‖x‖ � a}. For any ε > 0 and σ > 0, there

is a discrete probability measure F∗
σ on {x ∈ R

d : ‖x‖ � a} with at most Nσ,ε = D[{(a/σ) ∨ 1} log(1/ε)]d

support points from the set {(n1, . . . , n p)σε : ni ∈ Z, |ni | < �a/(σε)�, i = 1, . . . , p}, such that ‖pP0,σ −
pF∗

σ ,σ‖∞ � ε/σ d and ‖pP0,σ − pF∗
σ ,σ‖1 � ε{log(1/ε)}1/2.

Proof. First, obtain Fσ as in Theorem B1, and then move each of its support points to the nearest
point on the grid {(n1, . . . , n p)σε : ni ∈ Z, |ni | < �a/(σε)�, i = 1, . . . , p} to get F∗

σ . These moves cost
at most a constant times ε2/σ d to the supremum-norm distance and at most a constant times ε to the L1

distance. �

LEMMA B1. Let V0, V1, . . . , VN be a partition of R
d and let F ′ =∑N

j=1 p jδz j be a probability measure

on R
d with z j ∈ Vj ( j = 1, . . . , N ). Then, for any probability measure F on R

d and any σ > 0,

‖pF,σ − pF ′,σ‖∞ � 1

σ d+1
max

1� j�N
diam(Vj ) + 1

σ d

N∑
j=1

|F(Vj ) − p j |,

‖pF,σ − pF ′,σ ‖1 � 1

σ
max

1� j�N
diam(Vj ) +

N∑
j=1

|F(Vj ) − p j |,

where diam(A) = sup{‖z1 − z2‖ : z1, z2 ∈ A} denotes the diameter of a set A.

Proof. The proof is an extension to d dimensions of Lemma 5 of Ghosal & van der Vaart (2007). �

LEMMA B2. There is a λ0 ∈ (0, 1) such that for any λ ∈ (0, λ0) and any two probability measures P
and Q with respective densities p and q,

P log
p

q
� d2

H(p, q)

(
1 + 2 log

1

λ

)
+ 2P

{(
log

p

q

)
1l

(
q

p
� λ

)}
,

P

(
log

p

q

)2

� d2
H(p, q)

{
12 + 2

(
log

1

λ

)2
}

+ 8P

{(
log

p

q

)2

1l

(
q

p
� λ

)}
.

Proof. Our proof follows the argument presented in the proof of Lemma 7 of Ghosal & van der Vaart
(2007). The function r : (0,∞) → R defined implicitly by log x = 2(x1/2 − 1) − r(x)(x1/2 − 1)2 is
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Bayesian density estimation 17

nonnegative and decreasing, and there exists a λ0 > 0 such that r(x) � 2 log(1/x) for all x ∈ (0, λ0). Using
these properties and the fact that d2

H(p, q) = −2P{(q/p)1/2 − 1}, we obtain

P log
p

q
= d2

H(p, q) + P

{
r

(
q

p

)(
q1/2

p1/2
− 1

)2
}

� d2
H(p, q) + r(λ)d2

H(p, q) + P

{
r

(
q

p

)
1l

(
q

p
< λ

)}

� d2
H(p, q) + 2

(
log

1

λ

)
d2

H(p, q) + 2P

{(
log

p

q

)
1l

(
q

p
< λ

)}

for any λ < λ0, proving the first inequality of the lemma.
To prove the other inequality, note that | log x | � 2|x1/2 − 1| for x � 1 and so

P

{(
log

p

q

)2

1l

(
q

p
� 1

)}
� 4P

(
q1/2

p1/2
− 1

)2

= 4d2
H(p, q).

On the other hand,

P

{(
log

p

q

)2

1l

(
q

p
� 1

)}

� 8P

(
q1/2

p1/2
− 1

)2

+ 2P

{
r2

(
q

p

)(
q1/2

p1/2
− 1

)4

1l

(
q

p
� 1

)}

� 8d2
H(p, q) + 2r2(λ)P

(
q1/2

p1/2
− 1

)2

+ 2P

{
r2

(
q

p

)
1l

(
q

p
� λ

)}

� 8d2
H(p, q) + 2

(
log

1

λ

)2

d2
H(p, q) + 8P

{(
log

p

q

)2

1l

(
q

p
� λ

)}
.

This completes the proof. �

LEMMA B3. Let A and X be metric spaces and suppose that {pα}α∈A and {qα}α∈A are collections
of probability density functions on X with respect to a dominating measure ν. Then, for any probability
measure G on A, d2

H(
∫

pα dG,
∫

qα dG) �
∫

d2
H(pα, qα) dG. In particular, for any three densities p, q

and φ on R
d , dH(φ ∗ p, φ ∗ q) � dH(p, q).

Proof. By the Cauchy–Schwartz inequality, 1 − ∫
d2

H(pα, qα) dG/2 equals∫ ∫
{pα(x)qα(x)}1/2 ν(dx) G(dα) �

∫ {∫
pα(x) G(dα)

∫
qα(x) G(dα)

}1/2

ν(dx),

which is the same as 1 − 1
2 d2

H(
∫

pα dG,
∫

qα dG). This gives the first result. The second assertion follows
from choosing A=X = R

d , pα(x) = p(x − α), qα(x) = q(x − α) and G(dα) = φ(α)dα. �

LEMMA B4. Suppose that a probability density function f0 satisfies the tail condition (7) and is such
that log f0 ∈ Cβ,Q1,0(Rd) for some polynomial Q1, with P0|Dk log f0|(2β+ε)/k· < ∞ for k ∈ N

d
0 , k· � �β�,

and P0 Q(2β+ε)/β
1 < ∞. Additionally, suppose that∣∣∣∣ f0(x + y)

f0(x)
− 1

∣∣∣∣� Q(x) exp(τ0‖y‖2)‖y‖β−�β� (x, y ∈ R
d) (A4)

for some τ1 > 0 and a function Q satisfying P0 Q2 < ∞. Then, there exist a τ0 > 0 and a positive function
L(x) such that f0 ∈ Cβ,L ,τ0(Rd) and (6) holds.
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18 W. SHEN, S. T. TOKDAR AND S. GHOSAL

Without (A4), the assumptions made on f0 in Lemma B4 match one to one with conditions C1–C3 of
Kruijer et al. (2010). The additional assumption (A4) is a mild one and is satisfied by densities with tails
exactly as in the bound (7) with τ � 2, as well as by finite mixtures of such densities.

Proof of Lemma B4. For a multi-index k ∈ N
d
0 , let P denote the set of all solutions {m(1), . . . , m(q)}

to k = m(1) + · · · + m(q), q � 1, m( j) ∈ N
d
0 with m( j)

· � 1 ( j = 1, . . . , q). Existence of Dk f0 of all
orders k· � �β� follows from the same property of log f0. In fact, by the chain rule, Dk f0(x) =
f0(x)

∑
P∈P(k)

∏
m∈P Dm log f0(x) and so P0|(Dk f0)/ f0|(2β+ε)/k· < ∞ by an application of the Hölder

inequality. Also, because log f0 ∈ Cβ,Q1,0(Rd) with Q1 being a polynomial, for every k ∈ N
d
0 with

k· < β we can find polynomials Qk,1 and Qk,2 such that |Dk log f0(x)| < Qk,1(x) and |Dk log f0(x +
y) − Dk log f0(x)| < Qk,2(x) exp(‖y‖2)‖y‖β−�β�. Hence, for k· = �β�, |Dk f0(x + y) − Dk f0(x)| can be
bounded by | f0(x + y) − f0(x)|Q3(x) + f0(x)Q4(x) exp(τ2‖y‖2)‖y‖β−�β� for some polynomials Q3 and
Q4 and a τ2 > 0. Therefore f0 ∈ Cβ,L ,τ0 for τ0 = max(τ1, τ2) and L(x) = f0(x){Q(x)Q3(x) + Q4(x)}.
Because of the tail condition on f0, for any polynomial Q̃ and a > 0 we have P0|Q̃|a < ∞. Thus
P0(L/ f0)

2+ε/β < ∞ by Hölder’s inequality and the assumption on Q. �
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VAN DER VAART, A. & VAN ZANTEN, H. (2009). Adaptive Bayesian estimation using a Gaussian random field with

inverse gamma bandwidth. Ann. Statist. 37, 2655–75.
WU, Y. & GHOSAL, S. (2010). The L1-consistency of Dirichlet mixtures in multivariate Bayesian density estimation.

J. Mult. Anal. 101, 2411–9.

[Received November 2011. Revised February 2013]

 at D
 H

 H
ill L

ibrary - A
cquis D

ept S on June 27, 2013
http://biom

et.oxfordjournals.org/
D

ow
nloaded from

 

http://biomet.oxfordjournals.org/

	Introduction
	Posterior convergence rates for dirichlet mixtures
	Notation
	Dirichlet process mixture-of-normals prior
	Convergence rates results

	Prior thickness results
	Sieve construction
	Anisotropic Hölder functions

