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Abstract

Adaptive beamforming methods is a class of high resolution techniques that
can improve the performance of imaging systems. Adaptive beamformers
offer increased resolution over conventional methods as they take the recorded
wavefield into account to find optimal beampatterns. These techniques have
been exploited in fields like radar, sonar and seismology. In medical ultrasound,
delay-and-sum beamforming is still the method of choice. This is a simple and
robust method which suits the real-time requirements of such imaging systems.
However, it offers limited resolution and sidelobe suppression compared to
adaptive methods.

The main goal of this project has been to study adaptive beamforming
techniques for medical ultrasound imaging. Active systems, such as ultrasound,
present specific challenges for these methods. Four papers concerning different
aspects of adaptive beamforming for medical imaging have been included in this
dissertation. We have also included a paper concerning adaptive beamforming
in a single snapshot context, and a paper on blind source separation.

The first three papers concern the “minimum variance” beamformer. In the
first paper we present how the method can be applied to medical ultrasound.
We demonstrate increased resolution and suppression of sidelobes, both on
simulated and experimental RF data. We also evaluate the robustness of the
method, and show that increased robustness can be achieved by simple means.

In the second paper, we investigate how the estimate of the spatial covariance
matrix, used by the minimum variance beamformer, affects the statistics of
speckle patterns. We show that an implementation based on a single snapshot of
the wavefield gives very different speckle statistics compared to delay-and-sum.
By averaging in depth, similar speckle as delay-and-sum is achieved, while the
resolution of the method is retained.

We exploit the high-resolution properties of the minimum variance beam-
former in the third paper, and show that it can be used to decrease transducer
size, increase frame rates or give higher penetration without sacrificing image
quality compared to delay-and-sum.

The minimum variance beamformer is significantly more complex than
conventional methods, which is one of the reasons why it is not used in
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medical ultrasound systems. In the fourth paper we present a simplified
adaptive beamformer, which better suits the real-time requirements of medical
ultrasound. The method requires only a fraction of the number of computations
compared to a full adaptive beamformer, but still gives significant improvements
compared to delay-and-sum.

In the fifth paper we present a unifying framework to analyze the
minimum variance beamformer in a single snapshot context. We show that
implementations based on single snapshots may suffer from signal cancellation,
a well-known phenomenon when sources are correlated. The framework allows
us to construct an optimization which completely eliminates signal cancellation.

The last paper concerns the field of blind source separation. Blind source
separation is a class of methods that can extract source information when we
only have observations of mixtures of the sources available. We present a new
approach to separation of convolutive mixtures by preprocessing the data using
an array processing technique. We apply the method to the so-called “cocktail-
party problem”.
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Introduction

This dissertation consists of an introduction and six papers. The purpose of the
introduction is to give relevant background information to the included papers,
review the state-of-the-art, and discuss the contributions of this dissertation.
We have also reviewed some related methods that we have not applied directly
in our work. These references may, however, be relevant for further research.

Papers I-IV concerns adaptive beamforming in medical ultrasound imaging.
The term adaptive beamforming is somewhat confusing in this field. In the array
processing literature, adaptive beamforming refers to methods that use the
recorded data to find optimal weighting functions for sensor arrays. In medical
ultrasound, adaptive beamforming also refers to techniques for phase aberration
correction. We stress that we are not concerned with phase aberration correction
in our work. In Paper IX we have investigated the sensitivity of the minimum
variance beamformer to tissue aberrations, but we have made no attempt to
correct for them.

The main theme of the dissertation is adaptive beamforming for medical
ultrasound imaging, but we have also included two papers that are not directly
targeted at ultrasound imaging. Paper V concerns adaptive beamforming in
general. Paper VI concerns blind source separation (BSS), which is another class
of adaptive methods. Also, we believe the methods presented in Paper I and IV
can be applied to other imaging systems as well.

This chapter is organized as follows: In Sections 1 and 2 we give brief
introductions to propagating waves and beamforming. In Section 3 we review
the minimum variance beamformer, and describe a few other adaptive methods.
We give a short introduction to medical ultrasound in Section 4 and explain how
we have applied the minimum variance beamformer to this imaging technique.
In Section 5 we review related work in medical ultrasound. We give a brief
introduction to BSS and independent component analysis in Section 6, which is
relevant for Paper VI. We also relate BSS to adaptive beamforming. In Section 7
we give a summary of the included papers. We discuss our contributions in
Section 8 and draw conclusions in Section 9.
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Introduction

1 Propagating waves
In array signal processing we are concerned with extracting information from
signals propagating as waves. The propagation is described by the wave
equation for the appropriate medium and boundary conditions. The wave
equation describing propagation in a homogeneous medium is given by:

δ2s

δx2
+

δ2s

δy2
+

δ2s

δz2
=

1

c

δ2s

δt2
, (1)

where s(x, y, z, t) represents a scalar field, (x, y, z) represents a spatial location,
and t is time. In acoustics, s(x, y, z, t) represents sound pressure in time and
space, and c is the propagation speed of the medium. We present two solutions
to the equation which are important for this work: the plane wave and the
spherical wave. The (monochromatic) plane wave solution is given by:

s(x, t) = Ae j(ωt−kx), (2)

where A is the amplitude of the propagating signal, ω/2π is the frequency,
x = (x, y, z), k is the wavenumber vector (kx, ky, kz), and k = |k| = ω/c is the
wavenumber. It is called a plane wave because the wavefronts form planes in
three-dimensional space.

By using an array of sensors we can observe a wavefield in both time and
space. In this thesis we only consider linear arrays, such that we only sample
the wavefield in one spatial dimension. A measurement of a single propagating
wave can be described as:

xm(t) = f (x̄m, 0, 0, t) (3)

= Ae j(ωt−kx x̄m) (4)

where xm(t) is the measured signal from the mth sensor, and x̄m is the x-
component of sensor location. We can describe the measurements in vector form
as:

X(t) =

⎡

⎢

⎢

⎢

⎣

x0(t)
x1(t)

...
xM−1(t)

⎤

⎥

⎥

⎥

⎦

(5)

= Ae jωt · a(kx), (6)

where a is the steering vector given by

a(kx) =

⎡

⎢

⎢

⎢

⎣

e− jkx x̄0

e− jkx x̄1

...
e− jkx x̄M−1

⎤

⎥

⎥

⎥

⎦

. (7)
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1 Propagating waves

Another solution to the wave equation is the spherical wave, which is given
by:

s(r, t) =
A

r
e j(ωt−kr), (8)

where r is the radius in spherical coordinates, and k is the wavenumber. It can
be interpreted as a wave traveling outwards from (or inwards to) the origin in all
directions. This solution is important in medical ultrasound because we consider
every point in the image to be a source of spherical radiation. If we observe a
spherical wave using an array of sensors with finite extent, and the extent is
small compared to the distance to the source, the observations can be described
by a plane wave. The source of the spherical wave is then in the far-field of the
array.

Both the plane- and the spherical wave solution describes the propagation
of a monochromatic wave. But because the wave equation is linear, and an
arbitrary physical signal can be described as a sum of complex exponentials,
we can use these solutions to describe how arbitrary signals propagate.
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Introduction

2 Beamforming
Methods to focus an array of sensors towards a specific direction or point in space
are known as beamforming. A simple, yet powerful, method is known as delay-
and-sum (DAS) beamforming. The sensor outputs are delayed and summed
such that signal components coming from a specific direction are reinforced with
respect to noise and signals coming from other directions. The general definition
of a delay-and-sum (DAS) beamformer is [1]:

z(t) =
M−1

∑
m=0

wmxm(t − ∆m) (9)

where z(t) is the output, M is the number of channels, wm is (complex) weight
m, xm(t) is the output of channel m and ∆m is the delay applied to channel m.
Delays are applied to bring all signals originating from the focal point in phase,
and the weights are used to control rejection of off-axis interference. The purpose
of beamforming is twofold:

• Increase the signal-to-noise ratio (SNR) compared to a single sensor.

• Steer or focus the sensor array towards a signal coming from a specific
direction or point.

We can show that provided all signals are in phase and the noise is spatially
white, the increase in SNR by using an array of sensors is equal to the number
of sensors, M. This is referred to as the array gain. The second objective of
beamforming is to steer or focus the array in a particular direction or towards
a specific point in space, with the goal of estimating a signal coming from a
direction (or point). Focusing requires near-field imaging. If the wavefield
consists of many signals, the capabilities to reject other signals determines how
well the desired signal is estimated. The rejection capabilities is given by the
beampattern, which is defined below.

2.1 Beampattern

We assume a monochromatic plane wave, f (x, t) = Ae j(ωt−k◦x) being observed by
a linear array of M sensors. The output of a delay-and-sum beamformer can be
described as:

z(t) =
M−1

∑
m=0

wm f (x̄m, t − ∆m) (10)

where the delays are of the form ∆m = −kx x̄m/ω, giving:

z(t) =
M−1

∑
m=0

wm Ae j(ωt−k◦x x̄m+kx x̄m) (11)
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2 Beamforming

= Ae jωt
M−1

∑
m=0

wme j((kx−k◦x)x̄m) (12)

= Ae jωtW(kx − k◦x), (13)

where

W(k) =
M−1

∑
m=0

wme jkx̄m . (14)

The function, W(kx − k◦x), is called the beampattern [1]. We see that the
beampattern describes how a monochromatic signal, Ae jωt, propagating in a
direction given by k◦x is attenuated by a delay-and-sum beamformer steered
towards kx. Hence, we can use the beampattern to analyze how any frequency
component of a broadband propagating signal is attenuated due to the array
processing. The beampattern will normally have its maximum for k◦x = kx,
which means that the array has maximum sensitivity in the steering direction.
We will see in Papers III and IV that this is not always the case for adaptive
beamformers.

If we include phase delays in the weights, w̄m = wme− jkx x̄m , we can express
the beampattern as:

W(k◦x) = wHa(k◦x), (15)

and the output of the delay-and-sum beamformer for narrowband signals as:

z(t) = wHX(t) (16)

where

w =

⎡

⎢

⎢

⎢

⎣

w̄0

w̄1

...
w̄M−1

⎤

⎥

⎥

⎥

⎦

, (17)

and

X(t) =

⎡

⎢

⎢

⎢

⎣

x0(t)
x1(t)

...
xM−1(t)

⎤

⎥

⎥

⎥

⎦

. (18)

As we have assumed a wavefield consisting of a plane wave, (15) is the far-field
beampattern. In Papers III and IV we have used the far-field beampattern
to illustrate the difference between deterministic and adaptive beamformers,
and to illustrate the effect of different window functions. We should note that
this is only an approximation when describing the performance of a near-field
beamformer. It is possibly to derive the near-field beampattern by the same
exercise as for the far-field case. By considering a wavefield consisting of a
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Introduction

spherical wave, f (r, t) = A/r · e j(ωt−kr), we can get the expression for the near-
field beampattern [1]:

W(k, x, x◦) =
M−1

∑
m=0

wm
r◦

r◦m
e jk((r◦−r)−(r◦m−rm)), (19)

where x is the focal point of the beamformer, x◦ is the location of the source, r
and rm is the distance from the focal point to the center of the array and sensor
m, respectively, and r◦ and r◦m is the distance from the actual source location to
the center of the array and sensor m, respectively .
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3 Minimum Variance Beamforming

3 Minimum Variance Beamform-
ing

Early works on adaptive beamforming include the papers of Bryn [2], Capon [3],
Widrow [4] and Applebaum [5]. Bryn was concerned with optimal signal
detection from three-dimensional arrays. Capon developed a method to improve
localization of earthquakes using seismic arrays. Applebaum presented a
method to adaptively optimize the signal-to-noise ratio of an antenna array,
which has later been termed the Applebaum or Howells-Applebaum array in
the radar community. Widrow presented a method to automatically adjust array
weights based on the least-mean-squares (LMS) algorithm.

Capon’s method is known as the Capon beamformer, the minimum variance
(MV) beamformer, or the minimum variance distortion-less response (MVDR)
beamformer in the literature. We have used the name “minimum variance” in
our work. The method finds an optimal set of weights based on the recorded
data, hence the name adaptive beamformer. The goal is to minimize both off-
axis interference and noise by a given optimization criterion. The idea is simple:
Find the weights that minimize the variance of z(t) in (9), with the constraint
that the signal that originates from the steering direction or focal point of the
array is passed with unit gain. Hence, the signal in focus is passed undistorted,
while the channels are combined such that interference and noise is minimized.
First, note that we can express the variance of the output of the narrowband
delay-and-sum beamformer in (16) as:

E{|z(t)|2} = E{|wHX(t)|2} (20)

= wHRw, (21)

where R = E{XXH} is the spatial covariance matrix. We can formulate the
minimum variance beamformer optimization as [3]:

min
w

wHRw

subject to wHa(kx) = 1, (22)

where a(kx) is the steering vector. As mentioned in Section 1, a(kx) represents a
propagation direction, thus the constraint forces the beampattern of the solution
to have gain one in the steering direction, meaning that W(kx) = 1. The solution
to (22) is:

w =
R−1a(kx)

a(kx)HR−1a(kx)
. (23)

Fig. 1(a) shows an example of the output of a MV beamformer operating on a
linear array with 32 elements and λ/2 spacing. Two signals were present in the
wavefield (with angles-of-arrival of 0 and 5 degrees), and the SNR per channel
was 20 dB. The dashed line shows the corresponding DAS beamformer output

7
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Fig. 1: Examples of MV beamformer performance (a) Responses for uncorre-
lated sources (dashed lines shows DAS for wm = 1/M) (b) Beampattern when
steering towards θ = 0. (c), and (d) shows corresponding plots for correlated
sources.

for wm = 1/M. Fig. 1(b) shows the beampattern when we focus towards θ = 0.
We see that the gain is one (0 dB) in the steering direction, and that a null is
formed at the angle-of-arrival of the interfering signal.

The performance of the MV beamformer depends on the number of elements,
the SNR, and the number of signals present in the wavefield. The more
sensors, the more degrees of freedom the MV beamformer has to form nulls
in directions of interfering signals. Poor SNR will constrain the achievable
resolution. Noise (if white) gives a contribution to the spatial covariance matrix
which is proportional to the identity matrix, and can be interpreted as a diagonal

loading term. The noise will constrain the norm of the weight vector and
decrease the resolution, but at the same time give a more robust solution. We
address diagonal loading and robust MV beamforming in Section 3.2.

8



3 Minimum Variance Beamforming

3.1 Signal Cancellation

Signal correlation (or coherence) may lead to signal cancellation in the MV
beamformer [6], which means that the amplitude of the signal in focus may
be underestimated. To see why this can occur, we assume two monochromatic
signals, s0(t) and s1(t) that propagate in two different directions given by k0 and
k1. We assume that we focus towards s0. For simplicity we assume noise-free
recordings. The measurement vector can be described as:

X(t) = s0(t) · a(k0) + s1(t) · a(k1) (24)

The output of a beamformer operating on these measurements is:

z(t) = wHX(t) (25)

= s0(t)wHa(k0) + s1(t)wHa(k1) (26)

= W(k0)s0(t) + W(k1)s1(t) (27)

= s0(t) + W(k1)s1(t) (28)

As we steer towards s0, the constraint in (22) forces W(k0) = 1. The variance of
z(t) becomes:

E{|z(t)|2} = E
{

|s0(t) + W(k1)s1(t)|2
}

(29)

= E
{

|s0(t)|2
}

+ 2Re {E {s0(t)s∗1(t)}} + W(k)2E
{

|s1(t)|2
}

, (30)

where Re{·} denotes the real part. To minimize interference, the MV solution
should form a null in the direction of s1, i.e. W(k1) = 0. The variance of the
output of the beamformer in (30) would then be equal to the variance of s0(t).
However, we see that if s0(t) and s1(t) are correlated, the second term in (30)
may be non-zero and negative. Hence, there may exist a solution in which the
variance is smaller than E{|s0(t)|2}. E.g. if E{|s0(t)|2}, E{|s1(t)|2} and the
cross-correlation between s0(t) and s1(t) is equal to one, the variance of z(t)
becomes zero if W(k1) = −1. The MV beamformer will favour W(k1) = −1

over W(k1) = 0, as the output of the beamformer has a smaller variance. In this
situation signal cancellation has occurred. We can make a similar argument
for broadband sources, except that the second term will depend on the cross-
correlation at different lags, and the third term in (30) will include a filtered
version of s1(t). Fig. 1(c) shows examples of the output of a MV beamformer
when the source signals are correlated. The array parameters were the same
as in Fig. 1(a). We see that signal cancellation occurs when trying to estimate
the amplitude of the two signals. Fig. 1(d) shows the beampattern of the MV
weights when steering towards 0 degrees. We see that the beampattern has two
peaks corresponding to the angles of arrival of the sources. Signal cancellation
occurs because the phase at the location of the second source is shifted.

In Paper V we show that if we apply the MV beamformer using only a single
snapshot of the wavefield, signal cancellation may occur as well. In both cases,

9



Introduction

this effect can be mitigated by spatial smoothing (subarray averaging) [7, 8],
which we explain in Section 4.2.

3.2 Robust Minimum Variance Beamform-
ing

A weakness of the MV beamformer is robustness towards uncertainties in the
steering vector or gain differences across the array. If the steering vector in (23)
is slightly wrong, e.g. because the assumed propagation velocity is wrong, the
beamformer will try to suppress the signal of interest, as the only requirement
is that a signal coming from the steering direction is passed with zero dB gain.
There are several ways to make the beamformer more robust, and we will review
a few of them here.

A natural extension is to force zero dB gain in directions close to the steering
angle, giving extra constraints in the optimization. We may solve:

min
w

wHRw

subject to wHC = f, (31)

where C =
[

a(kx − δ) a(kx) a(kx + δ)
]

and f =
[

1 1 1
]

. Each constraint
reduces the degrees of freedom by one. This approach may severely diminish the
resolution. Another approach is to constrain the derivative of the beampattern,
e.g. by setting:

C =
[

a(kx)
da(kx)

dkx

]

, (32)

and f = [ 1 0 ] in (31). Forcing the derivative to be zero, means that the
beampattern will have its maximum in a(kx), such that the mainlobe will be
more or less symmetric around the steering angle. This may reduce the ability
to define edges. We show in Papers III and IV that asymmetric mainlobes in the
beampattern are beneficial for edge definition.

Several of the proposed robust methods belong to the class of diagonal

loading. Diagonal loading means that a small term is added to the diagonal
of the covariance matrix in (23) prior to inversion, replacing R by R + ǫI.
Diagonal loading can seen as “adding” white noise to the data before solving
the MV optimization (note that the covariance matrix of a wavefield consisting
of white noise is a diagonal matrix, with the variance of the noise on the
diagonal). By increasing the noise level artificially, the MV solution approaches
that of a rectangular weighted DAS, which can be seen if we insert a diagonal
matrix into (23). We could define ǫ up front, but it may be difficult to find a
representative value as the signal statistics change across the image. We have
chosen a simple approach, in which ǫ is proportional to the trace of R:

ǫ =
∆

L
tr{R}, (33)
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3 Minimum Variance Beamforming

where L is the dimension of R. In that way, ǫ is proportional to the average
variance of the received signals.

To avoid unstable solutions, we may constrain the norm of the weight vector.
This is achieved by adding the constraint ||w||2 ≤ β in (22). It turns out that
solution to the optimization problem is in the form of diagonal loading [9]. With
this approach it may also be difficult to determine the value of β.

It has also been proposed to model the uncertainties in the steeringvector
explicitly in the optimization. One example is to solve the optimization [10]:

min
w

wHRw (34)

subject to Re{wHa} ≥ 1 ∀a ∈ ε, (35)

where Re{·} denotes the real part, and ε is an ellipsoid that covers the possible
values of a due to uncertainties about the true steering vector. Several similar
modifications to the optimization have been proposed [11–13]. These approaches
belong to a class of “extended” diagonal loading methods.

In Paper I we show that by decreasing the length of the subarrays using
subarray averaging, we also obtain a more robust MV beamformer. We explain
subarray averaging in Section 4.2.

3.3 Other Adaptive Beamformers

A natural extension to the MV beamformer is to optimize a set of channel filters
instead of just array weights. The minimum variance optimization problem
using FIR filters was formulated by Frost and is often referred to as the Frost

beamformer [14]. By using channel filters we can form nulls along a line in
frequency-wavenumber space, corresponding to a broadband propagating signal.
Hence, the Frost beamformer is often referred to as a broadband beamformer. As
delays cannot be applied using complex exponentionals in the form of a steering
vector, the first step of the Frost beamformer is to delay the measurements to
steer in a particular direction. The optimization can then be formulated as:

min
h0 ,...,hM−1

E
{

|∑m hm[n] ∗ x[n − ∆m]|2
}

subject to ∑m hm[n] = δ[n], (36)

where h1, . . . , hM−1 are FIR filters, (∗) denotes convolution, and δ[n] is the
Kroenecker delta function (we have now assumed that we operate on sampled
signals in the temporal dimension). The constraint forcing the sum of the
FIR filters to be the delta function, ensures that the signal in focus is passed
undistorted. It may be replaced by a different impulse response if temporal
filtering of the beamformer output is desirable. Frost formulated (36) in vector
form. He also suggested to solve it iteratively using the Lagrange multiplier
as cost function, to avoid matrix inversion. Griffiths and Jim [15] later
reformulated the problem in the form of a generalized sidelobe canceller.

11
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The signal cancellation effects in the minimum variance beamformer has led
to several proposals on how to mitigate it. In [6] Widrow et al. describes this
phenomena and suggests a cure in the form of the Duvall beamformer, named
after the second author. The idea behind this beamformer is that if the signal
we steer towards is not present in the data, it cannot be cancelled. The first
step in the Duvall beamformer is to apply delays to steer towards the signal
of interest. A new set of measurements is formed by subtracting neighboring
sensors, attempting to subtract the signal of interest. The MV optimization
problem is then solved with the “signal-free” measurements. It turns out,
however, that this beamformer can only handle two correlated sources.

In [16] Bresler et al. suggest approaches that completely eliminate signal
cancellation in the presence of correlated signals. They present three distinct
beamformers, corresponding to different optimality criteria, by exploiting an
underlying narrowband signal model. To avoid signal cancellation they use
a maximum likelihood approach to find the signal-free covariance matrix.
However, as this step of the method relies on narrowband model, the method is
not directly transferable to the broadband case, unless frequencies are treated
separately.

The amplitude and phase estimator (APES) is an adaptive spectral estimator
(or beamformer) suggested by Li and Stoica [17]. It can be formulated as [18]:

min
w,α

1

M − L + 1

M−L+1

∑
l=0

∣

∣

∣
wHXl −αe jkx x̄l

∣

∣

∣

2

subject to wHa = 1. (37)

The optimization is very similar to the MV beamformer using subarray
averaging, except that we now force the filter output to be as close as possible to
a sinusoid with wavenumber kx. It can be shown that (37) can be solved by the
optimization:

min
w

wHQw

subject to wHa(kx) = 1, (38)

where Q = R̂ − g(kx)g(kx)H and

g(kx) =
M−L+1

∑
l=0

Xle
jkx x̄l . (39)

We can interpret Q as an estimate of the signal-free covariance matrix, where
the subtraction is given by the Fourier estimate of the signal in focus. The idea
is somewhat similar to the Duvall beamformer, but the method works in the
general case. The APES method gives better amplitude estimates than MV, but
has lower resolution. The adaptive single snapshot beamformer for noisy data,
by Ali and Schreib [19], solves a very similar optimization problem as APES.

12



3 Minimum Variance Beamforming

3.4 Other High-Resolution Methods

We will briefly mention a few high-resolution methods which do not fall under
the category of beamforming, but some of them can be used for imaging.
To further improve the resolution of the MV beamformer, methods like the
eigenvector method, MUSIC and ESPRIT have been suggested [20–22]. In their
original form, they are, however, only direction-of-arrival estimators and do
not estimate the amplitude of the propagating signals. Hence, they cannot be
used to estimate reflectivity. Also, they require an estimate of the number of
signals present in the wavefield, and rely on a narrowband signal model. Some
preprocessing schemes have, however, been suggested for broadband signals,
including use of focusing filters and spatial resampling [23, 24]. We have used
the latter preprocessing technique in Paper VI for the problem of blind source
separation.

More promising methods for medical ultrasound is the minimum mean
squared error (MMSE) and maximum a posteriori (MAP) estimation techniques
applied to non-destructive testing with ultrasound by Lingvall and Olofsson [25].
The image is divided into a grid of possible scatterers, and the acoustic field in
each of the grid points is modeled. The most likely scattering amplitudes, given
the model and the sampled data, are estimated. Hence, the methods rely on
an accurate model of the imaging system. A similar method (TONE), which is
also based on a MAP estimator, has been applied to medical ultrasound by Viola
and Walker [26]. This is a near-field, broadband extension of the narrowband
method SPOC [27]. These methods require a lot of computations, and real-time
implementations may be unrealistic for a long time.
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4 Medical Ultrasound Imaging

The use of ultrasound as a clinical tool dates back to the 1950s. The first
developments were amplitude mode (A-mode) ultrasound, which used a single
transducer element acting as both a transmitter and a receiver. The measured
reflections were displayed as time series, corresponding to a one-dimensional
scan. Later, brightness mode (B-mode) imaging was developed, where the
image points were displayed in gray scale with brightness proportional to the
amplitude of the reflections, and a two-dimensional cross section of the body was
shown. Through technological advances like real-time imaging and electronic
focus, ultrasound gained widespread use as a diagnostic tool in the 1970s. The
latest technology is three-dimensional (3D) imaging, using two-dimensional (2D)
transducer arrays, showing objects in three dimensions rather than just a cross-
section. See [28] for a historical review of the developments in ultrasound
imaging.

Medical ultrasound 1D arrays typically consists of 64 to 256 elements, and
operates at frequencies from 2 to 10 MHz. Images are formed by pulse-echo
imaging, meaning that an active source transmits an ultrasound beam and
the reflected echoes are processed to form an image. DAS is the standard
beamforming technique used. Images may be formed by various scan types:
In a linear scan only a group of transducer elements is active at one time, and
the image is formed by activating a new set elements across the transducer
array. A sector scan uses 100-200 beams which are steered in different angles.
The beams may be steered mechanically or electronically by delaying the signals
transmitted from different elements. With a sector scan we may obtain a large
image using a small aperture. Fig. 2 shows examples of sector scan images.
The curved scan combines the simple electronics of the linear scan with the
wide image of the sector scan, and uses a curved array where only a portion
the aperture is active at one time.

The standard display is B-mode. Other modes include motion mode (M-
mode), which displays the echos from one scan line over time, color flow, in
which estimates of the blood flow velocities are displayed, harmonic imaging,
which images harmonics generated by non-linear propagation, and 3D imaging,
which has already been mentioned. See [29, 30] for introductions to medical
ultrasound imaging.

In this project we have only considered linear 1D arrays forming B-mode
images using sector scans, where the beams have been steered electronically.

4.1 Broadband Near-Field Minimum Vari-
ance Beamforming

In Section 3 we presented a narrowband, far-field minimum variance beam-
former. In medical ultrasound imaging broadband pulses are transmitted and
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Jonas, week 9

Janine, week 18

Fig. 2: Examples of B-mode images, obtained with sector scans.
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the beamformer operates in the extreme near-field of the transducer, so we can-
not use these equations directly. As delays cannot simply be described with
phase delays as for the steering vector in (22), we first delay the data, similar
to the first step in the DAS beamformer, transforming the data from near- to
far-field. The delayed measurement vector is of the form:

X[n] =

⎡

⎢

⎢

⎢

⎣

x0 [n − ∆0[n]]
x1 [n − ∆1[n]]

...
xM−1 [n − ∆M−1[n]]

⎤

⎥

⎥

⎥

⎦

. (40)

Note that the delays, ∆[n] are time-dependent, as dynamic focusing is used on
reception. We can express the beamformer in vector form as:

z(t) = wH[n]X[n], (41)

where wH[n] =
[

w0[n] w1[n] · · · wM−1[n]
]

. Note that the weights are also
time-dependent. After delays, signals propagating from the focal point of the
receive beam can be described by the steeringvector, a = [ 1 . . . 1 ]T. We
can then solve (22) using this steering vector as constraint, together with an
estimate of the spatial covariance matrix. The short pulses and the rapidly
varying signal statistics present a challenge for the estimation. We address
estimation of this matrix in the next section.

The assumption about uncorrelated signals is violated in ultrasound
imaging, due to presence of an active source. The returned echos from different
scatterers will be correlated as they originate from the same source signal.
Hence, signal cancellation may occur. However, the fact that the source is
focused, is an advantage compared to passive systems. Most of the reflected
energy will appear around the direction of the scan line, leaving large regions in
the view of the array where high sidelobes may be allowed.

The computational overhead of the MV beamformer presents another
challenge to a practical imaging system, due to the real-time requirements.
We discuss the real-time implications in Paper III and address them using a
simplified adaptive beamformer in Paper IV.

4.2 Estimation of the Spatial Covariance
Matrix

In practice the spatial covariance matrix in (22) must be estimated. The true
covariance matrix is replaced by an estimate of the form:

R̂ =
1

N ∑
l

XlX
H
l , (42)

where N is the number of snapshots. For ergodic signals, where the signal
statistics are independent of time, we may average over many temporal samples,
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Fig. 3: Illustration of division into subarrays. The array is divided into
(overlapping) subarrays of length L, and the spatial covariance matrices of
the subarrays are averaged.

using Xl = X[l] in (42) (where X[l] is the lth temporal snapshot of the wavefield).
In medical ultrasound, the transmitted pulses are short and the signal statistics
may change rapidly. We may instead average in the spatial dimension by
dividing the array in (overlapping) subarrays [7, 8]. We use Xl = Xl[n] in (42),
where Xl[n] represents the measurements from subarray l at temporal sample
n:

Xl[n] =

⎡

⎢

⎢

⎢

⎣

xl[n − ∆l[n]]
xl+1[n − ∆l+1[n]]

...
xl+L−1[n − ∆l+L−1[n]]

⎤

⎥

⎥

⎥

⎦

, (43)

where L is the length of the subarrays. The division into subarrays is illustrated
in Fig. 3. In Paper I we used this estimate, which works well for point scatterers,
but may lead to very different speckle statistics compared to DAS beamforming.
In Paper II we introduced averaging in the temporal domain (corresponding to
depth) as well, giving speckle statistics that are similar to DAS. This corresponds
to using:

Xl =
[

Xl[n − K] · · · Xl[n] · · · X[n + K]
]

, (44)

which means that we average over 2K + 1 temporal samples for each subarray.
In medical ultrasound we may average across other dimensions as well. We

briefly explain the different options which have been exploited by other authors.
Sasso and Cohen-Bacrie [31] suggested to average across consecutive transmit
beams. This was also exploited in [32]. As the width of the transmit beam
varies with depth, a point in the image may be insonified several times across a
scan. The transmit beams will have different focus, but the receive beams are
adjusted to focus at a particular point in the image. Hence, we can estimate the
covariance matrix using Xl = Xθl

(p), where Xθl
(p) represents a transmit beam

transmitted in angle θl, and p represents the focal point of the receive beam.
We may also average the received data from different frames in the image,

setting Xl = XFl
(p), where Fl denotes frame l. Target motion may cause
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incoherence in data captured in different frames, which may affect the estimate.
Another way to estimate the covariance matrix, which is exploited in [33], is

by a synthetic aperture approach. With a single transmit (Tx) element and all
receiver (Rx) elements active, we obtain one sample of the wavefield. We then
switch to the next Tx element to obtain the next sample, and so on. We estimate
the covariance matrix by averaging the collected samples. Again, target motion
may be an issue for fast moving objects.

These ways of estimating the covariance matrix may be used in combination
with the robust methods presented in Section 3.2. In our work we have applied
subarray averaging together with a small diagonal loading term.
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5 Adaptive Beamforming in Med-
ical Ultrasound Imaging: State-
of-the-Art

In recent years, several authors have investigated use of the minimum variance
beamformer or other adaptive beamformers in medical ultrasound imaging.
In 2002, Mann and Walker [34] applied the Frost beamformer to a medical
ultrasound scenario, where they demonstrated improved definition of a single
point scatter and improved contrast in a cyst phantom using experimental
RF data. It is important to note that the use of a single point does not
reveal the signal cancellation phenomena that may occur in the Frost and MV
beamformers. In 2005, Sasso and Cohen-Bacrie [31] applied the minimum
variance beamformer to simulated data of a point scatterer close to a cyst. They
argued that subarray averaging was required to make the method work, due to
correlated echos. With this scheme they demonstrated improved point definition
and increased contrast. By averaging over consecutive scan lines, they further
improved the results.

In Paper VII we showed some preliminary results from simulated and
experimental data of wire targets, and experimental data of a heart phantom.
Viola and Walker [35] applied the Frost, Duvall and the adaptive single snapshot
beamformer to point targets. They also applied SPOC, which is a high-resolution
method mentioned in Section 3.4. The method was further refined in [26, 36],
and renamed to time-domain optimized near-field estimator (TONE).

Wang et al. [33] used a synthetic aperture approach in combination with
robust minimum variance beamformers, which they applied to simulated data of
point targets and experimental data of point-, cyst- and heart phantoms. They
demonstrated improved resolution and contrast, and showed that their robust
adaptive beamformer could outperform delay-and-sum using half the transducer
size.

In Paper I we demonstrated increased resolution by our implementation
of the minimum variance beamformer, and investigated the sensitivity to
perturbations in acoustic velocity. In Paper II we studied the differences in
speckle statistics using DAS and MV beamformers. In Paper III and Paper VIII
we showed that the MV beamformer may give other benefits than simply higher
resolution. Without sacrificing image quality, we showed that the transducer
size and channel count could be reduced, frame rates could be increased (in
combination with parallel beamforming or by reducing the number of focal
zones), or a virtual increase in penetration depth could be achieved by lowering
the transmit frequency.

Holfort et al. presented their frequency domain implementation of the MV
beamformer in [37]. They split the received signals in different frequency
bands, performed independent MV beamforming per band, and combined them.
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This gives N f − 1 times the number of MV weights per sample (where N f is
the number of frequency bands), and thus increases the degrees of freedom,
but gives a more complex method. They applied their method to a synthetic
aperture beamformer, where they first formed “low-resolution” images using
single transmit elements, and then combined the low-resolution images to a
high-resolution image.

Vignon and Burcher presented their implementation of the MV beamformer
in [32]. The method has similarities with the method in [33] in that the
covariance matrix is formed by insonifying the medium with different beams.
However, they use focused beams, which compared to the synthetic aperture
approach is beneficial for the SNR, and for the generation of harmonics (for
harmonic imaging). Also, this method will be less sensitive to target motion.
They were the first to show in vivo images using adaptive methods in ultrasound
imaging, both from a heart and from an abdominal scan.

In Paper IX we investigated the MV beamformer’s sensitivity to phase
aberrations. We showed that the MV beamformer gave a substantial
decrease in mainlobe width without increase in sidelobe level for weak
and intermediate aberrations. The performance was equal or better than
conventional beamforming for all realistic aberrations.

In Paper IV we showed results from what we have termed the low complexity

adaptive beamformer, which is based on the minimum variance beamformer,
but chooses the apodization functions from a set of predetermined windows. The
method is only an approximation to the MV beamformer, but has much lower
complexity. It still displays great improvements over DAS beamforming.
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6 Blind Source Separation
Blind source separation (BSS) is a statistical method to recover signals or
sources from several observations of mixtures of them. The classical example
of BSS is the cocktail party problem, in which several people (sources) speak
simultaneously in a room, like in a cocktail party. The problem amounts
to recovering the different voices (source signals) using several microphones.
BSS has practical applications in fields like telecommunications, speech
enhancement and bio-medicine. An introduction to the field can be found in [38].
The fact that the separation is “blind” means that no a priori information is
available about the mixture, except maybe how many sources there are in the
mix. In the original formulation we do not know anything about the position of
the sensors either.

The separation is often performed by independent component analysis (ICA),
and the terms ICA and BSS are often used interchangeably. There exists
several algorithms performing ICA, like FastICA [39] and JADE [40]. We briefly
describe the classes of methods within the ICA framework.

6.1 Independent Component Analysis

By the general definition, ICA of the random vector X consists of finding a
linear transform s = WX such that the components in s = [ s1 · · · sn ] are as
independent as possible in the sense of maximizing some function F(s1, · · · , sn)
that measures independence [41]. ICA assumes a model of the form:

X = As, (45)

where X contains the observations of the mixtures of sources, A describes the
mix and s are the sources we aim to extract. Hence, we assume an instantaneous
mix of the sources. The contrast function, F(s1, . . . , sn), must be some measure of
independence and the choice is dependent on statistical properties, convergence,
etc.

A successful separation of sources using ICA requires that:

• the sources, si, are non-Gaussian (with the possible exception of one)

• the number of of observations are at least as many as the number of sources

• the mixing matrix, A, is of full column rank.

With all assumptions fulfilled, a successful separation by ICA still leaves
potential problems: The sources are returned in a random order with an
arbitrary scaling, referred to as permutation and scaling inconsistencies.

The ICA model assumes an instantaneous mix as in (45), but the mixes in
the case of propagating waves (like the cocktail party problem) are convolutive.
The classical approach to transform the model from a convolutive to an
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instantaneous mix, is to treat individual frequency bands separately. For
narrowband sources we can describe the propagation delays as complex scalars,
hence we can solve for each frequency band separately:

X(ω) = A(ω)s(ω). (46)

We perform the separation for each frequency band and reconstruct the
sources by combining the extracted subbands. The permutation and scaling
inconsistencies now become a problem: The different subbands for one
particular source may be extracted in a random order. Also, the arbitrary
scaling of the subbands makes it difficult to reconstruct the signals. In
Paper VI we suggest a method to transform the convolutive model to an
instantaneous model by a spatial preprocessing method known as spatial
resampling [24]. All frequencies of a particular source are transformed onto the
same wavenumber, and the original convolutive model becomes instantaneous
in the time domain. Hence, we process all frequency bands simultaneously,
and avoid the permutation and scaling problems. The separation process is
not completely blind anymore, as we have to know the positions of the sensors
to perform the spatial resampling. However, it is not uncommon to have this
information available.

6.2 Relation to Adaptive Beamforming

The approach to solve the BSS problem is often purely statistical, and
the potential benefits of array processing techniques are often ignored.
However, some authors have incorporated beamforming techniques to solve
the convolutive BSS problem [42, 43]. It has been argued that frequency
domain BSS of convolutive mixtures of speech is fundamentally limited by the
performance of an adaptive beamformer [44]. To link the two fields, we observe
that the separation matrix W will contain the row vectors w1, . . . , wn. From
a beamforming perspective we can view the rows of W as window functions
in a beamformer. Upon successful completion of ICA, the projections of the
observations onto wi, si = wiX, will give statistically independent si. It means
that the beampattern of the vector wi will contain zeros in the propagation
directions of the other sources, s j (i �= j). The gain in the direction of source i will
be non-zero (but may be different from one). We see the similarities to adaptive
beamforming. Adaptive beamformers use the recorded data to estimate signals
coming from specific directions. The separation matrix, W may be found by
stacking the weights of the adaptive beamformer for the propagation directions
of s1, . . . , sn:

WMV =

⎡

⎢

⎣

wH
1
...

wH
n

⎤

⎥

⎦
. (47)
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For uncorrelated sources at high SNR the beampattern of wH
i will contain zeros

in directions of s j for all j �= i, and have gain one in direction of si. If so, we have
extracted the different sources successfully. In contrast to ICA, we only require
the sources to be uncorrelated. If solved in the frequency domain, we avoid
the scaling and permutation inconsistencies of ICA. However, the separation is
no longer blind: We need knowledge about the positions of the sensors for the
steering vector in the constraint in (22). Also, we need to know, or estimate, the
locations of the different sources. This may be done by scanning across the full
view of the microphone array.
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7 Summary of Papers

Paper I

Adaptive Beamforming Applied to Medical Ultrasound Imaging

Johan-Fredrik Synnevåg, Andreas Austeng, and Sverre Holm
Published in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control, August 2007

In the first contribution we explain how we have applied the minimum variance
beamformer to medical ultrasound. We demonstrate how the subarray size
and diagonal loading parameters affect the resolution of the beamformer in a
typical medical ultrasound scenario. We also show that the lack of robustness
the minimum variance beamformer displays, can cause problems if we assume
incorrect wavefield parameters. We demonstrate that a large subarray size
and small diagonal loading parameter severely affect the amplitude estimate
if the assumed acoustic velocity is incorrect. We also show that if we reduce the
subarray size or increase the diagonal loading, we can make the beamformer
robust. We demonstrate improved image resolution on both simulated and
experimental RF data of wire targets, and on experimental RF data from a heart
phantom.

Paper II

Speckle Statistics in Adaptive Beamforming

Johan-Fredrik Synnevåg, Carl Inge Colombo Nilsen, and Sverre Holm
Published in Proceedings of IEEE Ultrasonics Symposium, October 2007

In the second contribution we compare the speckle statistics from images formed
by delay-and-sum and minimum variance beamformers. We examine how the
estimates of the spatial covariance matrix affect the speckle patterns in the
minimum variance images. We show that if we use the spatial dimension only
to estimate the covariance matrix, areas that appear relatively homogeneous in
delay-and-sum images, appears as collection of point scatterers in the minimum
variance images – reducing the overall brightness of the speckle. By using
both spatial and temporal averaging, the speckle distribution appears similar
to delay-and-sum, without compromising the improved resolution offered by
the minimum variance beamformer. Results from both simulations and
experimental RF data are shown.
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Paper III

Benefits of Minimum Variance Beamforming in Medical Ultrasound

Imaging

Johan-Fredrik Synnevåg, Andreas Austeng, and Sverre Holm
Submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control

In the third contribution we demonstrate that the high-resolution properties of
the minimum variance beamformer can be exploited in other ways than simply
improving image resolution. In this paper we investigate three scenarios which
would normally lead to reduced image quality, unless compensated for. We show
that by using a minimum variance beamformer on reception, we can reduce the
transducer size and number of transducer elements without sacrificing image
quality. Also, we show that we can compensate for the wider transmit beams
used in combination with parallel receive beams to increase frame-rate. Hence,
we can increase frame-rate without reducing the quality of the image. Finally,
we show that we can increase penetration without sacrificing lateral resolution
by lowering the transmit frequency and compensate for the reduced resolution
using a minimum variance beamformer on reception.

Paper IV

A Low Complexity Data-Dependent Beamformer

Johan-Fredrik Synnevåg, Andreas Austeng, and Sverre Holm
Submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency

Control

In the first three contributions we show that the minimum variance beamformer
offers improvement in resolution of medical ultrasound images. But the
improvement comes at a high cost. The computational overhead required by
the method may prevent a real-time implementation in medical ultrasound
systems at present. In Paper IV we suggest a simpler method, which adapts
to the recorded data, but selects the transducer apodization from a number of
predefined windows. The computational overhead will depend on the number
of windows. In this paper we show results using four and twelve windows,
and demonstrate significant improvement compared to delay-and-sum. The
performance is not as good as for the minimum variance beamformer, due to
the limited solution space.
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Paper V

On Single Snapshot Minimum Variance Beamforming

Johan-Fredrik Synnevåg and Are F. C. Jensen
Submitted to Signal Processing

In Paper V we analyze the minimum variance beamformer when only a single
snapshot of the wavefield is used to optimize the weights. We show that single
snapshot beamforming reveals the same problems with signal cancellation as
if sources are coherent. We express subarray averaging as a decorrelation
filter, which allows us to predict scenarios that may lead to signal cancellation.
Also, we present a slightly altered optimization problem, which avoids signal
cancellation altogether.

Paper VI

Blind Source Separation for Convolutive Mixtures Using Spatially Re-

sampled Observations

Johan-Fredrik Synnevåg and Tobias Dahl
Published in Proceedings of the 14th European Signal Processing Conference,
September 2006

Paper VI is a contribution to the field of blind source separation. This field
is related to adaptive beamforming, although the approach to find the solution
is quite different. We may perform blind source separation using independent
component analysis as long as the mixes are instantaneous. However, for
propagating waves, the mixes are convolutive. One way to get around this, is to
solve the problem for individual frequency bands, which introduces scaling and
permutation problems. The separated sources are returned in a random order
and thus requires a remixing of the different frequency bands to reconstruct the
signals. Also, different scaling of the frequency bands makes reconstruction of
the signals difficult. In this paper we propose to use an array of sensors and use
spatial resampling of the observations to transform the model from a convolutive
to an instantaneous mix, thus allowing standard methods to perform the actual
separation. In that way all frequency bands are treated simultaneously, and
we avoid the permutation and scaling problems. We apply the method to the
cocktail-party problem with two sources, and demonstrate 15 dB separation.
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8 Discussion

Papers I-IV concerns different aspects of adaptive beamforming in medical
ultrasound. In the first paper we show how the minimum variance beamformer
can be applied to medical ultrasound imaging. In the second paper we address
its effect on speckle, and in the third we show how the method can be exploited.
The fourth paper concerns the real-time requirements, where we suggest a
simplified approach. Several approaches on how to apply adaptive beamformers
to medical ultrasound have been suggested in recent years. All form the spatial
covariance matrix in different ways, by averaging in different domains and by
different ways of applying diagonal loading. We believe that ours is a fairly
simple approach in that we perform all the processing on the same scan line,
and use a simple way to apply diagonal loading.

The results in Paper II leads to an interesting question: What should speckle
look like? The delay-and-sum beamformer gives a certain distribution of the
brightness levels, but it is not necessarily “correct”. The desirable speckle
patterns in medical ultrasound are those with low variance – quite the opposite
of what minimum variance beamformer gives, unless proper measures are
taken. In the spirit of adaptive beamforming it may be possible to formulate
similar optimization problems targeted at speckle reduction, but as the method
stands right now, it is more likely to increase speckle variance than to reduce it.

Paper III takes a different approach to adaptive beamforming, by showing
other benefits than reduction of mainlobe width and sidelobe level. We have
focused on three enhancements in this paper, but we can think of more.
In Paper VIII we have also shown that we can reduce the number of focal
zones by applying the minimum variance beamformer on reception, which also
increases the frame rate. We may also use the adaptive former for speckle
reduction, by averaging the output power of different subarrays. The reduced
resolution caused by the reduced apertures of the different subarrays may then
be compensated for by the adaptive beamformer.

Paper IV takes a practical approach to adaptive beamforming, and combines
minimum variance beamforming theory with more classical window design.
Some of the windows we use are, however, quite different from the classical
windows, in that they have maximum sensitivity outside of the steering angle.
The proposed low-complexity adaptive beamformer works well in a medical
ultrasound scenario, and may also be a candidate for other applications where
processing speed is critical. We are, however, somewhat fortunate in medical
ultrasound, as the focused source causes most of the energy to be reflected from
a small range of angles. Hence, we do not need very many windows to adapt to
typical scenarios.

Paper V gives us an interpretation of subarray averaging in a single snapshot
context. In [1, 45] similar derivations for narrowband, coherent sources can be
found.
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Paper VI is a small contribution to the field of blind source separation of
convolutive mixtures. Although the method has strict limitations, it gives an
example of how array processing techniques can be exploited in this field.
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9 Conclusion and further research
We can summarize the contributions of the thesis as follows:

• We have successfully applied the minimum variance beamformer to
medical ultrasound imaging.

• We have shown that the method can be made robust through controlling
one of two parameters: subarray size or diagonal loading

• We have shown that by using a single snapshot for the minimum variance
optimization, the speckle patterns, which are important for the images, are
very different from conventional beamforming. The speckle becomes more
similar by averaging over the temporal dimension as well.

• We have exploited the minimum variance beamformer for other enhance-
ments than simply improving image resolution and contrast. We have
demonstrated that smaller transducers, higher frame rates or higher pen-
etration is possible without sacrificing image quality compared to delay-
and-sum.

• We have suggested a low-complexity adaptive beamformer which is easy to
implement and may suit the real-time requirements.

• We have shown how subarray averaging affects the performance of a
single snapshot minimum variance beamformer. We have also suggested a
modified optimization which avoids signal cancellation

• We have suggested use of spatial resampling as preprocessing for the
problem of blind source separation of convolutive mixtures.

Adaptive beamforming has received considerable attention in the recent years,
and several implementations of the method has occurred in the literature.
The results are encouraging, but we lack proof that the methods will improve
diagnostics. Future research should assess the methods with clinical objects.

In this project, we have only considered 1D arrays, but 2D arrays are
becoming increasingly popular. Extending the methods to 2D arrays gives new
challenges regarding the implementation. An implementation on a 2D array
requires a significant increase in the number of computations, and the low-
complexity adaptive beamformer may be a candidate in such a scenario.

We have used a rather ad-hoc window design for the low-complexity adaptive
beamformer in Paper IV, based on both classical windows and the knowledge we
have gained through use of the minimum variance beamformer. Future research
should further refine the window design – also directed at different applications.
Also, by analyzing which windows are actually used in different scenarios, we
can learn more about optimal apodization functions for ultrasound imaging.
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Adaptive Beamforming Applied to
Medical Ultrasound Imaging

Johan-Fredrik Synnevåg, Andreas Austeng, and Sverre Holm

Abstract

We have applied the minimum variance (MV) adaptive beamformer
to medical ultrasound imaging and shown significant improvement in
image quality compared to delay-and-sum (DAS). We demonstrate reduced
mainlobe width and suppression of sidelobes on both simulated and
experimental RF data of closely spaced wire targets, which gives potential
contrast and resolution enhancement in medical images. The method is
applied to experimental RF data from a heart phantom, in which we show
increased resolution and improved definition of the ventricular walls.

A potential weakness of adaptive beamformers is sensitivity to errors
in the assumed wavefield parameters. We look at two ways to increase
robustness of the proposed method; spatial smoothing and diagonal loading.
We show that both are controlled by a single parameter which can move the
performance from that of a MV beamformer to that of a DAS beamformer.
We evaluate the sensitivity to velocity errors and show that reliable
amplitude estimates are achieved while the mainlobe width and sidelobe
levels are still significantly lower than for the conventional beamformer.
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1 Introduction
Delay-and-sum (DAS) beamforming is the standard technique in medical
ultrasound imaging. An image is formed by transmitting a narrow beam
in a number of angles and dynamically delaying and summing the received
signals from all channels. The sidelobe level of the DAS beamformer can
be controlled using aperture shading, resulting in increased contrast at the
expense of resolution. In contrast to the predetermined shading in DAS,
adaptive beamformers use the recorded wavefield to compute the aperture
weights. By suppressing interfering signals from off-axis directions and allowing
large sidelobes in directions in which there is no received energy, the adaptive
beamformers can increase resolution.

The minimum variance (MV) adaptive beamformer [1,2] and subspace-based
methods have mostly been studied in narrowband applications. Extensions to
broadband imaging include preprocessing with focusing- and spatial resampling
filters, allowing narrowband methods to be used on broadband data [3, 4].
The MV beamformer has been applied to medical ultrasound imaging by
several authors [5–9]. Mann and Walker [5] have used a constrained adaptive
beamformer on experimental data of a single point target and a cyst phantom
demonstrating improved contrast and resolution. Sasso and Cohen-Bacrie [6]
have applied a MV beamfomer on a simulated data-set, showing improved
contrast in the final image. Viola and Walker [9] have investigated use of
several adaptive beamformers on simulated data and demonstrated improved
resolution. Wang et al. [7] have applied a robust MV beamformer to medical
ultrasound imaging using a synthetic aperture focusing approach. In their
method the spatial covariance matrix, which is required to find the optimal
aperture shading, is calculated by averaging appropriately delayed data from
each individual transmit element. Although this method allows dynamic focus
on both transmission and reception, the loss in signal-to-noise ratio (SNR)
caused by synthetic aperture focusing may be unacceptable in medical imaging
applications. Also, data captured with different transmit elements may not
be coherent due to target motion. In [8], we show preliminary results from
the present method, where full dynamic focus was applied through synthetic
focus of individual transmitters. In this paper, we apply fixed focus on
transmission. That allows us to evaluate the performance of the beamformer
outside the transmit focal point, giving more realistic results for medical
ultrasound imaging. We also consider ways of increasing the robustness of the
MV beamformer, which ensures reliable amplitude estimates and at the same
time improves performance.

In Section 2, we present the method and show how robustness is achieved
through either spatial smoothing or diagonal loading. In Section 3 we compare
the MV beamformer to DAS on simulated and experimental RF data from closely
spaced wire targets, and on experimental RF data of a heart phantom. We
also evaluate the sensitivity of the method to errors in acoustic velocity and
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show that reliable amplitude estimates can be achieved by either of the robust
methods. We discuss our findings in Section 4 and draw conclusions in Section 5.

2 Methods
2.1 Signal Model and Minimum Variance

Beamformer

We assume an array of M elements, each recording a signal xm(t). We consider
P + 1 scatterers, each reflecting a signal, sp(t). We assume that s0(t) originates
from the focal point of the receiver, and that the other reflectors are sources of
interference. Under these assumptions, the mth time-delayed channel can be
described as:

xm(t) =
1

rm,0

s0(t) +
P

∑
p=1

1

rm,p
sp(t) ∗ δ(t − τm,p) + nm(t), (1)

where rm,p is the distance from reflector p to sensor m, δ(t) is the Dirac delta-
function, τm,p is the delay from reflector p to sensor m, nm(t) is noise on channel
m, and (∗) is the convolution operator. The M observations are ordered in a
vector:

X(t) =

⎡

⎢

⎢

⎢

⎣

x0(t)
x1(t)

...
xM−1(t)

⎤

⎥

⎥

⎥

⎦

, (2)

which represents the observed wavefield. After delaying each channel to focus
at a point in the image, the goal of the adaptive beamformer is to compute the
optimal aperture shading before combining the channels. The output of the
beamformer is a weighted sum of the spatial measurements:

z(t) =
M−1

∑
m=0

wm(t)xm(t) = w(t)HX(t), (3)

where wm(t) is the aperture weight for sensor m, and w(t) =
[

w0(t) w1(t) · · · wM−1(t)
]H

. The minimum variance beamformer seeks to
minimize the variance (power) of z(t):

P(t) = E[|z(t)|2], (4)

while maintaining unit gain in the focal point. This optimization problem can
be formulated as:

min
w(t)

w(t)HR(t)w(t)

subject to w(t)Ha = 1, (5)
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where:
R(t) = E

[

X(t)X(t)H
]

(6)

is the spatial covariance matrix and a is the equivalent of the steering vector in
narrowband applications. Since the data already have been delayed to focus at
the point of interest, a is simply a vector of ones. The solution to (5) is:

w(t) =
R(t)−1a

aHR(t)−1a
. (7)

Applying these weights to (3) gives the MV amplitude estimate.

2.2 Estimation of the Spatial Covariance
Matrix

In practice the covariance matrix, R(t), in (7) is replaced by the sample
covariance matrix, R̂(t). Because the transmitted pulses in medical ultrasound
imaging are short and non-stationary, R(t) is rapidly changing with time.
Hence, the estimate must be calculated from a single, or only a few, temporal
samples. If synthetic aperture focusing (SAFT) is used as in [7], the estimate
can be obtained by averaging the covariance matrices of appropriately delayed
observations from each individual transmit element. Target motion and
SNR requirements, however, may prohibit use of SAFT in practical medical
ultrasound systems and require all elements to transmit simultaneously. To
obtain a good estimate, we instead use spatial smoothing [10], in which the
array is divided into overlapping subarrays, and the covariance matrices for all
subarrays are averaged. This technique also is used to avoid signal cancellation
in narrowband applications when sources are correlated or coherent. The
estimated covariance matrix at time t then becomes:

R̂(t) =
1

M − L + 1

M−L

∑
l=0

X̄l(t)X̄H
l (t), (8)

where:

X̄l(t) =

⎡

⎢

⎢

⎢

⎣

xl(t)
xl+1(t)

...
xl+L−1(t)

⎤

⎥

⎥

⎥

⎦

, (9)

and L is the subarray length. By using R̂(t) in (7) we see that the number of
coefficients in w(t) is reduced, which limits the degrees of freedom to suppress
interfering signals and noise. There is then a trade-off between accurate
estimation of the covariance matrix and the length of the spatial filter. As
we discuss in Section 3, decreasing the subarray length leads to a more robust
solution, but resolution is decreased.
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After computation of the optimal aperture weights using the sample
covariance matrix, we obtain the amplitude estimate as:

ẑ(t) =
1

M − L + 1

M−L

∑
l=0

w(t)HX̄l(t). (10)

The amplitude estimate can be viewed as a sum of M − L + 1 directive elements.
Hence, the minimum variance solution approaches DAS as the subarray length
is decreased. The overlapping subarrays give some more weight to the central
elements, corresponding to a nonuniform shading.

2.3 Robust Minimum Variance Beamform-
ing

Due to the high resolution of the minimum variance beamformer at high SNR,
a large number of scan lines may be required to avoid angular undersampling
and to ensure robustness against errors in the wavefield parameters. We expect
that such errors will affect the peaks in the amplitude estimates and lead to
underestimation of the reflectivity of the targets. The constraint in (5) only
assures that reflections originating from the focal point of the receiver are passed
with unit gain – others are suppressed. Wrong assumptions of acoustic velocity
or phase aberrations will, for instance, lead to targets appearing slightly out of
focus. The MV beamformer will try to minimize these reflections. By increasing
robustness, we constrain the level of suppression outside the focal point, and
allow reflections appearing slightly out of focus to pass through the beamformer.

We consider two ways to increase robustness of the proposed method in
this paper; decreasing the subarray length when computing (8), and diagonal
loading of the estimated covariance matrix. As discussed in Section 2, the
proposed method approaches the DAS beamformer as the subarray length, L, is
decreased. In the extreme case where L = 1, (10) becomes the DAS solution with
uniform aperture shading. Hence, by increasing the number of subarrays used
to form the sample covariance matrix, we obtain an increasingly robust solution.
However, increased robustness comes at the expense of resolution. The choice of
subarray length should ensure that the covariance matrix estimate is invertible,
which sets the upper limit on L to [11]:

L ≤ M/2. (11)

We show results for several values of L in Section 3.
A second common way to increase robustness of the minimum variance

beamformer is to add a constant, ǫ, to the diagonal of the covariance matrix
before evaluating (7). This means that R̂(t) is replaced by R̂(t) + ǫI. There
exists several methods for calculating the value of ǫ based on the uncertainty
in the model parameters [12]. We use a simple approach, in which the amount
of diagonal loading is proportional to the power in the received signals [13].
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We can view diagonal loading as adding spatially white noise to the recorded
wavefield before computing the aperture weights. Increased noise level will
constrain the sidelobe levels in directions in which there are no interfering
signals, and thereby limit the level of suppression in directions in which
interfering reflections appear. As white noise becomes dominant, the MV
solution approaches the DAS beamformer with uniform shading. We can see
this if we consider a wavefield of spatially white noise. The covariance matrix is
then proportional to the identity matrix, R(t) = σ2

nI, where σ2
n is the variance of

the noise. From (7) we get:

w(t) =
(σ2

nI)−1a

aH(σ2
nI)−1a

=
a

aHa
=

1

M
a, (12)

which is simply an unweighted sum of the elements. In the following results the
amount of diagonal loading is found as:

ǫ = ∆ · tr{R̂(t)}I, (13)

where ∆ is a constant and tr{·} is the trace operator. The amount of diagonal
loading is then given by the power in the received signals and the predetermined
value ∆. ∆ determines the relative weight given to the optimal solution in (7)
and the DAS solution in (12). Setting ∆ = 1/L corresponds to equal weighting
of the two, in the sense that the traces of R̂(t) and ǫI are the same [13]. We also
can interpret ∆ as a parameter controlling the relative artificial noise level in
the data. Setting ∆ = 1/L corresponds to adding spatially white noise with the
same average variance as the received signals. As we will see in Section 3, we
obtain a robust solution using ∆ = 1/L.

We now have two ways of increasing robustness of the proposed method,
which both move the performance from that of a MV beamformer to that of an
unweighted DAS beamformer.

3 Results
We have applied the MV beamformer to both simulated and experimental RF
data and compared the results to the DAS beamformer. All transmitter and
receiver combinations were simulated or recorded. The first processing steps
were common to both beamformers: We synthesized fixed focus on transmission
and dynamic focus on reception by delay and sum of the recorded data from each
individual transmitter. Delays were implemented by upsampling the received
signals and selecting the sample closest to the theoretically predicted delay.
We then computed the discrete time analytic signal of each channel. This was
done to avoid symmetric beampatterns in the MV solution, which could decrease
resolution. The receiver channels then were summed for the DAS beamformer.
For the MV beamformer, the optimal aperture weights were calculated and
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applied before summation. All MV beamformer results used subarray length
L ≤ M/2. Unless a diagonal loading parameter is given, we used ∆ = 1/100L to
ensure a well conditioned covariance matrix.

3.1 Simulated Data

We simulated an 18.5 mm, 96 element, 4 MHz transducer using Field II [14],
imaging a number of pairwise reflectors located at depths 30-80 mm. The
reflectors were separated by 2 mm. Transmit focus was 60 mm. We added
white, Gaussian noise to each receiver channel before beamforming. SNR was
approximately 40 dB per channel for the reflectors in focus.

Fig. 1 shows images obtained with the DAS and MV beamformers displayed
over 55 dB dynamic range. Figs. 1(b)-(d) show the MV beamformer for different
subarray lengths. We see that as L increases the reflectors are better resolved,
whereas for smaller L the image is closer to DAS. Fig. 2 shows the steered
responses at two different depths. Fig. 2(a) shows the reflectors at the focal point
of the transducer and Fig. 2(b) shows the deepest reflectors. We see that there is
a significant reduction in sidelobe level for the MV beamformer at both depths.
Sidelobes rapidly decay towards the background noise level for all values of L,
and they are between 15 and 20 dB lower than for DAS. We see that the mainlobe
width decreases as subarrays get longer. For the reflectors at the transmit focal
point, the width is less than 1/4 of DAS for all examples. The wires are resolved
by about 8 dB for DAS and up to 40 dB for MV. At 80 mm, which is away from
the transmit focal point, DAS is unable to resolve the reflectors, while MV can
resolve them by up to 30 dB. For L = 18, the MV beamformer is unable to
separate the reflections, but the sidelobes are still about 20 dB lower, giving
better definition of edges.

3.2 Sensitivity to Velocity Errors

As mentioned, a potential weakness of adaptive beamformers is lack of
robustness against errors in the assumed wavefield parameters. The following
results show the MV beamformers’ sensitivity to errors in acoustic velocity for
the different robust methods. We used the same simulated data as in Section 3.1,
and beamformed the data with overestimation of the acoustic velocity by 5%.
An error of this size covers the uncertainty in medical ultrasound imaging, in
which the acoustic velocities range from about 1440 m/s in fat to about 1570
m/s in blood [15]. Fig. 3 shows the steered response at depths 60 and 80 mm
for DAS and MV for different subarray lengths. For L = 48, we see that the
peak amplitudes are grossly underestimated at both depths, due to the high
level of suppression of reflections appearing out of focus. We also see that, as
the subarray length is decreased, the MV amplitude estimates approach those
of DAS. For L = 18 at 60 mm, the mainlobe width is approximately the same as
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Fig. 1: Simulated wire targets using an 18.5 mm, 96 element, 4 MHz
transducer. Transmit focus was 60 mm and dynamic receiver focus was
applied. (a) DAS, (b) MV (L=18), (c) MV (L=32), and (d) MV (L=48).

DAS, but the sidelobes are about 12 dB lower. At 80 mm, the mainlobe width is
narrower as well, and the amplitude estimates are approximately the same.

Fig. 4 shows corresponding results for different amounts of diagonal loading.
We see that, as the regularization parameter, ∆, increases, the MV amplitude
estimates approach those of DAS. As for spatial smoothing, diagonal loading
trades off mainlobe width for robustness in the amplitude estimates. Again, the
sidelobe level for all examples of ∆ is significantly lower than for DAS.

3.3 Experimental Data: Wire Targets

We recorded experimental RF data with a specially programmed System FiVe
scanner (GE Vingmed Ultrasound, Horten, Norway) using an 18.5 mm, 96
element, 3.5 MHz transducer driven at 4 MHz. The data were sampled at
20 MHz and upsampled by a factor 8 before delays were applied. The wires
were separated by 2 mm. We used subarray length, L = 48 and ∆ = 1/L for
the MV beamformer. Fig. 5 shows the steered responses of the DAS and MV
beamformers at two different depths, for which the latter is at the transmit focal
point. We see that the sidelobes are significantly lower for the MV beamformer.
In Fig. 5(a), which is away from the focal point, the mainlobe width is only
slightly narrower due to the high amount of diagonal loading. At the focal
point in Fig. 5(b), the mainlobe width is also reduced, demonstrating improved
performance on experimental data.
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Fig. 2: Steered response of DAS and MV beamformers, using an 18.5 mm, 96
element, 4 MHz transducer, at depths (a) 60 mm and (b) 80 mm. Transmit
focus was 60 mm and dynamic receiver focus was applied.

3.4 Experimental Data: Heart Phantom

The demonstrated properties of the MV beamformer on wire targets should lead
to improved contrast and resolution in medical ultrasound images. We applied
the method to experimental RF data from a heart phantom. The data-set was
obtained from the Biomedical Ultrasound Laboratory, University of Michigan∗.
Data were recorded with a 64 element, 3.33 MHz transducer, and sampled at
17.76 MHz. Data were upsampled by a factor 8 before delays were applied. We
used subarray length L = 32, and diagonal loading with ∆ = 1/10L for the MV
beamformer. Transmit focus was 60 mm. Fig. 6 shows the images obtained with
the DAS and MV beamformers displayed over 55 dB dynamic range. We see that
the resolution in generally much better in the MV image. We also see that the
definition of the ventricular walls is improved, owing to the narrow beam and
low sidelobe level.

∗Ultrasound RF data-set heart from the Biomedical Ultrasound Laboratory, University of
Michigan, Apr. 2006. Available at http://bul.eecs.umich.edu/, April 2006

45



Paper I

6 8 10 12 14 16 18
−70

−60

−50

−40

−30

−20

−10

0

Angle [degrees]

A
m

p
lit

u
d

e
 [

d
B

]

DAS

MV, L=48

MV, L=32

MV, L=18

6 8 10 12 14 16 18
−70

−60

−50

−40

−30

−20

−10

0

Angle [degrees]

A
m

p
lit

u
d

e
 [

d
B

]

DAS

MV, L=48

MV, L=32

MV, L=18

(a) (b)

Fig. 3: Steered response of DAS and MV beamformers, using an 18.5 mm, 96
element, 4 MHz transducer in which images were formed with 5% error in
acoustic velocity: (a) 60 mm and (b) 80 mm depth. Transmit focus was 60 mm
and dynamic receiver focus was applied.

4 Discussion

The performance of the MV beamformer is dependent on the SNR. As SNR
decreases, resolution will decrease in a manner similar to increasing the amount
of diagonal loading. However, from (12) we see that in the absence of model-
errors, the MV beamformer will perform equal or better than the unshaded
DAS, provided that images are formed with sufficient angular sampling. Figs. 1
and 2 show that the MV beamformer achieved much higher resolution and lower
sidelobes than DAS for L = M/2. Also, as subarray length was decreased, the
resolution approached that of DAS. Still, the sidelobes were significantly lower
than for DAS for all examples of L.

The results in Figs. 3 and 4 confirm that the MV beamformer underestimates
the amplitudes of the reflected signals in the presence of wavefield perturba-
tions. By decreasing the subarray length or applying diagonal loading reliable
amplitude estimates were achieved, but the ability to resolve the targets was af-
fected. We see from the figures that the main trade-off when choosing values for
L and ∆ is between mainlobe width and robustness. Sidelobes were significantly
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(a) (b)

Fig. 4: Steered response of DAS and MV beamformers with different amount
of diagonal loading, using an 18.5 mm, 96 element, 4 MHz transducer: (a)
60 mm and (b) 80 mm depth. Images were formed with 5% error in acoustic
velocity. Transmit focus was 60 mm and dynamic receiver focus was applied.

lower than DAS for all examples of these parameters.

Setting L = 18 for the 96 element transducer in Fig. 3 gave amplitudes
close to DAS, but resolution was only slightly improved. Using L = M/2 and
∆ = 1/L in Fig. 4 gave similar results. A velocity shift of 5%, however, may be
more than the typical estimation error. Beamforming the experimental heart-
phantom data in Fig. 6 gave good results using L = M/2 and ∆ = 1/10L, in the
sense that resolution was improved and the peak amplitudes in the images for
DAS and MV were approximately the same.

The improved performance of the MV beamformer comes at a computational
cost. As the delay-step is common to both beamformers, the computational
overhead comes from calculation and application of the aperture weights. The
computational complexity of direct computation of (7) is approximately O(L3).
Increasing robustness using shorter subarrays, therefore, has a computational
advantage over diagonal loading.
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(a) (b)

Fig. 5: Steered response of DAS and MV beamformers applied to experimental
RF data, using an 18.5 mm, 96 element, 3.5 MHz transducer driven at 4 MHz:
(a) 46 mm and (b) 56 mm depth. Transmit focus was 56 mm and dynamic
receiver focus was applied.

5 Conclusions
We have successfully applied the minimum variance beamformer to medical
ultrasound imaging and shown significant performance improvement compared
to DAS. Results have been demonstrated on both simulated and experimental
RF data. We have demonstrated two ways of increasing robustness of the
method, which can give reliable amplitude estimates while still improving
resolution and contrast. The method was applied to RF data from a realistic
image, and showed significant improvement in image quality.
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Speckle Statistics in Adaptive
Beamforming

Johan-Fredrik Synnevåg, Carl Inge Colombo Nilsen, and Sverre
Holm

Abstract

We have examined the statistics of the speckle patterns in images
formed using delay-and-sum and minimum variance beamforming. We
show how the estimate of the spatial covariance matrix used in the latter
beamformer affects the speckle patterns. By using purely spatial averaging
in the estimate the speckle statistics are quite different from delay-and-
sum: Areas that are apparently homogeneous in delay-and-sum images
appear as a collection of point scatterers in the minimum variance images,
reducing the overall brightness of the speckle. We show that temporal
averaging reduces this effect without compromising the improved spatial
resolution offered by the minimum variance beamformer. Results from both
simulations and experimental RF data are shown.
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Fig. 1: Heart phantom imaged by a 15.4 mm, 64 element 3.33 MHz transducer.
(a) DAS and (b) MV (L = 32, K = 0). Transmit focus was 60 mm.

1 Introduction

A number of authors have applied adaptive beamforming to medical ultrasound
imaging [1–6]. Superior resolution has been demonstrated on point scatterers,
but little attention has been paid to the effect on so called “speckle”, which is
the grainy appearance of homogeneous areas in ultrasound images. Speckle
in ultrasound B-mode images has been researched since Burckhardt’s initial
paper in 1978 [7]. This research has resulted in a number of theories seeking
to describe and explain the statistical properties of speckle, as well as many
suggested methods for speckle reduction.

In this paper we investigate the difference in speckle statistics on images
formed by delay-and-sum (DAS) and minimum variance (MV) beamformers.
In particular, we examine the effects of temporal and spatial averaging on
system resolution and speckle statistics of the MV beamformer. Fig. 1, which
shows images of a heart phantom formed by DAS and MV, demonstrates the
starting point of our investigation: while giving better edge definition, the MV
beamformer in Fig. 1(b) gives the impression of point scatterers in homogeneous
tissue. These structures appear more homogeneous and brighter in Fig. 1(a)
which shows the image formed using DAS. Hence, the MV image displays a
lower contrast.
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2 Methods

2.1 The MV Beamformer

We assume an M element transducer in which xm[n] is the sampled output
from element m. The output of a general beamformer operating on these
measurements can be described as:

z[n] =
M−1

∑
m=0

wm[n]xm[n − ∆m] = wH[n]X[n], (1)

where wm[n] is a (complex) weight, ∆m is a delay applied to channel m to focus
at a specific point in the image, wH[n] = [ w0[n] · · · wM−1[n] ] and X[n] =

[ x0[n − ∆0] · · · xM−1[n − ∆M−1] ]T. For a DAS beamformer the weights, w[n],
are predetermined with the objective of minimizing sidelobes while keeping a
narrow mainlobe. For the MV beamformer, w[n] is calculated from the recorded
data by minimizing the variance of z[n] while maintaining unit gain at the focal
point. The analytical solution to this problem is given by [8]:

w[n] =
R−1[n]a

aHR−1[n]a
, (2)

where R[n] is the spatial covariance matrix, and a is the steering vector. Since
the signals in X[n] have been delayed, a is a vector of ones.

In practice R[n] must be estimated, either by averaging in the temporal
domain, the spatial domain, or both. Averaging in the spatial domain is done by
dividing the transducer into (overlapping) subarrays and averaging the spatial
covariance matrices of each subarray. The general covariance matrix estimate
averaged over 2K + 1 temporal samples and M − L + 1 subarrays of length L is
given by:

R̂[n] =
1

(2K + 1)(M − L + 1)

K

∑
k=−K

M−L

∑
l=0

Xl[n − k]XH
l [n − k], (3)

where Xl[n] = [ xl[n − ∆l] · · · xl+L−1[n − ∆l+L−1] ]T. The subarray length, L,
determines the degrees of freedom in the MV estimate. A smaller L gives a more
robust estimate at the expense of resolution. The MV amplitude estimate is
found by averaging the output of each subarray beamformer:

zMV [n] =
1

M − L + 1

M−L

∑
l=0

wH[n]Xl[n]. (4)

55



Paper II

2.2 Speckle Statistics

As in optics, speckle is described as the result of scattering a transmitted
signal by a large number of sub-wavelength sized particles that are densely
distributed in space with random distances following a uniform probability
density. "Densely" is meant with respect to the resolution cell size of the
imaging system in question. The distribution of particles is considered spatially
uncorrelated. When adding the phase shifted contributions from all these
scatterers, the result is a signal with a Rayleigh distributed magnitude.

The spatial correlation of the resulting image does not reflect that of the
original, uncorrelated particle distribution, but rather gives the impression
of the existence of structures in the homogeneous tissue. Research suggests
that these patterns reflect the resolution properties of the imaging system
itself and no specific properties of the tissue (e.g. [9]). This means that the
parameters of the intensity distribution are affected when changing the aperture
by for instance increasing the array size or applying a weighting function. As
adaptive beamformers like the MV beamformer apply time-varying weights that
are calculated using the (estimated) spatial covariance matrix of the received
signals, this will affect speckle statistics differently than DAS beamformers with
constant weights. A clear difference is that the “resolution” of a MV beamformer
is not fixed; it cannot be connected to the properties of a static beampattern
like in the case of DAS. Instead it depends, for instance, on the accuracy of the
covariance matrix estimate.

3 Results

3.1 Simulations

We simulated two phantoms using Field II [10]: To estimate the speckle
statistics obtained by the DAS and MV beamformers we simulated 100,000 point
scatterers randomly distributed within an area of 20x20x20 mm. All reflection
coefficients of the scatterers were set equal. In the second phantom we used the
same distribution of point scatterers, but added four strong reflectors, leading to
speckle images with four distinct points.

We simulated an 18.5 mm, 96 element, 4 MHz transducer. All transmitter
and receiver combinations were simulated, allowing dynamic focus on both
transmission and reception. We synthesized dynamic transmit focus by
combining appropriately delayed receiver channels from each transmit element.
The new set of receiver channels were then dynamically delayed. Delays were
implemented by upsampling and selecting the sample closest to the theoretically
predicted delay. For the DAS beamformer, the receiver channels were then
summed. For MV, the aperture weights were calculated and applied.
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Fig. 2: Images of speckle and point scatterers using an 18.5 mm, 96 element,
4 MHz transducer: (a) DAS (b) MV (L = 16, K = 0), (c) MV (L = 32, K = 0) (d)
MV (L = 48, K = 0).

3.2 Speckle Patterns

Fig. 2 shows images of the four point scatterers surrounded by speckle formed
by DAS and MV for different subarray lengths. All MV results use K = 0,
corresponding to no temporal averaging. We see that as L increases, the point
scatterers are better defined. We also see that the intensity of the speckle is
reduced when the subarray length increases. For L = 48 the speckle grains
seem to be resolved into individual point scatterers. This may be an undesirable
effect in medical ultrasound imaging where speckle regions are important for
the image formation.

To investigate the statistics of the speckle in Fig. 2 we used the simulation
of the phantom without the four strong reflectors. Fig. 3 shows the magnitude
distributions for the images consisting of pure speckle for DAS and MV with
different subarray lengths. We see that the distributions resemble Rayleigh
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Fig. 3: Magnitude distributions for the speckle in Fig. 2.

distributions for all beamformers, but with different average magnitude and
variance. For the “one-sample” (K = 0) MV beamformers the average magnitude
is reduced as L increases.

Fig. 4 shows corresponding images as in Fig. 2, but with different amount of
temporal averaging for the MV beamformer. Fig. 4(a) shows DAS and Fig. 4(b)-
(d) shows MV using L = 48 and different values of K. We see that as the
amount of temporal averaging increases, the resolution of the system remains
approximately the same, but the intensity of the speckle approaches that of DAS.
This can also be seen in Fig. 5 which shows the speckle statistics for DAS and MV
using the same parameters. As K increases, the average magnitude increases,
and the distribution approaches that of DAS.

3.3 Heart Phantom

We applied the DAS and MV beamformers to experimental RF data from a heart
phantom. The data were obtained from the Biomedical Ultrasound Laboratory,
University of Michigan.∗ The RF data were recorded with a 64 element, 3.33
MHz transducer. All transmitter and receiver combinations were available, and
we synthesized fixed transmit focus at 60 mm. Fig. 1 and Fig. 6 shows the images
obtained with DAS and MV for different amount of temporal averaging. Both
MV results use L = 32. The MV image in Fig. 1(b), in which K = 0, displays
a better definition of the ventricular walls than for the DAS in Fig. 1(a), but
the tissue appears less homogeneous and the average intensity of the speckle is
lower. This results in an image with lower contrast. The MV image in Fig. 6,
in which K = 11, displays similar resolution as for K = 0, but the intensity of

∗Ultrasound RF data-set ’heart’ from the Biomedical Ultrasound Laboratory, University of
Michigan. Available at http://bul.eecs.umich.edu/, April 2006.

58



Speckle Statistics in Adaptive Beamforming

[mm]

D
e
p
th

 [
m

m
]

DAS

−6 −4 −2 0 2 4 6

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

[mm]

D
e
p
th

 [
m

m
]

MV (L=48, K=5)

−6 −4 −2 0 2 4 6

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

(a) (b)

[mm]

D
e
p
th

 [
m

m
]

MV (L=48, K=11)

−6 −4 −2 0 2 4 6

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

[mm]

D
e
p
th

 [
m

m
]

MV (L=48, K=22)

−6 −4 −2 0 2 4 6

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

(c) (d)

Fig. 4: Images of speckle and point scatterers using an 18.5 mm, 96 element,
4 MHz transducer: (a) DAS (b) MV (L = 48, K = 5), (c) MV (L = 48, K = 11)
(d) MV (L = 48, K = 22).

the speckle is closer to DAS. Thus, resolution is improved while the contrast is
retained.

4 Discussion

The spatially averaged MV results in Fig. 2 show that we achieve increased
resolution when subarray length increases. However, increasing L has a
significant effect on speckle: From Fig. 3 we see that the average magnitude
of the speckle is reduced by approximately 8 dB for L = 32 and approximately
30 dB for L = 48 compared to DAS.

Fig. 4 shows that by using temporal as well as spatial averaging, the average
magnitude of the speckle approaches that of DAS as K increases. At the same
time we retain the the good resolution of Fig. 2(d). From Fig. 5 we see that for
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Fig. 5: Magnitude distributions for the speckle in Fig. 4.

K = 5, 11 and 22, which corresponds to temporal averaging over 1/2, 1 and 2
pulse lengths, the average speckle magnitude is approximately 10, 4 and 2 dB
lower than for DAS, respectively. This shows that similar speckle brightness as
DAS is achievable while improving the spatial resolution of the system.

Although the period over which the transmit pulses in medical ultrasound
can be considered stationary is short, these results suggest that the one-sample
MV beamformers (K = 0) do not capture the statistics of a speckle process. The
transmit pulse merely acts as a filter on a random, stationary process, forcing
use of temporal averaging to capture the spatial covariance of the backscattered
signals. While giving an acceptable estimate of the spatial covariance of echoes
from strong, isolated scatterers, it yields a poor estimate of the more stationary
backscatter from homogeneous tissue. However, by use of temporal averaging
the speckle intensity in MV images is similar to DAS, while the good resolution
of the beamformer is retained.

5 Conclusion

We have examined the difference in speckle statistics on images formed by
delay-and-sum and minimum variance beamformers. We have shown that
the differences depend on how the spatial covariance matrix required by the
minimum variance beamformer is estimated. By averaging both in the spatial
and temporal domain, similar speckle statistics as delay-and-sum is achieved
without compromising the improved spatial resolution offered by the minimum
variance beamformer.
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Benefits of Minimum Variance
Beamforming in Medical

Ultrasound Imaging

Johan-Fredrik Synnevåg, Andreas Austeng, and Sverre Holm

Abstract

Recently, significant improvement in image resolution has been demon-
strated by applying adaptive beamforming to medical ultrasound imaging.
In this paper we have used the minimum variance beamformer to show how
the low sidelobe levels and narrow beamwidth of adaptive methods can be
utilized, not only to increase resolution, but to enhance imaging in several
ways: By using a minimum variance beamformer instead of delay-and-sum
on reception, reduced aperture, higher frame rates or increased depth of
penetration can be achieved without sacrificing image quality. We demon-
strate comparable resolution on images of wire targets and a cyst phantom
obtained with a 96 element, 18.5 mm transducer using delay-and-sum, and
a 48 element, 9.25 mm transducer using minimum variance. To increase
frame rate, fewer and wider transmit beams in combination with several
parallel receive beams may be used. We show comparable resolution to
delay-and-sum using minimum variance, 1/4th of the number of transmit
beams and four parallel receive beams, potentially increasing the frame rate
by four. Finally, we show that by lowering the frequency of the transmitted
beam and beamforming the received data with the minimum variance beam-
former, increased depth of penetration is achieved without sacrificing lateral
resolution.
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1 Introduction
Recently, several authors have applied adaptive beamforming to medical
ultrasound imaging and shown significant improvement in image resolution
compared to delay-and-sum (DAS) [1–8]. The main difference from conventional
delay-and-sum beamforming is that the weights are not predetermined, but
signal dependent. In addition they may be complex, thus allowing for
beampatterns that are asymmetrical around the center of the beam.

Adaptive beamforming methods such as the Capon and Frost beamformers
were originally developed for passive direction finding [9, 10]. In a system
with active transmission, such as medical ultrasound imaging, the presence
of a coherent source generates received echoes which also are coherent, but
the standard adaptive methods assume incoherent echoes. Without any
modification, the methods may be useful for beamwidth reduction and sidelobe
suppression in simple scenarios like a cyst or isolated point targets, as
demonstrated by one of the first to apply minimum variance beamforming to
medical ultrasound, Mann and Walker [1]. But for more complex scenarios,
several measures need to be taken in order to handle signal coherence in the
returning echos. These measures are in the form of various forms of averaging
and smoothing of the estimates.

Subaperture averaging is the main measure that has been developed for
handling coherent echos. It was first introduced by Evans et al. [11]. In
this context subaperture averaging means that the spatial covariance matrix
is estimated by averaging the covariance matrices of different subapertures.
This technique was applied to medical ultrasound imaging by Sasso and Cohen-
Bacrie [2], but only demonstrated on cyst images. The imaging scenario that
best demonstrates the need for subaperture averaging is two very close targets,
closer than the limit which can be resolved by DAS. Using this scenario, we have
demonstrated that better resolution than DAS was possible even with coherent
echos [3].

A second measure, originally used to make high-resolution methods more
robust, is diagonal loading. This is a regularization method that adds a constant
to the diagonal of the estimate of the covariance matrix. Wang et al. used an
extension of this technique and demonstrated robustness to element amplitude
errors on cyst and single point targets in medical ultrasound imaging [5]. In [3]
we showed how it makes the method more robust to differences between actual
and assumed velocity of sound. Both subaperture averaging and diagonal
loading have the desirable property that variation of a single parameter allows
one to adjust the method so that it falls back to conventional delay-and-sum
beamforming [6].

A third way to do smoothing is to use the time dimension. In [2], Sasso
and Cohen-Bacrie proposed to combine averaging from frame to frame with
averaging of the covariance estimate over neighboring beams. We are concerned
that this may affect resolution both in time and space. Instead we have
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shown that averaging over a small range gate is one method for getting
speckle statistics that resembles DAS beamforming speckle statistics [12]. The
range gate was comparable in extent to the transmit pulse, and therefore
has negligible effect on spatial resolution. In [12] we showed that without
temporal smoothing the current method displays lower average intensity and
lower speckle SNR than corresponding DAS images. Similar observations were
made in [8]. Holfort et al. also did implicit time averaging since they split the
transducers bandwidth into independent bands by FFT, performed independent
minimum variance beamforming per band, and combined them [7].

Our method for minimum variance beamforming at present is based on
subaperture averaging, diagonal loading, and time averaging in range. It can
handle coherent echos, it is fairly robust to parameter mismatch, and the images
have speckle which resembles that of conventional imaging.

In all publications to date the focus has been to increase image resolution and
contrast. In this paper we show that the properties of the minimum variance
(MV) beamformer can be utilized to enhance medical ultrasound imaging in
other ways. We show that it is possible to reduce transducer size, increase
frame rate or increase penetration depth without sacrificing image quality
compared to DAS. Reduction in transducer size is possible since the resolution
of the MV beamformer is much better than that of DAS. A smaller aperture is
therefore sufficient to achieve comparable results. We also demonstrate that
increased frame rate can be achieved without loss of resolution using fewer and
wider transmit beams combined with several parallel receive beams processed
with the MV beamformer. The resolution lost by the wide transmit beams
is compensated for. Finally, we show that increased depth of penetration is
achieved in attenuating media if we lower the center frequency of the transmit
beam and compensate for the lost resolution by a MV beamformer.

In the next section we present how we apply the MV beamformer to medical
ultrasound imaging and present three ways to utilize its properties. In Section 3
we show results from each of the proposed enhancements. We discuss our
findings in Section 4 and draw conclusions in Section 5.

2 Methods

2.1 Minimum Variance Beamformer

We assume a transducer consisting of M elements, and beamformers operating
on the sampled output of each channel, xm[n]. The output of a beamformer
focusing at a point in the image can be written as a weighted sum of the delayed
measurements,

z[n] =
M−1

∑
m=0

wm[n]xm[n − ∆m[n]], (1)
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where wm[n] is a (complex) weight and ∆m[n] is the delay for element m at sample
n. We have included time-dependence for the weights, as they may vary with
image depth. In vector form, (1) can be written as

z[n] = w[n]HX[n], (2)

where

X[n] =

⎡

⎢

⎢

⎢

⎣

x0[n − ∆0[n]]
x1[n − ∆1[n]]

...
xM−1[n − ∆M−1[n]]

⎤

⎥

⎥

⎥

⎦

, (3)

w[n] =

⎡

⎢

⎢

⎢

⎣

w∗
0[n]

w∗
1[n]
...

w∗
M−1

[n]

⎤

⎥

⎥

⎥

⎦

, (4)

* denotes the complex conjugate, and H denotes conjugate transpose. Note that
the variance of z[n] can be written as

E
[

|z[n]|2
]

= w[n]HR[n]w[n], (5)

where E [·] denotes the expectation, and R[n] = E
[

X[n]X[n]H
]

is the spatial
covariance matrix. Application of predetermined weights is usually a tradeoff
between mainlobe width and sidelobe level of the reception beam. Near
the transducer a window gradually falling towards the edges of the aperture
(e.g. Hamming) is often used for sidelobe suppression, while a rectangular
window is often used at greater depths for maximum penetration. Instead of
predetermined weights, the MV beamformer calculates the aperture shading
from the recorded data. The weights are found by minimizing the variance
of z[n], while forcing unit gain at the focal point, leading to the optimization
problem:

min
w[n]

w[n]HR[n]w[n]

subject to w[n]Ha = 1, (6)

where a is the steering vector. Since the data has been delayed, a is simply a
vector of ones. Different element sensitivities could also be included in a, giving
entries different from one. Alternatively, uncertainties in the sensitivities could
be handled by adding constraints [13]. Eq. (6) has an analytical solution given
by [9]:

w[n] =
R[n]−1a

aHR[n]−1a
. (7)

In contrast to the fixed beampatterns provided by predetermined aperture
shading, the MV beamformer will adapt to the recorded data, and allow
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large sidelobes in directions where there is little energy, and place zeros in
directions where there is interference. With complex data, beampatterns
that are asymmetric around the steering angle may also arise as the optimal
solutions, as the only constraint is that the response has unit gain at the focal
point of the receive beam.

In order to demonstrate the effect of adaptive weights, we show two examples
of the resulting angular responses (beampatterns) of the apodization functions.
The beampatterns were calculated for the center frequency of the transducer
by applying the spatial Fourier transform to the apodization functions. Fig. 1
shows the beampatterns of the weights calculated by the MV beamformer. The
beampattern of a rectangular window has been included for reference. In
Fig. 1(a) we image two closely spaced wire targets at ± 1 degree angle, and
steer towards the one at +1 degree (see Fig. 3 for examples of images). The solid
vertical line indicates the angle of steering. We see that signals propagating
from this direction are passed with unit gain. The dotted vertical line indicates
the incoming angle of the reflection from the interfering scatterer. We see that
the response of the MV weights is close to zero at this angle. On the other
hand, in regions where there is no signal energy, the beamformer allows large
sidelobes (see for instance from 2-7 degrees). We also see that the mainlobe of
the beampattern is asymmetric around the steering angle.

Fig. 1(b) shows an example where we image a cyst surrounded by tissue and
steer close to the edge of the cyst (see Fig. 5 for examples of images). The solid
horizontal line indicates the cyst region, and the solid vertical line indicates
the angle of steering. There is no signal scattering inside the cyst, so a large
sidelobe is present here. We also see that the mainlobe is asymmetric to achieve
maximum signal suppression from the surrounding tissue which is outside of
the focal point.

Estimation of the spatial covariance matrix, R[n] in (6), requires some sort of
averaging of the observed signals. In this application, averaging in the spatial
domain is required for two reasons:

• Short and non-stationary transmit pulses reflecting off point scatterers
lead to a non-stationary X[n], which limits the use of temporal averaging.

• Signals from different scatterers may be correlated, as all reflections
originate from the same transmit pulse. This can lead to signal
cancellation, and may be avoided by subarray averaging [11,14].

In [6] we estimated the covariance matrix by averaging in the spatial domain
only. However, for objects consisting of unresolvable micro-structures (leading
to speckle), averaging solely in the spatial dimension may give very different
image statistics compared to DAS [12]. The speckle variance tends to increase,
such that tissue appears less homogeneous in the MV images. Although
“minimum variance” beamforming may suggest that the speckle variance should
be reduced, “minimum variance” in this context refers to the output of the
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beamformer at the focal point of the receive beam. The beamformer is designed
to suppress signals that are incoherent across the aperture, resulting in larger
areas of lower scattering amplitudes compared to DAS. We believe that by using
purely spatial averaging, which works very well on isolated point scatterers, we
do not capture the statistics of the more stationary process of speckle generation.
In [12] we show that by applying temporal averaging - as well as spatial
averaging - similar speckle statistics are retained. The general estimate of
the covariance matrix with subarrays of length L and temporal averaging over
2K + 1 samples then becomes:

R̂[n] =
1

(2K + 1)(M − L + 1)

K

∑
k=−K

M−L

∑
l=0

X̄l[n − k]X̄l[n − k]H , (8)

where

X̄l[n] =

⎡

⎢

⎢

⎢

⎣

xl[n]
xl+1[n]

...
xl+L−1[n]

⎤

⎥

⎥

⎥

⎦

. (9)

By using R[n] = R̂[n] in (7) we find the aperture shading to be applied to each
subarray, and get the amplitude estimate for the total array as:

ẑ[n] =
1

M − L + 1

M−L

∑
l=0

w[n]HX̄l[n]. (10)

The choice of L determines the degrees of freedom in the MV estimate, and
trades off resolution for robustness. A smaller L gives a more robust estimate
at the expense of resolution. It is important to note that although the
covariance matrix, and hence w[n], is estimated from samples n − K, . . . , n + K,
the amplitude estimate only depends on observations at sample n. Hence, there
is no smoothing in the time-domain and we retain the temporal resolution.

The high resolution of the MV beamformer at high signal-to-noise ratios
(SNR) makes it sensitive to wavefield perturbations and may also require dense
angular sampling to avoid amplitude loss. In [6] we discussed two ways to
increase robustness of the MV estimate: Decrease the subarray length, L,
and apply diagonal loading. Diagonal loading means that R[n] is replaced by
R[n] +ǫI in (7). We choose ǫ to be proportional to the power of the observations:

ǫ = ∆ · tr{R[n]}, (11)

where tr{·} is the trace operator and ∆ is typically (much) less than 1/L. See [6]
for a discussion of the choice of parameters.
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Fig. 1: Beampatterns of the MV beamformer: (a) Wire targets (b) Cyst. The
dashed line is the corresponding beampattern of a rectangular window. The
vertical lines in (a) indicate the location of the wire targets, where the solid
line is the steering angle. The solid vertical line in (b) indicates the steering
angle, and the horizontal line indicates the cyst.

2.2 Applications

Besides increasing image resolution using conventional transducers, which we
showed in [6], we propose to utilize the properties of the MV beamformer for
three other enhancements; reduce transducer size, increase frame rate and
increase depth of penetration without sacrificing image quality. The high
resolution of the MV beamformer allows for smaller transducers, and may
allow use of a single transducer for several applications. In Section 3 we show
results from the MV beamformer using a transducer of half the size of DAS.
A similar experiment was performed in [5]. However, they use a synthetic
aperture approach and form the covariance matrix by averaging data from
each individual transmit element. The loss in signal-to-noise ratio due to the
synthetic aperture focusing may be unacceptable in medical ultrasound imaging.
Also, target motion may cause incoherence between data captured with different
transmit elements. In this paper we use a focused transducer and perform
all MV beamforming on reception, giving realistic results for practical medical
ultrasound systems.

By using parallel receive beamforming (PRB) we can increase frame rate
in medical ultrasound imaging [15]. With this technique fewer transmit (Tx)
beams combined with multiple parallel receive (Rx) beams are used to increase
frame rate. However, to avoid gain loss we must transmit wider beams, leading
to lower resolution and resulting in a tradeoff between image quality and
frame rate. Fig. 2 demonstrates the principle behind PRB. Fig. 2(a) shows the
one-way beampatterns (Tx or Rx) of four consecutive lines using conventional
DAS beamforming. The angular sampling in this example is twice that of
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Fig. 2: (a) One-way beampatterns of four consecutive Tx (or Rx) beams (at the
center frequency). The angular sampling in this example is twice of what is
required by the Rayleigh criterion. (b) Beampatterns of one Tx beam (solid
with diamonds) and four parallel Rx beams (solid and dashed).

the Rayleigh criterion. Fig. 2(b) shows the corresponding one-way Tx and Rx
beampatterns using PRB. Here only one wide beam is transmitted, and four
parallel beams are used on reception, increasing the frame rate by four. The
wide Tx beam will however affect resolution. In Section 3 we show that by
using a MV beamformer on reception, the loss in resolution caused by wider
transmit beams can be compensated for. Note that near the focal point of the
transducer, the two-way beampattern will be shifted with respect to the peak of
the receive beam. This effect can be compensated for by steering off axis [16].
We have neglected this effect in our simulations, as the uncorrected examples
are sufficient to demonstrate the principle.

We achieve increased depth of penetration in attenuating media if the
frequency of the transmitted beam is reduced. Lowering the transmit frequency
will however affect the resolution of the image. In the following section we
show that the lateral resolution lost by lowering the transmit frequency can
be compensated for using an MV beamformer on reception. The axial resolution
is however also affected, but is usually much better than the lateral resolution,
so a reduction can be afforded.

3 Results

We have simulated three different phantoms using Field II [17]: A phantom of
wire targets located at 30-80 mm depth, and two cyst phantoms with four strong
point scatterers embedded (which we refer to as cyst phantom 1 and 2). The cyst
phantoms were generated by placing 135,000 equal amplitude point scatterers
randomly within a region of 100x10x50 mm for cyst phantom 1, and 300,000
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scatterers in a region of 220x10x110 mm for cyst phantom 2. The number
of scatterers per resolution cell was more than 10, which is recommended to
simulate speckle [18]. The distribution of the scatterer positions was uniform,
and within the region of the cysts we set the amplitudes to zero. Four strong
point scatterers were placed behind the cysts. In phantom 1 the cyst was
centered at 35 mm and had a diameter of 6 mm. The point scatterers were
separated by 3 mm laterally. In phantom 2 the cyst was centered at 95 mm
and had a diameter of 10 mm. The scatterers were separated by 6 mm. In the
simulations of cyst phantom 2 we included attenuation of 0.5 dB/cm/MHz. For
all simulations we added white, Gaussian noise corresponding to approximately
60 dB SNR with respect to the strongest reflector in the image.

We have simulated 3.5 MHz transducers with approximately 85 percent -6
dB fractional bandwidth. The width of the arrays was either 9.25 mm or 18.5
mm and the height was 10 mm. Unless otherwise stated, the transducer was
excited by 2 periods of a sine wave at the center frequency. We applied fixed
focus on transmission and dynamic focus on reception. The received signals
were sampled at 20 MHz and filtered by a 1.5-5.5 MHz bandpass filter. We
added noise after filtering. For both beamformers delays were implemented by
upsampling to 160 MHz and selecting the sample closest to the theoretically
predicted delay. We computed the analytic signals by applying the Hilbert
transform to the channel outputs, thus allowing complex solutions in the MV
beamformer. The difference in the two beamformers was in the combination of
the channels: For DAS, we applied either a rectangular or a Hamming window
to the delayed channels before summation. For MV, weights were calculated
using (7) and applied using (10). For all MV results we used diagonal loading
parameter ∆ = 1/(100L).

3.1 Decreasing Transducer Size

We have simulated a 48 element, 9.25 mm transducer and a 96 element, 18.5
mm transducer running at 3.5 MHz. We used MV beamforming on the smallest
transducer. Fig. 3 shows results for the wire targets, were Tx focus was 50
mm. Fig. 3(a) and (b) shows the 18.5 mm probe using DAS beamforming
and rectangular and Hamming apodization, respectively. Fig. 3(c) shows the
corresponding image using the 9.25 mm probe running MV with subarray length
L = 24. In the simple point target scenario we obtain a good estimate of the
covariance matrix by averaging in the spatial domain only, hence we used K = 0.
We see that the resolution obtained by the 9.25 mm probe is better than the 18.5
mm. Fig. 4 shows the steered responses at depths 40 mm and 60 mm. For both
depths we see that the beamwidth of the 9.25 mm probe is less than 1/4th of the
18.5 mm using a rectangular window, and that the sidelobes are comparable to
the Hamming weighted DAS. We see a slight shift in the location of the peaks
for the MV result at 60 mm, which due to energy leaking through the sidelobes
of the smaller array.
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Fig. 3: Simulated wire targets using 3.5 MHz transducers. (a) DAS using
96 element, 18.5 mm transducer and rectangular window (b) DAS using 96
element, 18.5 mm transducer and Hamming window (c) MV using 48 element,
9.25 mm transducer (M = 48, L = 24, K = 0). Tx focus was 50 mm.

Fig. 5 shows results for cyst phantom 1, where Tx focus was 35 mm.
Figs. 5(a)-(c) shows the 9.25 mm and 18.5 mm probes using DAS with different
apodizations. Fig. 5(d) shows the 9.25 mm probe using MV beamforming with
L = 24 and K = 11. Using K = 11 corresponds to temporal averaging
over approximately the length of the transmit pulse. We see that the lateral
resolution lost due to the reduced transducer size using DAS in Fig. 5(a), is
compensated for by the MV beamformer in Fig. 5(d).

3.2 Higher Frame Rates by Combining Par-
allel Receive Beams with MV Beamform-
ing

It has been common in ultrasound imaging to use transmit beams of comparable
beamwidth to the receive beams. As frame rate is inverse proportional to the
number of transmit beams required to scan an image, many scanners now use
fewer transmit beams than receive beams. This is especially interesting in
imaging of fast-moving structures, e.g. in cardiology. The price to pay for this is
a requirement for several receive beams per transmit beam in order to sample
the image properly. This requires parallel receive beamformers, e.g. 2-4 parallel
beams. This can be found in many commercial ultrasound scanners today, and
the number of parallel beams may increase even more with newer 3D scanners.
With the MV beamformer, there is a potential for decreasing the number of
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Fig. 4: Steered response of DAS and MV beamformers, using 3.5 MHz
transducers at depths (a) 40 mm and (b) 60 mm. DAS was used with a 96
element, 18.5 mm transducer (using rectangular and Hamming window) and
MV with a 48 element, 9.25 mm transducer (L = 24, K = 0). Tx focus was 50
mm.
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Fig. 5: Simulated cyst phantoms using 3.5 MHz transducers. (a) DAS with 48
element, 9.25 mm, transducer (rectangular window) (b) DAS with 96 element,
18.5 mm transducer (rectangular window) (c) DAS with 96 element, 18.5 mm
transducer (Hamming window) (d) MV with 48 element, 9.25 mm transducer
(L = 24 and K = 11). Tx focus was 35 mm.
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transmit beams further and therefore we have simulated the 96 element, 3.5
MHz, 18.5 mm transducer using wider Tx beams and several parallel MV receive
beams. As reference we formed non-parallel DAS images using 32 Tx and 32 Rx
beams over a sector of 20 degrees. For MV we used only 1/4th of the aperture on
transmission, giving a transmit beam approximately four times as wide as for
DAS. The loss in amplitude due to fewer transmit elements was compensated
for. We used 8 Tx beams and 4 parallel Rx beams per transmission. A sector
image with DAS thus requires four times as many transmissions as the MV
sector image. Hence, the parallel MV images may be formed four times faster
than the non-parallel DAS; given that there is sufficient processing power in the
receive beamformer for doing several MV beamformers in parallel. Fig. 6 shows
the wire target images obtained from the different beamformers with 50 mm Tx
focus, where we used L = 24 and K = 0 for the MV beamformer. We see that the
wires are better resolved for MV despite the wide transmit beam. Fig. 7 shows
the steered responses at 40 mm and 60 mm. We see that the mainlobe of the
MV beamformer is narrower and the sidelobes are comparable to the Hamming
weighted DAS.

Fig. 8 shows results for cyst phantom 1, where Tx focus was 35 mm. Here we
have included DAS using parallel receive beams to demonstrate how the wide
transmit beams degrade the image. Fig. 8(a) shows DAS using PRB. Compared
to Fig. 8(b), which uses four times the number of Tx beams, we see that the cyst
appears smaller and that the resolution of the point scatterers is lower. By using
MV and PRB, which is shown in Fig. 8(d) with L = 24 and K = 11, we see that
the resolution lost by the wide transmit beam is compensated for: The cyst is
about the same size as in Fig. 8(b), and the point scatterers are better defined.

Note that since we only use 8 Tx beams in Fig. 6(c) and Fig. 8(d) versus 32 Tx
beams in Figs. 6(a) and (b), and Figs. 8(b) and (c), respectively, the images can be
formed four times as fast, given a real-time implementation of the MV method.
Hence, we can increase the frame rate by a factor four, without sacrificing image
quality. We discuss the real-time aspects of the method in Section 4.

To gain further insight into MV beamforming it may be interesting to
compare parallel and non-parallel MV beamforming for the simulations in the
previous example. In Fig. 9 we have included examples of receive beampatterns
for the two cases. The beampatterns were calculated in the same way as the
ones in Fig. 1 The focal point of the receive beam was at the edge of the cyst.
Fig. 9(a) shows the MV beampattern using PRB, and Fig. 9(b) shows the MV
beampattern where the full array was used on transmission. The dashed lines
show the Tx beampatterns at the center frequency. Note that the steering of
the Tx beam is different in the two examples, as the Tx beam in Fig. 9(a)
is at the center of four parallel receive beams. We see that the parallel MV
beamformer must compensate for the wide mainlobe and large first side lobe of
the Tx beam, and thus has lower sensitivity than the non-parallel beamformer
in these regions (see angles from 6 to 8 degrees and from 10 to 14 degrees). We
also see that the non-parallel MV beamformer compensates for the first sidelobe
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Fig. 6: Simulated wire targets using a 18.5 mm, 96 elements, 3.5 MHz
transducer. (a) DAS using 32 Tx/Rx lines (rectangular window) (b) DAS using
32 Tx/Rx lines (Hamming window) (c) MV using 8 Tx and 32 Rx lines (L = 24,
K = 0). Tx focus was 50 mm.

of the narrower Tx beam used in the example in Fig. 9(b) (see at approximately
6.5 degree angle in Fig. 9(b)). Note that although the MV beamformer can to
some extent compensate for the Tx beam, a more focused beam is an advantage
as the MV beamformer then gets more freedom to suppress off-axis scattering.

3.3 Increased Depth of Penetration

Figs. 10 and 11 shows results from the 96 element, 3.5 MHz, 18.5 mm transducer
for cyst phantom 2, which has attenuation included. The transducer was either
excited by 1 period of a 1.75 MHz sine wave, or 2 periods at 3.5 MHz. Due
to the impulse response of the transducer the effective center frequency was
approximately 2.5 MHz when the transducer was excited at 1.75 MHz. We
compensated for the reduced gain due to the lower sensitivity of the transducer
when transmitting at 1.75 MHz. Tx focus was 100 mm. In Fig. 10(a) and (b) we
have used DAS and compared excitation at 1.75 MHz and 3.5 MHz, respectively.
We see that at 1.75 MHz excitation, the reflected signals are stronger due
to the frequency dependent attenuation. In Fig. 10(d) we have compensated
for the propagation loss of DAS in Fig. 10(b) to get a fair comparison of the
resolution. We see that the resolution of the 1.75 MHz DAS is poorer than for
3.5 MHz. In Fig. 10(c) we have simulated 1.75 MHz excitation and MV receive
beamforming with L = 40 and K = 11. We see that the resolution lost by the
lower transmission frequency in Fig. 10(a) is compensated for. Compared to
Fig. 10(d) the lateral resolution is about the same and the point scatterers are
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Fig. 7: Steered response of DAS and MV beamformers using a 18.5 mm, 96
elements, 3.5 MHz transducer at depths (a) 40 mm and (b) 60 mm. DAS used
32 Tx/Rx lines and MV used 8 Tx and 32 Rx lines, L = 24 and K = 0. Tx focus
was 50 mm.

[mm]

D
e
p
th

 [
m

m
]

DAS (PRB)

−5 0 5

30

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

[mm]

D
e
p
th

 [
m

m
]

DAS

−5 0 5

30

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

[mm]

D
e
p
th

 [
m

m
]

DAS (Hamming)

−5 0 5

30

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

[mm]

D
e
p
th

 [
m

m
]

MV, L=24, K=11 (PRB)

−5 0 5

30

32

34

36

38

40

42

44

46

48

50 −60

−50

−40

−30

−20

−10

0

(a) (b) (c) (d)

Fig. 8: Simulated cyst phantoms using a 18.5 mm, 96 element, 3.5 MHz
transducers. (a) DAS (PRB, rectangular window), (b) DAS (rectangular
window) (c) DAS (Hamming window) (d) MV (PRB, L = 24 and K = 11). Tx
focus was 35 mm.
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Fig. 9: Beampatterns of MV beamformers. (a) Parallel MV beamformer (b)
Non-parallel MV beamformer. The dashed line is the beampattern of the Tx
beam at the center frequency. The solid vertical lines indicates the steering
angle, and the horizontal line indicates the cyst.

much better defined. However, we see some distortion of the edges of the cyst.
Fig. 11 shows the steered responses at 107 mm depth. We see that the peak
amplitude is about 11 dB lower for the 3.5 MHz transmission resulting in 11 dB
lower SNR. We also see that the MV beamformer produces narrower peaks, even
though the transmission frequency is lower.

4 Discussion

The receive beampatterns in Fig. 1 are the key to understanding the improved
performance of the MV beamformer. The echos from the steering direction are
passed with unit gain (0 dB), and the mainlobe width and sidelobe levels are
adapted to minimize off-axis energy. The mainlobes of the MV receive beams
in these examples are asymmetric and their maximums are shifted away from
the steering angle. Although this will result in two-way beampatterns that are
more sensitive outside of the steering direction, the maximums are only placed
at these locations because there is no reflected energy there. In Fig. 1(a) the
peak is between the two scatterers and in Fig. 1(b) the peak is inside the cyst.
Hence, geometric distortion will not occur despite the shifted peaks. We also
see that the MV receive beams have low sensitivity where off-axis energy is
present. For every point in the image new weights, and hence new receive
beams, are calculated. In contrast to DAS, where beampatterns describe the
imaging capabilities of the system, the beampatterns of the MV beamformer
only shows how off-axis energy is suppressed for a specific sampled wavefield
at a specific point. Hence, the beampatterns must always be considered in
conjunction with the recorded data.
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Fig. 10: Simulated cyst phantoms using a 18.5 mm, 96 element transducer.
(a) DAS (1.75 MHz), (b) DAS (3.5 MHz) and (c) MV (1.75 MHz, L = 40 and
K = 11). (d) DAS (same as (b), but the propagation loss was compensated for).
Tx focus was 100 mm.

From Figs. 3 and 6 we see that for the simple phantoms consisting of wire
targets, MV performs better than DAS despite that a smaller transducer or a
wider transmit beam is used. The strong point scatterers in the cyst phantoms
in Figs. 5, 8 and 10 are also much better defined using MV. For the cysts in these
figures, we get similar definition as for DAS. When imaging cyst boundaries, off-
axis energy is scattered from a range of angles rather than from isolated points,
and we have less freedom to suppress interference. Hence, we cannot expect as
much improvement as for the point scatterers.

For the 9.25 mm transducer using subarray length L = M/2 in Figs. 3-5
we achieve very good resolution of the wire targets and point scatterers, and a
similar definition of the cyst as for the 18.5 mm transducer. However, we see
some edge distortion on the cyst in Fig. 5(d). To compensate for the reduced
aperture size, we set the subarray size to half of the aperture to get as good
lateral resolution as possible. This resulted in larger speckle variance and
inconsistent edges along the cyst. Note that the cyst edge distortion is reduced
in the example in Fig. 8(d) where we could choose a more conservative subarray
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Fig. 11: Steered responses of DAS and MV (L = 40, K = 11) beamformers
using a 18.5 mm, 96 element transducer at 107 mm depth with 0.5
dB/cm/MHz attenuation. Tx focus was 100 mm.

size (L = M/4).

Using parallel receive beams in Fig. 6(c) and Fig. 8(d) we needed a robust
amplitude estimate due to the relatively few scan lines, and used L = M/4

for both the wire targets and the cyst phantom. We see from the figures that
the resolution of the wire targets and point scatterers is better for the parallel
MV than for the non-parallel DAS. The cyst definition is about the same. In
these examples we have used only 8 Tx beams for the MV results, versus 32 Tx
beams for DAS. Hence, the parallel MV images may be formed four times as fast.
We have thus demonstrated that by combining PRB and MV beamforming, we
can increase frame rate without sacrificing image quality. Both parallel receive
beamforming and MV beamforming will, however, increase the computational
load of the system. To achieve an increase in frame rate which scales with the
number of parallel beams, we must be able to process the parallel beams equally
fast as a single beam in a non-parallel system. With the added complexity of
the MV method, the combination certainly presents a challenge for a real-time
system. But since the parallel beams operate on nearly the same data, there
could be a potential saving in computations by exploiting these similarities. For
instance, it may be possible to use the same covariance matrix estimate for all
parallel receive beams. We may account for the differences in angle by using a
complex steering vector in (7). We further discuss the real-time aspects of the
MV method below.

To finish the discussion on the choice of parameters, we found that reducing
the transmit frequency from 3.5 MHz to 1.75 MHz in Fig. 10 required longer
subarrays to match the lateral resolution of DAS at 3.5 MHz, and we used
L = 40. This resulted in some distortion of the edges of the cyst. We see that the
point scatterers are much better defined.
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The MV beamformer requires significantly more computations than DAS.
The delay-step is common to both beamformers, so the difference lies in finding
the aperture weights adaptively. The complexity of applying the weights and
summing, which are the only extra operations required by DAS, is linear
with the number of elements (O(M)). The matrix inversion needed to find
the aperture weights for the MV beamformer has complexity proportional to
the subarray size, O(L3). Hence, using smaller subarrays is more efficient,
but reduces the resolution. With the improvements shown in this paper we
have assumed that the MV algorithm can be run in real-time. However, an
algorithm with computational complexity of O(L3) may not be suitable for real-
time implementation at present. Further research should be directed at making
approximations that can run in real-time. One useful observation is that for
spatially stationary signals the covariance matrix becomes Toeplitz in theory.
Such a matrix can be inverted in O(L2) operations. In our application it may
be a good approximation to assume spatial stationarity as most of the energy is
scattered from angles close to the steering angle. Thus we can force a Toeplitz
structure by averaging the entries in the covariance matrix corresponding to
the same lags. Whether this approximation will give acceptable performance
remains to be seen. Another approach, suggested by Vignon and Burcher [8], is
to use a number of predefined windows which fulfill the constraint in (6). The
window that minimizes w[n]HR[n]w[n] is chosen for sample n. If the number
of predetermined windows is much smaller than M, the overhead required
to find the aperture weights is small. The method will have approximately
linear complexity and will be suitable for a real-time environment. Our initial
studies of this approach show that we can achieve significant improvement over
DAS [19].

In [6] we demonstrated increased resolution by applying the MV beamformer
to ultrasound imaging. In this paper we have utilized the high resolution
properties for other enhancements with the objective of matching the resolution
of DAS. However, we can imagine combinations of the enhancements, e.g. a
slight increase in both resolution and penetration depth by selecting a proper
transmit frequency. It is also worth noting that the reduced channel count for
the examples in Figs. 3-5 may allow for a cheaper system.

5 Conclusion
We have demonstrated that we can utilize the minimum variance beamformer
to reduce transducer size, increase frame rates or increase penetration depth in
medical ultrasound, without sacrificing image quality compared to delay-and-
sum. We have shown that the minimum variance beamformer can compensate
for the resolution lost by using smaller transducers, wider transmit beams or
a lower transmit frequency, thus the increase in processing power may be well
worth the effort. Future work will be directed at assessing the performance in a
real-time setting and with clinical objects.
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A Low Complexity Data-Dependent
Beamformer

Johan-Fredrik Synnevåg, Andreas Austeng, and Sverre Holm

Abstract

The classical problem of choosing apodization functions for a beamformer
involves a trade-off between mainlobe width and sidelobe level, i.e. a
trade-off between resolution and contrast. To avoid this trade-off it has
been suggested to apply adaptive beamforming, such as minimum variance
beamforming, to medical ultrasound imaging. This has been an active
topic of research in medical ultrasound imaging in the recent years, and
several authors have demonstrated significant improvements in image
resolution. However, the improvement comes at a considerable cost. Where
the complexity of a conventional beamformer is linear with the number of
elements (O(M)), the complexity of the minimum variance beamformer is
up to O(M3). In this paper we have applied a method – based on an idea by
Vignon and Burcher [1] – which is data-adaptive, but selects the apodization
function between a number of predefined windows, giving linear complexity.
In the proposed method we select an apodization function for each depth
along a scan line based on the optimality criterion of the minimum variance
beamformer. But unlike the minimum variance beamformer, which has an
infinite solution space, we limit the number of possible outcomes to a set
of predefined windows. The complexity of the method is then only P times
that of the conventional, where P is the number of predefined windows. The
suggested method gives significant improvement in image resolution at a
low cost. The method is robust, can handle coherent targets and is easy to
implement. It may also be used as a classifier as the selected window gives
information about the object being imaged. We have applied the method
to simulated data of wire targets and a cyst phantom, and to experimental
RF data from a heart phantom using P = 4 and P = 12. The results show
significant improvement in image resolution compared to delay-and-sum.
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1 Introduction
The standard technique used to form images in medical ultrasound imaging is
by delay-and-sum (DAS) beamforming. A focused beam is transmitted over a
range of angles, and a receive (Rx) beam is dynamically focused by delaying
and summing the recorded signals from the different channels. The mainlobe
width and sidelobe level of the beams can be controlled by applying weights
to the different channels. The weights form an apodization function or a
window. In this paper we will focus on the receiver apodization, only. The
fundamental trade-off when designing windows, is between mainlobe width and
sidelobe level. A reduction in sidelobe level results in increased mainlobe width,
trading off contrast for resolution. In practical systems, a window gradually
falling towards the edges is often used close to the transducer to achieve low
sidelobes, and a rectangular window is often used at larger depths to achieve
good resolution and maximum sensitivity and penetration.

The transducer geometry, number of channels, transmit frequency and
apodization function determine the imaging capabilities of a system, and is
characterized by the beampattern. The ultimate goal is a beampattern with a
narrow mainlobe and low sidelobes, but as mentioned, these are contradicting
requirements. Instead, we may use adaptive beamforming, like the minimum
variance (MV) beamformer, which takes the actual recorded wavefield into
account to find the optimal apodization function. The key to the improved
performance of the MV beamformer is that it will vary the apodization functions
across the image, based on the recorded data. At a specific depth, the resulting
beampatterns may contain large sidelobes in regions where off-axis scattering is
low and be less sensitive where off-axis scattering is present.

Adaptive beamforming has been an active research topic in medical
ultrasound imaging in recent years, and several authors have shown significant
improvement in image quality [1–9]. See [9] for a review of the different
contributions. All authors have demonstrated improvements in image quality.
However, the improvements come at a cost. The complexity of applying weights
and summing in conventional delay-and-sum beamforming, is linear with the
number of elements (O(M)). The complexity of the MV beamformer is up
to O(M3), following from the inversion of the spatial covariance matrix. So
although the performance is good, the computational overhead is significant.
In this paper, we propose an adaptive beamformer – based on and idea by
Vignon and Burcher [1] – which uses several predefined windows and use the
minimum variance optimization criterion to decide which window to use at a
specific point in the image. The computational overhead scales with the number
of predetermined windows compared to DAS. Hence, there is little overhead if
we only use a few windows.

To fully understand the proposed method, it is important to understand the
basics of the MV beamformer. We have organized the paper as follows: In
the next section we first review the MV beamformer and show how we have
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implemented it in medical ultrasound, before we present the proposed method.
In section 3 we show results from simulated data of point targets and a cyst
phantom, and from experimental RF data of a heart phantom. We discuss our
findings in section 4 and draw conclusions in section 5.

2 Methods

2.1 The Minimum Variance Beamformer

We assume a transducer consisting of M elements, where xm[n] is the sampled
output from element m. The output of a general beamformer can be written as:

z[n] =
M−1

∑
m=0

wm[n]xm[n − ∆m[n]], (1)

where wm[n] is a (complex) weight and ∆m[n] is the delay applied to element m.
In matrix form, z[n] can be written as:

z[n] = wH[n]X[n], (2)

where

w[n] =

⎡

⎢

⎢

⎢

⎣

w∗
0[n]

w∗
1[n]
...

w∗
M−1

[n]

⎤

⎥

⎥

⎥

⎦

, (3)

X[n] =

⎡

⎢

⎢

⎢

⎣

x0[n − ∆[n]]
x1[n − ∆[n]]

...
xM−1[n − ∆[n]]

⎤

⎥

⎥

⎥

⎦

, (4)

and ∗ denotes the complex conjugate. The MV beamformer finds the optimal
apodization w[n] by solving the optimization problem [10]:

min
w[n]

E
{

|z[n]|2
}

= wH[n]R[n]w[n]

subject to wH[n]a = 1, (5)

where E{·} denotes the expectation, R[n] = E{XXH} is the spatial covariance

matrix and a is the steering vector. Since the data has been delayed, a is simply
a vector of ones. The constraint corresponds to requiring ∑

M−1
m=0

wm[n] = 1. The
solution to (5) is given by:

w[n] =
R−1[n]a

aHR−1[n]a
. (6)
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Hence, the optimal apodization function w[n] is dependent on the inverse of R[n].
The inversion requires in the order of O(M3) operations.

In practice the spatial covariance matrix must be estimated. As the returning
echos from different targets will be correlated, measures must be taken to
avoid signal cancellation [11]. We have successfully applied subarray averaging,
meaning that the estimate is found by averaging the covariance matrices of
different subarrays [7,12]. Averaging purely in the spatial dimension gives good
results for simple images of point targets. However, for collections of scatterers
that are much smaller than the resolution of the imaging system (leading to
speckle), we have shown that averaging purely in the spatial dimension gives
speckle statistics that are very different from DAS beamforming. The speckle
appears less homogeneous and has a lower average intensity. By averaging
in the temporal dimension (corresponding to depth), as well as along the
transducer, similar speckle statistics are retained [13]. The general estimate for
overlapping subarrays of length L, and averaging over 2K + 1 temporal samples
becomes:

R̂[n] =
1

(2K + 1)(M − L + 1)

K

∑
k=−K

M−L

∑
l=0

Xl[n + k]XH
l [n + k], (7)

where

Xl[n] =

⎡

⎢

⎢

⎢

⎣

xl[n − ∆l[n]]
xl+1[n − ∆l+1[n]]

...
xl+L−1[n − ∆l+L−1[n]]

⎤

⎥

⎥

⎥

⎦

. (8)

The choice of L is a trade-off between resolution and robustness of the estimate.
Smaller L gives fewer degrees of freedom, and hence poorer resolution, but
increases robustness towards signal cancellation. See [7] for a discussion of the
choice of parameters and for results using different subarray lengths. Regarding
the choice of K, we have achieved similar speckle statistics as DAS by averaging
over a time-gate that is comparable to the length of the transmit pulse. See [13]
for results using different values of K.

Another measure to increase robustness of the method is to apply diagonal

loading to the covariance estimate before inversion. A small regularization term
is added to the diagonal of the covariance matrix, such that R[n] is replaced
by R[n] + ǫI in (6). We have chosen ǫ to be proportional to the power of the
observations:

ǫ = ∆ · tr {R[n]} , (9)

where ∆ typically is much less than 1/L. See [7] for results using different ∆.
Even though the covariance matrix is estimated by averaging over many

temporal samples (if K > 0), we apply the resulting weights to the current
sample only. The MV amplitude estimate is given by:

ẑ[n] =
1

M − L + 1

M−L

∑
l=0

w[n]HX̄l[n]. (10)
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Fig. 1: Example of beampattern from a MV weighted 64 element, 2.5 MHz,
19.7 mm transducer (solid line). The dashed line shows the corresponding
beampattern for a rectangular window. The horizontal line indicates a cyst.

Hence, no temporal smoothing occurs as a result of the temporal averaging.

To aid the window design of the proposed method it is instructive to look
at the response of the MV weights in a typical medical ultrasound scenario.
Fig. 1 shows the beampattern of a 64 element, 2.5 MHz, MV weighted array
when focusing close to the edge of an anechoic cyst (see Fig. 8 for examples of
images). The beampattern of a uniformly weighted array has been included
for reference. The vertical dotted line indicates the steering angle. We see
that the gain of the MV beamformer is 0 dB at this angle, following from the
constraint in (5). The thick horizontal line indicates the cyst. We see that as
there is no scattered energy inside the cyst, the MV solution allows large gains
in this region, which in this example results in an asymmetric mainlobe. We
also see that a large sidelobe is present inside the cyst (see at approximately
1 degree). The asymmetric mainlobe gives better suppression of the scattered
energy outside the cyst, which in turn will give better definition of the edge.

2.2 Low Complexity Adaptive Beamforming

We now present the proposed method, which we have termed low complexity

adaptive (LCA) beamforming. To reduce the complexity compared to MV, we
limit the solution space of the MV beamformer by defining P predetermined
windows, {w̄0, · · ·, w̄P−1}. We make sure that the windows fulfill the constraint
in (5) by applying a proper normalization (i.e. we divide by the sum of the
coefficients). For every sample along a scan line we apply one of the predefined
windows,

w[n] = w̄p, (11)
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where w̄p is the pth predefined window. Which window to use is found by
minimizing the cost function:

min
p

E

{

∣

∣

∣
w̄H

p X[n]
∣

∣

∣

2
}

, p = {0, · · · , P − 1} . (12)

The solution to (12) is found by applying each of the P predefined windows to X[n]
and choose the one that minimizes E{|w̄H

p X[n]|2}. Hence, we avoid the inversion

in (6). In practice, E{|w̄H
p X[n]|2} must be estimated. By defining:

zp[n] = w̄H
p X[n], (13)

we can estimate the variance as:

σ̂2
zp

[n] =
1

2K + 1

K

∑
k=−K

∣

∣zp[n + k]
∣

∣

2
. (14)

For a single sample estimate (K = 0) we simply choose the window that
minimizes |w̄H

p X[n]|. Compared to DAS we need to apply P windows instead
of one, which requires P times the number of computations. For K > 0, the same
complexity is achieved if we store the 2K + 1 last values of zp[n] for all p. We
update the estimate in (14) as:

σ̂2
zp

[n + 1] = σ̂2
zp

[n]−

1
2K+1

(

∣

∣zp[n − K]
∣

∣

2
−

∣

∣zp[n + K + 1]
∣

∣

2
)

. (15)

In the next section we will see that, as for the MV beamformer, the single sample
estimate works well for point targets, but to retain similar speckle as DAS,
temporal averaging is required.

An example which illustrates the method is shown in Fig. 2, where we have
imaged two closely spaced wire targets (see Fig. 6 for examples of full images).
In Fig. 2(a) we show the steered responses using DAS with rectangular and
Hamming apodization. In Fig. 2(b) we have chosen between the two windows,
based on the optimization in (12) for every lateral point on the curve. DAS with
rectangular weighting has been included for reference. We see that the LCA
beamformer gives the resolution of the rectangular window and the low sidelobe
level of the Hamming window. By using more windows we can further improve
these results.

The key to the improved performance of the LCA beamformer is the design
of the predetermined windows. It is natural to include the classical windows
which trade off mainlobe width for sidelobe level, as the rectangular and Kaiser
windows. We may also push the resolution of the rectangular window by
increasing the weighting towards the edges of the aperture, which in turn
gives higher sidelobes. Fig. 3 shows examples of three different windows: A
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Fig. 2: Steered responses using a 64 element, 2.5 MHz, 19.7 mm transducer.
(a) DAS with rectangular (dashed) and Hamming (solid) apodization (b) DAS
with rectangular apodization (dashed) and LCA (solid) using two windows
(rectangular and Hamming).

rectangular, Kaiser (β = 2, where β is the shape parameter of the Kaiser
window) and “inverted” Kaiser (β = 2) window. The coefficients in the latter
window is given by:

wp[m] =
1

wK[m]
, (16)

where wK[m] is the mth coefficient of the Kaiser window. Fig. 4(a) shows the
response of the inverted Kaiser window. We see that the mainlobe is narrower
than for rectangular shading, but that the sidelobes have increased. We have
also used our experience with the MV beamformer in the window design.
We have designed windows with asymmetric responses to achieve good edge
definition, based on the complex-valued MV solution in Fig. 1. The windows
were designed by shifting the peak of the response of a Kaiser window:

wp[m] = wK[m]e− j2πφm, (17)

where φ determines the shift. The resulting window is normalized such that the
gain is 0 dB for the steering angle. Fig. 4(b) shows an example of the asymmetric
response of a Kaiser window (β = 3) which has been shifted using φ = 1/(2M)
and normalized.

2.3 Robustness and Signal Cancellation

The two major problems with the MV beamformer is lack of robustness and
signal cancellation. The method is less robust than DAS as the constraint in (5)
only assures that reflections originating from the focal point of the receive beam
are passed with gain one, others are suppressed. At high SNR, a target that
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Fig. 3: Examples of window functions (M = 64): Rectangular (solid), Kaiser,
β = 2 (dashed) and inverted Kaiser, β = 2 (solid with diamonds). The
windows were normalized such that the sum of the weights is equal to one.
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Fig. 4: Examples of window responses. (a) Rectangular window (solid) and
inverted Kaiser window, β = 2 (dashed). (b) Rectangular (solid) and shifted
and normalized Kaiser window, β = 3 (dashed).
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Table I: Windows used by the LCA beamformer.

# Window Parameters

1 Rectangular
2 Kaiser β = 2

3 Kaiser β = 3

4 Kaiser β = 4

5 "Inverted" Kaiser β = 2

6 "Inverted" Kaiser β = 4

7 Kaiser β = 3, φ = 1/(2M)
8 Kaiser β = 3, φ = 3/(4M)
9 Kaiser β = 3, φ = 1/M

10 Kaiser β = 3, φ = −1/(2M)
11 Kaiser β = 3, φ = −3/(4M)
12 Kaiser β = 3, φ = −1/M

is apparently slightly off axis may be severely attenuated, e.g. if the estimate
of acoustic velocity is wrong. Also, since all reflections originate from the
same source, the returning signals will be correlated, and signal cancellation
may occur [11]. Both problems are mitigated by spatial smoothing or diagonal
loading. In [7] we showed that the method could be made robust to errors in
the assumed propagation velocity by decreasing L or increasing ∆ – both at the
expense of resolution.

The robustness of the LCA beamformer is given by the predetermined
windows, and is controlled through the window design. The slope of the
beampattern near the steering angle determines the attenuation of targets that
are slightly off axis. By controlling the slope, we can control the maximum
possible attenuation for a given error in acoustic velocity, or the attenuation
of targets occurring between scan lines.

Signal cancellation may occur in the MV beamformer if the incoming signals
are correlated. E.g. if the wavefield contains two correlated signals, the MV
beampattern may contain two peaks with opposite phase, such that the signal in
focus is cancelled by the off-axis interferer. The MV beamformer will favor such
a solution, as the resulting variance is smaller than if a zero is placed at the
location of the interference. As we have complete control over the predesigned
windows, the LCA beamformer is not affected by signal correlation.

Fig. 5 shows an example where the lack of robustness affects the amplitude
estimate of the MV beamformer. The figure shows the steered responses for two
closely spaced targets using the MV beamformer with relatively long subarrays
(L = M/2), together with LCA (using 12 windows) and DAS (see Fig. 6 for
examples of images). We see that the amplitude estimate of the MV beamformer
is approximately 9 dB lower than both LCA and DAS.
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3 Results

3.1 Simulations

We have simulated two phantoms using Field II [14] – one consisting of pairs of
wire targets and one cyst with point scatterers embedded. The wires were placed
at 30-80 mm depth and separated by 3 mm laterally. The cyst phantom consisted
of 300.000 point scatterers with equal reflectivity, randomly distributed over an
area of 130x10x65 mm (with uniform distribution). The number of scatterers
were more than 10 per resolution cell, which is recommended to simulate
speckle [15]. The cyst was centered at 55 mm depth and had a diameter of 6 mm.
Inside the cyst we set the amplitudes to zero. Pairs of bright point scatterers
were placed in front of and behind the cyst, separated by 3 mm laterally. For all
simulations we added white, Gaussian noise corresponding to approximately 40
dB SNR with respect to the strongest reflector in the image.

We simulated a 64 element, 2.5 MHz, 19.7 mm transducer with approxi-
mately 65 percent -6 dB fractional bandwidth. The height of the transducer was
10 mm. The transducer was driven by 2 cycles of a sine wave at the center fre-
quency. We applied fixed focus on transmission, and dynamic focus on reception.
The received signals were sampled at 20 MHz and filtered by a 1-4 MHz band-
pass filter. We applied delays by upsampling the signals to 160 MHz and then
selecting the sample closest to the theoretically predicted delay. We computed
the analytic signals by applying the Hilbert transform to the delayed channels,
thus allowing complex weights in the adaptive beamformers. For the conven-
tional DAS beamformer, we applied either a rectangular or Hamming window
and summed the channels. For the LCA beamformer, we used the 12 windows
in Table I (unless otherwise stated) and found which window to apply by solv-
ing (12). For the MV beamformer we found the aperture shading using (6) and
the amplitude estimate from (10). For all MV results we used diagonal loading
parameter ∆ = 1/100L.

Fig. 6 shows images of the wire targets using the different beamformers. We
used subarray length L = 24 for the MV beamformer. Tx focus was 50 mm. We
see that both the LCA and MV beamformer gives significantly better resolution
than DAS. Fig. 7 shows the steered responses at depths 50 and 80 mm depth.
We see that both the sidelobe level and the mainlobe width is reduced by the
adaptive beamformers. The adaptive beamformers do also resolve the targets at
80 mm, which the rectangular and Hamming weighted DAS beamformers are
unable to.

Fig. 8 show images of the cyst phantom. Fig. 8(a) and (b) shows images using
DAS with rectangular and Hamming apodization, respectively. We see that the
cyst edges are better defined using the rectangular window and that the point
targets are better resolved. Fig. 8(c) shows results from LCA using K = 0 and
4 predefined windows (windows 1, 4, 7 and 10 in Table I). We see that the
definition of the cyst edges is slightly better than for the rectangular shading,
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Fig. 5: Steered responses of DAS (solid), LCA (dashed), and MV (solid with
diamonds) beamformers using a 64 element, 2.5 MHz, 19.7 mm transducer.
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Fig. 6: Images of simulated data of wire targets using a 64 element, 2.5
MHz, 19.7 mm transducer (a) DAS (rectangular window) (b) DAS (Hamming
window) (c) LCA (12 predefined windows) (d) MV (L = 24 and K = 0). Tx focus
was 50 mm.
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Fig. 7: Steered responses at different depths using a 64 element, 2.5 MHz,
19.7 mm transducer (a) 50 mm (b) 80 mm.

and that both the near and far point targets are better defined. The speckle
appears similar, although with a slightly higher variance. Figs. 8(d) and (e)
show LCA using 12 windows and K = 0 and K = 15, respectively. The cyst
appears larger and closer to its actual size in these images. However, for K = 0,
we see that the speckle appears less homogeneous and the overall brightness is
reduced. Using K = 15, which means that we average over 31 samples when
estimating the variance in (12), gives more homogeneous speckle. We see that
the closer point targets are much better defined compared to the conventional
beamformers, and that the far targets are slightly better resolved. Fig. 8(f)
shows MV using L = 24. We see that the cyst definition is slightly poorer than
LCA, but the point targets are better resolved, especially the deeper ones.

It is instructive to see which window the LCA beamformer chooses for the
different points in the image. The choice of window may assist in classifying
the object being imaged. Fig. 9 shows the chosen window type for each
point in the image in Fig. 8(e). We have coded the image in three different
shades and grouped the windows as follows: All windows with symmetric
responses are coded in black (windows 1-6) and all windows with asymmetric
responses which are shifted in the same direction are coded in gray (windows
7-9) and white (windows 10-12), respectively. We see that at close to and at
the edges, asymmetric responses are chosen to get as good definition of the
edges as possible. These windows are also chosen at the edges of the point
scatterers. Between targets, windows with symmetric beampatterns are chosen,
to suppress the off-axis targets on both sides.

3.2 Experimental Data

We have applied the different beamformers to an experimental RF data set
from a heart phantom, obtained from the Biomedical Ultrasound Laboratory,
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Fig. 8: Images from a simulated cyst phantom using a 64 element, 2.5 MHz,
19.7 mm transducer. (a) DAS (rectangular window) (b) DAS (Hamming
window) (c) LCA (four predefined windows, K = 0) (d) LCA (12 predefined
windows, K = 0) (e) LCA (12 predefined windows, K = 15) (f) MV (L = 24,
K = 15). Tx focus was 50 mm.
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Fig. 10: Images formed using experimental RF data and a 64 element,
3.33 MHz, 15.4 mm transducer. (a) DAS (rectangular window) (b) LCA (12
predefined windows, K = 11) (c) MV (L = 32, K = 11). Tx focus was 50 mm.

University of Michigan.∗ The data set was recorded using a 64 element, 3.33
MHz transducer, and sampled at 17.76 MHz. We upsampled the recorded
signals by a factor eight before applying delays. Transmit focus was 50 mm.
Fig. 10 shows the images obtained using DAS with rectangular window, LCA,
and MV using subarray length L = 32. Both adaptive beamformers used K = 11,
meaning that we have averaged over 23 samples when estimating the variance
and covariance matrices. We see that both adaptive beamformers give better
definition of the ventricular walls and similar speckle as the DAS image.

4 Discussion
We see from the images in Fig. 6 that both LCA and MV gives significantly
better resolution than DAS. These are relatively simple images, but it gives
an indication of the achievable resolution of bright scatterers. From Fig. 8
we see that the LCA and MV beamformers performs significantly better than
DAS on more realistic images of a cyst and bright point targets in speckle as
well. Compared to the DAS images, the cyst is closer to its actual size (6
mm diameter), and the point targets are better resolved. For LCA, the near
targets are better resolved than the deeper targets. For the deeper targets the
MV beamformer performs better. This shows some of differences between the
full adaptive beamformer, and the approximation we get using LCA. The MV
beamformer adapts to any scenario and can place zeros at the exact locations
of off-axis interference. LCA has only a limited number of windows to choose
from, and will not adapt equally well. We also see that due to the discrete
solution space, some image artifacts are present between the point targets in
the form of sidelobes in Fig. 8(e). These are not present in the MV image in
Fig. 8(f). As the MV beamformer has more freedom, the beampatterns change

∗Ultrasound RF data-set ’heart’ from the Biomedical Ultrasound Laboratory, University of
Michigan. Available at http://bul.eecs.umich.edu/, August 2008.
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more smoothly when the image changes. From the results in Fig. 10 we see
that the LCA beamformer improves the image quality on experimental data as
well. The ventricular walls are better defined compared to DAS, and we see in
particular that the brighter points are less smeared.

The proposed method may save a considerable number of computations
compared to a full implementation of the MV beamformer. The number of
operations required to find the MV weights is approximately 2L3/3 using
Gaussian elimination [16], and hence is cubic with the subarray size. The
complexity of the proposed method is linear with the number of elements, and
the number of operations is approximately 2PM. The method should also be easy
to implement on existing imaging systems. For K = 0, we just need to apply P− 1

more windows to the data compared to DAS. We then compare the solutions for
the different apodizations and select the one with the smallest absolute value.
For K > 0, we must store 2K + 1 values for each window and estimate the
variances, for instance by (15). To achieve windows with asymmetric responses
we have used complex weights, and we hence need complex data as input to
the beamformer. To obtain this we computed the analytic signals by applying
the Hilbert transform to the recorded channels. We could also have used
real weights and delays to achieve the asymmetric responses. The weights
would have to be scaled such that the response in the angle of the transmit
beam is 0 dB. Such an implementation would fit well in the context of parallel
beamforming. We could use several receive beams per transmission, and scale
the off axis beams such that they have 0 dB gain in the direction of the transmit
beam.

The performance of the proposed method depends very much on the window
design. The best set of windows may be different for different scenarios, such
that care must be taken to meet different criteria. Using many windows that
are slightly different is desirable, as we get smooth transitions when the image
changes, e.g. over a edge. Applying many windows will, however, come at a
computational cost. We may increase the number of windows without a linear
increase in cost by using classes of windows, where each class is represented
by a “parent” window. We can first apply the parent windows, and classify the
point based on the selected window. If for instance a window with asymmetric
response is chosen, we classify the point as an edge and then try several windows
that are shifted in the same direction, but have different slopes. In that way we
do not have to test all windows, but can refine our search based on the primary
selection.

From the image in Fig. 9 we see that the chosen window may assist in
classifying the points in the image. Windows with asymmetric responses are
chosen at the edges of the cyst and the edges of the point targets. However, we
also see that in the speckle regions, asymmetric responses are chosen over large
areas, so we cannot depend on the window selection only. However, it may be a
tool to help defining boundaries between different tissue.

In this paper we have used both classical windows and windows that were
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designed from our experience with the MV beamformer in the proposed method.
Future research should further explore the window design, in particular directed
at different applications within ultrasound imaging.

5 Conclusions

We have applied a data-dependent beamformer with low complexity and
demonstrated improved image quality compared to delay-and-sum, both on
simulated and experimental RF data. The method is robust, can handle coherent
targets, and is easy to implement. The method requires only a fraction of the
computations of a full adaptive beamformer like minimum variance, and may be
a realistic candidate for real-time implementation.
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On Single Snapshot Minimum
Variance Beamforming

Johan-Fredrik Synnevåg and Are F. C. Jensen

Abstract

We analyze the minimum variance beamformer when only single
snapshots of the wavefields are used to optimize the array weights. We
present an intuitive and unifying framework for showing how a direct
implementation of such beamformers may lead to signal cancellation, and
how subarray averaging can mitigate this effect. A key component is
interpreting subarray averaging as a series of bandpass filters which
decorrelate the different sources. The framework readily makes available
what is required to avoid signal cancellation altogether, and allows us
to analyze the compromises between mitigating signal cancellation and
maximizing angular resolution.
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1 Introduction

Adaptive beamforming methods often rely on accurate estimates of the signal
statistics of the recorded data. For broadband, pulsed systems, few samples are
available for the estimation. In [1] they suggest a method to optimize the array
weights from a single temporal snapshot of the data. In this paper we analyze
the minimum variance (MV) beamformer in such a single snapshot context.
This technique has recently been applied to medical ultrasound imaging [2–5].
We show that a direct implementation based on single snapshots may lead to
signal cancellation, and failure to estimate the amplitude of the propagating
signals. In [3, 5] signal cancellation was avoided by subarray averaging. We
show more formally how subarray averaging mitigates signal cancellation in the
single snapshot case. Following from the derivation, we present an alternative
optimization, in which signal cancellation is avoided.

2 Theory

2.1 Minimum variance beamformer

We consider a uniform linear array of M sensors, where each sensor records a
signal, ym(t). The output of a beamformer operating on this array can be written
as:

z(t) =
M−1

∑
m=0

w∗
mym(t − ∆m) (1)

= wHy(t), (2)

where wm is a (complex) weight, ∆m is the delay applied to channel m, w =
[ w0 w1 · · · wM−1 ]T, and

y(t) =

⎡

⎢

⎢

⎢

⎣

y0(t − ∆0)
y1(t − ∆1)

...
yM−1(t − ∆M−1)

⎤

⎥

⎥

⎥

⎦

. (3)

By assuming that the signals in y(t) have been delayed to steer in a particular
direction prior to further processing, the following derivations are valid for both
narrowband and broadband signals. The weights may be used to control the
mainlobe width and sidelobe level of the beamformer. The minimum variance
(MV) beamformer finds the array weights from the recorded data by minimizing
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the variance of z(t) while keeping unit gain in the steering direction. The
optimization problem becomes, assuming zero degree steering angle, [6]:

min
w

E
{

|z(t)|2
}

= wHRw

subject to wH1 = 1, (4)

where R = E{yyH} is the spatial covariance matrix, and 1 is a vector of ones.
The solution to (4) is:

w =
R−11

1TR−11
. (5)

2.2 Single Snapshot Minimum Variance Beam-
forming

We consider the problem of finding the MV weights from a single snapshot
of the data. For notational simplicity we drop the time dependence of the
output, but introduce a location dependence which will be useful for alternative
formulations of the optimization. The nth sample of the output of the
beamformer can be written as:

z0 =
M−1

∑
m=0

w∗
mxm (6)

= wHx, (7)

where x = [ x0 x1 · · · xM−1 ]T = y(nT) (T is the sampling interval). We
assume that xm = 0 for m < 0 and m > M − 1. By using Parseval’s relation
we can express (6) as:

z0 =
1

2π

∫ π

−π
W∗(k)X(k)dk, (8)

and the square of the output, which can be considered as the single-sample
variance, as:

|z0|
2 =

∣

∣

∣

∣

1

2π

∫ π

−π
W∗(k)X(k)dk

∣

∣

∣

∣

2

, (9)

where W(k) and X(k) are the discrete-time Fourier transforms of wm and xm,
and hence the wavenumber response of the weight function and the sampled
wavefield, respectively. Note that the constraint in (4) forces W∗(0) = 1. The
optimization problem based on a single temporal sample may be expressed as:

min
w

∣

∣

∣

∣

1

2π

∫ π

−π
W∗(k)X(k)dk

∣

∣

∣

∣

2

subject to W∗(0) = 1. (10)

The solution to (10) is given by (5), where R = xxH. Note that R will be of
rank one, and hence not invertible. By constraining the norm of w, which
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corresponds to adding a small regularization to R, we can find a solution. From
the optimization problem in (10) we can readily see that the one-sample variance
estimate may lead to signal cancellation, a well known problem with the
minimum variance beamformer when sources are coherent [7]. The constraint
in (10) assures that the signal of interest is passed with gain equal to one.
However, with more than one signal present, there may exist a solution in which
the product W∗(k1)X(k1) has the same value, but opposite sign, as W∗(0)X(0).
The constraint is then fulfilled, but the signal we steer towards is canceled by
another signal propagating along the array with a different wavenumber. Such
a solution would be smaller than if W∗(k) = 0 for all k where interfering signals
are present, and hence the preferred solution given the cost function.

2.3 Subarray Averaging

Subarray averaging is a common method to avoid signal cancellation in the
presence of correlated sources [8]. The aperture is divided into (overlapping)
subarrays of length L and the output from each subarray is averaged:

zSA(nT) =
1

M − L + 1

M−L

∑
m=0

wH
L xm (11)

=
1

M − L + 1

M−L

∑
m=0

zm (12)

where wL is a vector containing L weights, xm = [ xm xm+1 · · · xm+L−1 ] is a
vector containing the values of the mth subarray, and zm is the output of the mth
subarray beamformer.

The sum of the squares of the output of each subarray beamformer, which
can be considered as an estimate of the subarray variances, becomes:

σ2
SA ∝

M−L

∑
m=0

|zm|
2 =

M−L

∑
m=0

∣

∣

∣
wH

L xm

∣

∣

∣

2

. (13)

Minimizing (13) subject to wH1 = 1 yields the solution in (5), where

R =
M−L

∑
m=0

xmxH
m , (14)

and w = wL.
We consider w

(L)
m to be an FIR filter of length L whose coefficients are given

by the vector wL. We note that the sum in (11) is exactly the sum of a windowed

convolution of w
(L)
−m with xm. Let

hm =

{

1 if 0 ≤ m ≤ M − L
0 otherwise

(15)
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and

qm = hm · (w−m ∗ xm), (16)

with Fourier transform:

Q(k) =
1

2π

∫ π

−π
H(k −κ) (W∗

L(κ) · X(κ)) dκ, (17)

where H(k), WL(k) and X(k) are the Fourier transforms of hm, w
(L)
−m and xm,

respectively. We can hence write

zSA =
1

M − L + 1

∞

∑
m=−∞

qm, . (18)

and, using Parseval’s relation, we can write the estimate of the variance as:

σ2
SA ∝

∞

∑
m=−∞

|qm|
2 =

1

2π

∫ π

−π
|Q(k)|2dk

=
1

2π

∫ π

−π

∣

∣

∣

∣

1

2π

∫ π

−π
H(k −κ) (W∗

L(κ) · X(κ)) dκ

∣

∣

∣

∣

2

dk.

(19)

Note that for L = M, which corresponds to hm = δm and H(k) = 1, we get the
expression for |z0|

2 in (9).

We can interpret (19) as an infinite sum of the powers in the signals
W∗

L(k) · Xκ(k) (over all k), where Xκ(k) is bandpass filtered version of X(k)
(filtered by H(k −κ)). H(k) acts as a spatial bandpass filter which “decorrelates”
signals at different wavenumbers. If two signals appear within the passband
of the filter, they may cancel each other. If H(k) = 1, as in the expression for
|z0|

2, no decorrelation occurs. For subarray averaging, smaller L, i.e., shorter
subarrays, better decorrelates closely spaced sources. As hm gets longer, H(k)
becomes a narrower bandpass filter. Fig. 1(a) shows an example of H(k −κ) for
different values of κ using subarray averaging in which M = 32 and L = 16.
The vertical dotted lines indicate possible sources at different wavenumbers.
If sources are sufficiently separated such that only one source is within the
passband of H(k −κ) (as for the sources located at k0 and k1), signal cancellation
is avoided. If two or more sources are spaced less apart than the width of the
mainlobe of H(k −κ), signal cancellation may occur (as for the sources at k2 and
k3). Fig. 1(b) shows the steered response of an MV beamformer applied to the
scenario in Fig. 1(a). All propagating signals have amplitude equal to one. We
see that signal cancellation occurs when trying to estimate the sources located
at k2 and k3.
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Fig. 1: (a) Examples of H(k − κ) for three different values of κ. (b) Steered
response of a subarray averaged MV beamformer. The wavefield consists of
four signals (corresponding to the vertical dashed lines in (a)).
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2.4 Spatial Convolution

From the optimization in (10) we see that to avoid signal cancellation we would
rather optimize:

min
w

1

2π

∫ π

−π
|W∗(k)X(k)dk|2

subject to W∗(0) = 1, (20)

as any non-zero value of W∗(k)X(k) then gives a positive contribution to the
cost function. This is achieved by setting L = M and H(k) = δ(k) in (19) (with
corresponding hm = 1). In the spatial domain the optimization becomes:

min
w

M−1

∑
m=−M+1

∣

∣

∣
wH

L xm

∣

∣

∣

2

=
M−1

∑
m=−M+1

|zm|
2

subject to wH1 = 1. (21)

The solution to this minimization can be found by constructing a zero-padded,
3M − 2 length measurement vector:

x̄ =
[

0 0 · · · x0 · · · xM−1 · · · 0 0
]T

, (22)

divide it into subarrays of length M, and form the spatial covariance matrix by
subarray averaging. Note that although the calculation of the weights involves
a sum over |wH

L xm|2, the weights are applied to the original measurement vector.
Fig. 2 shows delay-and-sum (DAS) beamforming (w = 1/M · 1) compared

to the subarray-averaged MV solution and the solution found from (21). Four
signals, indicated by the vertical lines, were present in the wavefield, all with
amplitude equal to one. We see that the conventional beamformer is unable to
resolve closely spaced targets within the two groups. The MV beamformer in (21)
resolves the two signals at k = k0 and k = k1, but is unable to resolve the signals
at k2 and k3. However, this solution gives better estimates of the amplitude
at k = k2 and k = k3 than both the conventional and subarray-averaged MV
beamformer. The subarray-averaged MV beamformer provides better separation
of the signals at k = k0 and k = k1, but gives inaccurate amplitude estimates of
the signals at k = k2 and k = k3, due to signal cancellation.

3 Discussion and Conclusion
The single sample minimum variance beamformer given by the optimization
in (10) has rather limited use in practice, unless the wavefield consists of a single
signal source. With more than one source present, signal cancellation is likely
to occur. Computing the signal statistics from a single temporal sample leads
to an estimate of the spatial covariance in which all signals are correlated. The
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Fig. 2: Steered response of DAS (solid), MV in (21) (dashed) and subarray
averaged MV (solid with x-marks) from wavefield consisting of four signals.

correlation is given by the instantaneous value of the source signals at sample
n.

We have interpreted subarray averaging as a bandpass filter which
decorrelates signals at different wavenumbers. Smaller L, i. e. smaller
subarrays, gives a narrower bandpass filter and a better decorrelation of closely
spaced sources. However, smaller L gives fewer weights, and hence fewer
degrees of freedom to suppress interfering signals and noise. The choice of
L will be a trade off between the performance of the beamformer and the
robustness towards signal cancellation. Note that the solution given by (21),
which corresponds to H(k) = δ(k), can be seen as a “perfect” decorrelation of
the signals at different wavenumbers. Hence, this solution will not suffer from
signal cancellation. However, this solution gives poorer resolution than using
subarray averaging.

Note that in our simulation results we have used narrowband, far-field
signal sources which only occupy a single wavenumber in the Fourier domain.
We acknowledge that short, non-stationary sources will have a certain spatial
bandwidth. However, the conclusions regarding the different optimization
problems are valid for broadband sources as well.
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Blind Source Separation for
Convolutive Mixtures Using

Spatially Resampled Observations

Johan-Fredrik Synnevåg and Tobias Dahl

Abstract

We propose a new technique for separation of sources from convolutive
mixtures based on independent component analysis (ICA). The method
allows coherent processing of all frequencies, in contrast to the traditional
treatment of individual frequency bands. The use of an array enables
resampling of the signals in such a way that all frequency bands are
effectively transformed onto the centre frequency. Subsequent separation
is performed “all-bands-in-one”. After resampling, a single matrix describes
the mixture, allowing use of standard ICA algorithms for source separation.

The technique is applied to the cocktail-party problem to obtain an initial
estimate of the separating parameters, which may further be processed
using cross-talk removal or filtering. Experiments with two sources of
speech and a four element microphone array show that the mixing matrix
found by ICA is close to the theoretically predicted, and that 15 dB
separation of the sources is achieved.
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1 Introduction

A vast number of techniques have been developed for blind source separation
(BSS) and extraction (BSE) over the last decades, and the field of BSS and BSE
spurs hundreds of paper every year (see [1] for a recent survey).

Many BSS techniques are based on the transition from time domain convolu-
tive mixtures to frequency domain instantaneous mixtures. A well known prob-
lem with this approach is the permutation and scaling inconsistencies which
leads to a "re-mixing" of the sources when the frequency separated sources are
transformed to the time-domain. As a consequence, numerous papers have been
published that deal with this inconsistency, for a recent overview see [2,3].

An interesting comment about the limitation of frequency based BSS was
made by Araki et al. [4], showing that such techniques are essentially limited by
the performance of an adaptive beamformer. This is down to an argument that
works across each and every frequency: The echoes from the echoic environment
will appear as directional signals coming into the array, essentially taking the
place as “new signals”. For every frequency, it holds true that the limitations in
the number of zeros that can be placed over the angular directions is limited, and
that a tradeoff must be struck between the strength of the signal in the direction
of the desire, and the various suppression levels that can be put on other
directions. A direct consequence of Araki’s statements, is that frequency-band
based BSS is heavily overparamaterized: Since the optimal result is obtained
by zero forcing in the same positions along all frequencies, separation could
ideally be derived for all frequency bands by “extrapolating” the zero-forcing
settings estimated for a single band. Assuming all sources to occupy the same
frequency band, or that no source separation can be based on frequency contents
alone, it follows that performing ICA on each and every bin is a potential waste
of computer power, since analysis of the bands essentially outputs the same
directional separation-information. Given the limitations of frequency-based
BSS, post-filtering and cross-talk removal is necessary to improve separation.

Other scientists pursue the time-domain approach [5] to avoid dealing with
this inconsistency, but such methods easily become very complex. Yet others
use combined approaches, a recent method computes inversion filters in time
domain while using a cost function in frequency domain [6]. Time-frequency
signatures [7] is a powerful tool that may be used for separation even in cases
where there are more sources than mixes.

We propose a technique which has the potential for utilizing advantages
of both time-domain and frequency-domain BSS. By using spatial resampling
along the array direction in the temporal frequency domain, every frequency
band of the original signal is "forced" onto the same spatial frequency. This
enables an ICA-like representation of the BSS problem, avoiding the use of
multiple frequency bins and the resulting permutation inconsistency. We
present real-life experiments based on this approach and discuss its limitations.
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Resampling

It should be noted that we are no longer attempting to solve the "original"
cocktail-party problem, but rather a modified problem with a lower number of
estimated separation parameters than would be required for perfect separation
in an echoic envirmonent. In [8], the authors propose a technique which
incorporates knowledge of the microphone setup. However, the proposed
techniques do no not involve the spatial resampling key step we propose here,
and is hence quite different from the material in the present paper.

2 Method

2.1 Signal model

The use of independent component analysis for blind separation of independent
sources requires observations of the form

x = As, (1)

where x ∈ RM is a vector of observations of M mixes , s ∈ RN is a vector
containing samples from N independent sources and A ∈ RM×N is the mixing
matrix describing how the sources are observed.

The time-domain model for the cocktail party is more complex. To build
intuition around the problem, we first consider a simplified, anechoic model,
with no distortion effects at the microphones. Each observation, x j(t), for
j = 1, . . . , M can then be modeled as

x j(t) =
N

∑
i=1

si(t) ∗
1

ri j
δ(t − τi j), (2)

where x j(t) is the output of the jth microphone, si is independent component i
(the ith speaker), δ(·) is the Dirac delta-function, ∗ is the convolution operator,
ri j is the distance from speaker i to microphone j, τi j is the sound propagation
delay from speaker i to microphone j, and N is the number of speakers.
Whereas the ICA model in (1) does not capture the linear convolution required to
describe the time-delays between the sources and observation points, the model
(2) encompasses this possibility. The full convolutive BSS model, containing
possible echoes from multiple directions as well as filtering and attenuation
effects in space, time and linear equipment distortion is

x j(t) =
N

∑
i=1

si(t) ∗ bi j(t), (3)

where {bi j(t)} is a set of FIR filters describing the contributions of each of the
sources indexed by j on each of the mixes indexed by i. The traditional way to
adapt the echoic cocktail party problem on to the form (1) is by transforming the
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observations to the frequency domain and treat each frequency independently,
avoiding the convolution. Also, methods dealing purely with time-shifting and
attenuation in the echo-free scenario [9] have been proposed. However, these do
not take full advantage of the possibilities of array processing.

2.2 Frequency domain representation

Consider the model (2) in the frequency domain. The observations for one
narrow frequency bin can be written as

x j(ω) =
N

∑
i=1

ai j(θ)Si(ω), (4)

where Si(ω) is the amplitude of the ith source at frequency ω/2π . Collecting
terms from the M mixes into the vector x(ω) = [x1(ω), x2(ω), ..., xN(ω)]T

and from all the mixes and the one source i into the vector ai(θ) =
[ai1(θ), ai2(θ), . . . , aiM(θ)]T, we can write

x(ω) =
N

∑
i=1

ai(θ)Si(ω) (5)

where ai(θ) contains the time-delays between arrivals at the different sensors
for the ith source. ai(θ) is known as the steering vector [10] in array processing.
In matrix form, (5) can be written as

x(ω) = A(ω)S(ω), (6)

where
A(ω) = [a1(θ), . . . , aM(θ)], (7)

and
S(ω) = [s1(ω), . . . , sN(ω)]T . (8)

The problem (6) is now on the same form as (1), but each frequency has to be
treated independently.

2.3 Transformation from convolutive to in-
stantaneous mixtures

We propose to transform the convolutive model in (2) to the linear sum in (1)
using a technique from array processing. The transformation requires an array
of sensors with known geometry, as both the temporal and spatial frequency
spectrum of the recorded wavefield must be captured. With this knowledge,
spatial resampling is performed along the array direction for each temporal
frequency band, effectively transforming the observations onto the ICA form.
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2.3.1 Spatial frequency: The wavenumber

First, we explain the term spatial frequency, which is central in array signal
processing. Imagine an acoustic wave measured in a single point in space and
consider the temporal frequency of the signal. The question at hand is then
how many times the signal oscillates within a given time span. Of course, a
speech signal consists of many superpositioned waves oscillating with different
periods, giving a whole spectrum of frequencies. Moving on to spatial frequency,
the question is slightly different: If the wavefield is observed, not in a single
point, but along a directive line segment in space, how many times does the wave
oscillate within the line segment? This situation is illustrated in Fig. 1, which
shows a narrowband, plane wave propagating in the xy-plane. The solid lines
are the wave-fronts, meaning the lines of constant phase of the travelling wave,
and the arrow indicates the direction of propagation. The number of periods of
the wave fitting into a line segment of limited length in the xy-plane gives a
measure of the spatial frequency in the direction of the line. Clearly, the spatial
frequency will vary with the direction of the segment. In this example, if we look
towards the wavefront, the spatial frequency will be higher than if the segment
is placed along the x-axis. To be able to measure the frequency along a spatial
dimension, we need access to data sampled along a line in space. This requires
the use of an array.

The spatial frequency along the direction of propagation is called the
wavenumber and is given by

k =
ω

c
, (9)

where c is the propagation velocity of the medium. The wavenumber vector, �k,
contains the spatial frequencies along each spatial dimension of the wavefield,
and satisfies the relation

|�k| = k. (10)

By using a linear array of sensors, we sample one spatial dimension of the
wavefield, and can estimate the wavenumber component in that direction. In
Fig. 1 an array is located along the x-axis. The spatial frequency along this
dimension is given by

kx = k sin(θ), (11)

where θ is the propagation angle, defined clockwise with respect to the y-axis.
For the remainder of the paper we will refer to the wavenumber component along
the array dimension simply as the wavenumber.

We denote the wavefield along the x-axis z(x, t). By placing a microphone
every d meters we can describe the sampled wavefield as

ym(n) = z(md, nT), (12)

where m is the sensor number, n is the temporal sample number, and T is the
sampling interval. Similar to estimating the temporal frequency of the sampled
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signal using the discrete Fourier transform as

Ym(ω) =
L−1

∑
n=0

ym(n)e− jωnT , (13)

where L is the number of temporal samples, we can estimate the wavenumbers
along the array direction as

Y(kx) =
M−1

∑
m=0

ym(n)e− jkxmd. (14)

The wavenumber-frequency response is a summation over both time and space,

Y(kx,ω) =
M−1

∑
m=0

L−1

∑
n=0

ym(n)e− jωnTe− jkxmd. (15)

For narrowband waves, ω is fixed, and kx will change as a function of
propagation direction of the wave. If the temporal frequency of the signal is
known, the propagation angle can be found using (11). Fig. 2(a) and (b) shows
two examples of sinusoidal waves sampled in space and time by an eight channel
linear array. Fig. 2(c) shows spatial samples at a selected point in time. For the
wave in Fig. 2(a), which propagates in a direction orthogonal to the array, the
amplitude is the same on all channels, because the signal arrives at the same
time on all sensors. The wavenumber is then zero. For the signal propagating
with non-zero angle, a sinusoidal pattern is evident over the array, leading to a
non-zero wavenumber. Fig. 2(d) shows the estimated wavenumbers for the two
examples. The corresponding angle of arrival is shown on the top axis.

Broadband waves are described by superpositioning narrowband waves
with different temporal frequencies. Broadband waves correspond to lines in
wavenumber-frequency space. Fig. 3 (a) shows the estimated wavenumber-
frequency spectra of three broadband waves propagating across a uniform linear
array. For non-zero angles of arrival, the wavenumber increases linearly with
frequency, where the slope depends on the angle of arrival. All temporal
frequencies of signals originating perpendicular to the array appear with zero
wavenumber. Going back to the frequency domain model of the cocktail-party
problem, the steering vector modeling the observed signal is simply a(θ) =
[1 1 . . . 1]T for all frequencies, hence no time-delays are required to describe the
observations. For signals arriving at an angle, the steering vector is frequency-
dependent and given by a(θ) = [1 e jkxd . . . e jkx(M−1)d]T. If the wavenumber was
constant regardless of frequency for any incidence angle, the steering vector
would be identical for all frequencies, and a single mixing matrix would describe
the observations of several sources. The problem would then be of the form (1).
Spatial resampling [11] is a means to achieve that.
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y

x

Fig. 1: Illustration of a plane wave propagating in the xy-plane.

2.3.2 Spatial resampling

The goal of spatial resampling is to force all temporal frequency components of
a wave to appear with the same wavenumber. We choose a center frequency,
fc, where the corresponding wavenumber will appear for all frequencies. For
f > fc the spatial “sampling rate” is increased by a factor f / fc by interpolating
between samples. Each sample corresponds to a point in space, given by the
sensor location. The original number of samples are kept, effectively reducing
the size of the aperture as we are throwing away samples at the edges. For
frequencies f < fc, we decrease the sampling rate. Since we must keep
the original number of samples, the latter case introduces zeros at the edges
as information is missing outside the original aperture. Fig. 3(b) shows the
corresponding frequency-wavenumber plot of Fig. 3(a) after spatial resampling.
We see that all frequency components appear with the same wavenumber. After
the resampling step, the observations are transformed back to the time domain.
Each temporal frequency component of the observations are now described by
identical steering vectors, and we have a set of observations on ICA form (1).

3 Results

We have evaluated the performance of the method experimentally with a linear
array of four microphones in an anechoic chamber. The experimental setup is
shown in Fig. 4. The microphones were separated by 30 cm. Two speakers were
placed in front of the array, each transmitting a different speech signal. The
distance between the speakers was 1 m, giving propagation angles of 0◦ and
approximately 17◦ for the sources, with reference to the center of the array. The
recorded signals were bandpass filtered, passing frequencies between 300 Hz
and 3 kHz. We resampled the observations spatially, using 500 Hz as resampling
frequency. The sources were then separated with the JADE algorithm [12].
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Fig. 2: Simulated time-series from an 8-channel linear array recording a plane
wave propagating with (a) 0◦ and (b) 17◦ angle. (c) Spatial samples at the
time instance given by the dotted lines. (d) The estimated wavenumber of the
propagating waves. The top axis shows the corresponding propagation angles.

We evaluated the performance of the separation using the signal-to-
interference ratio (SIR) for each of the estimated sources, given by the power
in the desired signal to the power in the interfering signals. The SIR for source
1 was estimated as

ˆSIR(ŝ1) =

(

E (ŝ1(t)s1(t))

E (ŝ1(t)s2(t))

)2

(16)

where ŝ1 is estimate of source 1, s1(t) is the true source 1 and s2(t) is the true
“interfering” source. Both s1(t) and s2(t) were normalized to unit variance before
evaluation. This measure assumes that the estimate of source 1 contains scaled
versions of s1(t) and s2(t), which is a simplification as no filtering effects are
taken into account. The equivalent measure was calculated for source 2.

To evaluate the performance of the method, we first looked at how well the
estimated mixing matrix compared to the theoretically predicted. Note that
the theoretical mixing matrix relates to the resampled observations, hence the
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Fig. 3: Illustration of the effect of spatial resampling. The si represent
three different broadband waves propagating across a linear array in different
directions. The figures show frequency-wavenumber plots (a) before and (b)
after spatial resampling.

columns of this matrix is the steering vectors in (5) with θ = 0◦ and θ = 17◦ for
frequency fc = 500 Hz. It is most instructive to look at the wavenumber response
of the steering vectors, as its peak corresponds to the propagation angle. Fig. 5
shows the wavenumber response of the first column of the theoretical mixing
matrix and the corresponding vector found by ICA. Note that for this, and
the remaining plots, wavenumber has been translated to propagation angle
using (11). The dashed vertical lines shows the true propagation angles. We
see that the peak of the steering vector found by ICA corresponds to the true
propagation angle for source 2.

Rather than looking at the mixing matrix, it is more instructive to study
the unmixing matrix, as its rows correspond to spatial unmixing filters for each
source. In the directions of interfering signals the response should be zero for
perfect separation. Fig. 6 shows the wavenumber response of the second row of
the unmixing matrix found by ICA, together with the response of the theoretical
unmixing filter for the second source. We see that there is a positive gain in the
direction of source 2, and that a zero is placed in the direction of source 1. The
resulting average signal-to-interference ratio was approximately 15 dB for the
two sources.

4 Discussion

The success of source separation with ICA on spatially resampled observations
demands that no significant correlations is introduced between the original
independent sources during resampling. The temporal frequency contents of the
original signals are affected by the transformation, depending on resampling
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Fig. 4: Experimental setup.
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Fig. 5: Wavenumber responses of the theoretical steering vector (solid) and
the steering vector found by ICA (dashed) for source 2 ( f = 500 Hz).
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Fig. 6: Wavenumber responses of the unmixing filters for source 2, theoretical
(solid) and ICA (dashed). The dashed vertical lines indicate the propagation
angles of each source.

frequency and array geometry. Closely spaced sources may be correlated after
the transformation and thereby indistinguishable with ICA.

The present method finds unmixing filters in the spatial domain, not
exploiting temporal correlations in the observations. As a consequence, echos
have to be treated as new “independent” sources, and we are limited by the
number of zeros that can be forced in the wavenumber response. In the echoic
scenario we need as many sensors as there are sources and echos for perfect
separation.

5 Conclusion

We have presented a new method for blind source separation of convolutive
mixtures based on independent component analysis. The method treats all
frequency bands simultaneously and thereby avoids the permutation problem of
frequency domain methods. We have demonstrated the method on experimental
data from the anechoic cocktail-party problem, and shown good separation
performance.
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