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Abstract—Lamb waves are considered a promising tool 

for the monitoring of plate structures. Large areas of plate 

structures can be monitored using active arrays employing 

beamforming techniques. Dispersion and multiple propagat-

ing modes are issues that need to be addressed when work-

ing with Lamb waves. Previous work has mainly focused on 

standard delay-and-sum (DAS) beamforming while reducing 

the effects of multiple modes through frequency selectivity and 

transducer design.

This paper presents a minimum variance distortionless re-

sponse (MVDR) approach for Lamb waves using a uniform 

rectangular array (URA) and a single transmitter. Theoreti-

cally calculated dispersion curves are used to compensate for 

dispersion. The combination of the MVDR approach and the 

two-dimensional array improves the suppression of interfering 

Lamb modes.

The proposed approach is evaluated on simulated and ex-

perimental data and compared with the standard DAS beam-

former. It is shown that the MVDR algorithm performs bet-

ter in terms of higher resolution and better side lobe and 

mode suppression capabilities. Known issues of the MVDR 

approach, such as signal cancellation in highly correlated en-

vironments and poor robustness, are addressed using methods 

that have proven effective for the purpose in other fields of 

active imaging.

I. I

I the field of structural health monitoring (SHM) of 
plate structures, two main technical approaches have 

emerged. The first relies on a relatively dense network of 
transceivers covering the whole structure, and the second, 
which is the subject of this paper, on active arrays, in 
which each array is capable of monitoring a larger area of 
the plate.

Plates act as waveguides for elastic waves. For infinite, 
traction free, thin plates (thin in the sense that the thick-
ness is comparable to the wavelength) this results in Lamb 
waves. Lamb waves are advantageous because they can 
propagate over long distances, making them suitable for 
structural health monitoring (SHM) and non-destructive 
testing (NDT) of plate structures. As with other types of 
guided waves, there is more than one possible propagat-
ing mode for each frequency. Each Lamb mode is charac-
terized by a dispersion curve relating frequency to phase 
velocity.

The multiple propagating modes and the dispersion 
are two important issues that need to be addressed when 
Lamb waves are utilized for inspection or monitoring. 
Most of the previously presented approaches for Lamb 
wave imaging have focused on the standard delay-and-
sum (DAS) beamformer [1]–[7]. The small arrays typically 
employed in this type of setup offer poor suppression of 
unwanted, or interfering, Lamb modes when used with 
the DAS beamformer. The use of larger arrays could, of 
course, improve the suppression of interfering modes, in 
the same way as for signals from other angles. However, 
this may be impractical or too expensive. Mode selectivity 
has instead been achieved on the sensor level. For example, 
Wilcox used a circular array of electro-mechanical acous-
tic transducers (EMAT) to generate symmetric modes [3], 
and Giurugiutiu proposed tuning of the geometric shape 
of the array elements to achieve mode selectivity for a cer-
tain frequency range [8]. A disadvantage of such methods 
is that mode selectivity is generally limited to a relatively 
narrow frequency band [9], which poses a limitation on 
the bandwidth. Limited bandwidth has a negative effect 
on range resolution.

Dispersion reduces the spatial and temporal resolution, 
which is a problem for imaging applications where range 
is to be estimated. In an environment where there is a 
dominant mode, it is possible to select a frequency region 
where waves have relatively low dispersion and thereby 
reducing the problem. Wilcox used the theoretically cal-
culated dispersion curves for the plate to transform time 
domain data into dispersion compensated spatial domain 
data over a wider frequency range for a single mode [3], 
[10].

Other work on Lamb wave arrays include Moulin et 
al. [11] who examined the beam steering properties of a 
small array in transmission. Fromme et al. [12] used the 
approach in [3] on an array of piezoelectric transducer ele-
ments designed for mode selectivity. In [13], Velichko and 
Wilcox proposed a data independent method to maximize 
the ratio between the amplitude in a certain direction and 
the sum of the contributions from all directions through 
weight vector optimization for multiple transmitter set-
ups. For single transmitter setups this results in the well-
known beamwidth-side lobe level trade-off.

Advanced array processing methods, such as adaptive 
beamforming, have not been extensively used in Lamb 
wave applications. Adaptive beamforming has been suc-
cessfully utilized in, for example, radar, sonar, and medi-
cal ultrasound applications, resulting in higher resolution 
and better side lobe suppression compared with the stan-
dard DAS beamformer. The difference between the DAS 
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beamformer, which is independent of data, and an adap-
tive beamformer is that the latter is optimized based on 
some data criterion, such as minimizing the influence of 
interfering signals in the received data. One of the more 
commonly used adaptive array processing techniques is 
the minimum variance distortionless response (MVDR) 
method. A comparison between the MVDR method and 
a standard beamformer for passive direction-of-arrival 
(DOA) estimation of Lamb waves was presented in [14]. 
The results showed that the MVDR approach outperforms 
the standard beamformer in terms of resolution and side 
lobe level.

In this paper, an MVDR approach for Lamb wave im-
aging is proposed which is capable of working in the highly 
correlated environment of an active setup. The basic steps 
of the method follow the approach used in medical ultra-
sound by Sasso and Cohen-Bacrie [15], Synnevåg et al. 
[16], and others. Here, the technique is extended to handle 
dispersion and 2-D arrays. The motivation for using this 
approach is its high resolution and its ability to adaptively 
suppress interfering signals from other defects and from 
other propagating Lamb modes. Efficient suppression of 
interfering modes may relax the requirements on trans-
ducer design and limitations in signal bandwidth.

The paper is organized as follows, basic Lamb wave 
theory and the simulation model are described first. 
Before explaining the theoretical steps of the proposed 
method, the standard DAS beamformer and the MVDR 
beamformer are reviewed. The theoretical presentation is 
followed by some results in which the proposed method is 
compared with the DAS beamformer using both simulated 
and experimental data.

II. P F

This work considers the monitoring of thin plates 
through pulse-echo ultrasonic imaging using guided Lamb 
waves. The imaging covers 360°, in both near-field and 
far-field using a rectangular array as illustrated in Fig. 1. 
A single transmitter located at zt = [xt, yt]T, that may be 
an array element or a separate transducer, insonifies the 
plate with a short pulse or a time-windowed sinusoid. The 
resulting waves are reflected back from boundaries and de-
fects and the backscattered field is recorded by the array 
elements. Let gm(t) denote the signal received by the mth 

array element. These signals can either be obtained simul-
taneously or multiplexed through repeated transmitter ex-
citation. The objective is to estimate the power originat-
ing from each point z = [x, y]T in the region of interest.

Two issues related to Lamb waves that must be ad-
dressed are the dispersion and the multiple modes. Fur-
thermore, because an active setup is considered, the back-
scattered signals derive from the same transmit pulse and 
must therefore be considered as highly correlated. Hence-
forth, it is assumed that gm(t) is the analytic (complex) 
signal; thus, all negative frequency components are zero.

III. T B

A. Dispersion

To perform imaging using Lamb waves over a wide fre-
quency band, the dispersive properties of the Lamb waves 
must be addressed. A necessary step in both simulation 
and compensation of dispersion is the calculation of the 
theoretical dispersion characteristics of the monitored 
structure. For homogeneous isotropic plates, the wave-
number at angular frequency ω, k(ω), can be calculated 
by solving the Rayleigh-Lamb frequency equations [9],

 
tan

tan

( 2)

( 2)
=

4 ( )

( ( ))
,

2

2 2 2

qd

pd

k pq

q k

/

/
for symmetric modes-

-

w
w

 (1)

 
tan

tan

( 2)

( 2)
=
( ( ))

4 ( )

2 2 2

2

qd

pd

q k

k pq

/

/
for antisymmetric mod-

- w
w

ees,   

  (2)

where d is the thickness of the plate, p2 = (ω/cL)2 − k2(ω), 
and q2 = (ω/cS)2 − k2(ω); cL is the longitudinal bulk wave 
velocity and cS is the shear bulk wave velocity of the ma-
terial.

For notational convenience, let index n denote any of 
the possible Lamb modes propagating in the plate, for 
example, the symmetric S0 mode or the antisymmetric 
A0 mode. The mode-dependent wavenumber of mode n is 
denoted kn(ω).

B. Simulation Model

Consider the setup illustrated Fig. 1. To simplify the 
mathematical description, the model is described in the 
frequency domain as harmonic components. Assume that 
the transmitter at position zt generates a harmonic sur-
face point force normal to the plate, denoted  ( )w . This 
excites a cylindrical wave consisting of one or more Lamb 
modes in the plate. The excitation of mode n is modeled 
by the transfer function Hn(ω), that relates the out-of-
plane point force to the out-of-plane displacement of the 
mode. The excitation depends on the so-called mode shape 
of the Lamb mode and its wavenumber. The mode shape 
is the vertical displacement pattern of each mode and it is 
determined by the plate’s thickness and material proper-
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Fig. 1. Overview of the imaging problem.



ties. The equations describing the excitability of Lamb 
modes for a particular frequency of a point source excita-
tion has been derived in many publications. Because the 
complete expressions for Hn(ω) are rather lengthy, the in-
terested reader may consult, for example, [17] for details. 
Fig. 2 shows the excitability in terms of normalized ampli-
tudes of Hn(ω) for the S0 and A0 modes for the plate that 
was used in the evaluation.

Assume a plate with R reflectors that reflect inci-
dent waves equally in all directions. Further assume that 
there are no multiple reflections between the reflectors. 
Let Gm(ω) denote the signal received by array element 
m with angular frequency ω. Each reflector results in a 
signal that is a superposition of the existing modes and 
the corresponding phase-shifts caused by the dispersion in 
the propagation path from the transmitter to the reflector 
r, and back to the receiving element m. Assuming that 
the measured signal from each array element represents 
exactly the out-of-plane displacement at its positions, the 
received signals are simply the sum of the contributions 
from all existing modes and reflectors:

 G
z
R H em

r

R

n r

r n
jk zn r( ) =

1
( ) ( ) ,

=1

( )w w w wåå -  (3)

where zr = || zr − zm || + || zr − zy ||, and || · || denotes the 
Euclidean norm. The position of the reflector is denoted 
zr, zm is the position of the receiver, and zt is the position 
of the transmitter, as illustrated in Fig. 1. The reflection 
coefficient, Rr, is assumed to be frequency-independent 
and equal for all modes. In practical applications it must 
be expected that the reflection coefficient is both mode- 
and frequency-dependent. Mode conversion may also oc-
cur upon reflection, where parts of the energy of the inci-
dent mode are reflected as another mode. It is also assumed 
that the displacement fields from the point-like transmit-
ters can be approximated by the divergence factor 1/ z r  

and the exponential e jk zn r- ( )w .

C. Minimum Variance Distortionless Response

To place the proposed approach into context, this sec-
tion gives a brief review of the DAS and MVDR methods 
for narrowband far-field beamforming for 2-D arrays. The 
delay-and-sum (DAS) beamformer is the most commonly 
used technique for beamforming. Its main advantage is 
robustness, which comes at the cost of poor performance 
compared with more advanced methods. The DAS beam-
former uses predetermined weights on the input signals 
and is therefore independent of the received data.

The output from a narrowband beamformer is

 y t t( ) = ( )w xH , (4)

where H is the conjugate transpose, w is the complex val-
ued column weight vector, and x(t) is a column vector 
containing the narrowband1 input signals from each array 
element at time t.

Let kx = k cos (θ ) and ky = k sin (θ ) denote the wavenum-
ber components2, where θ is the incidence angle and k the 
wavenumber. For the narrowband case, the DAS weight 
vector is simply set to the steering vector a(kx, ky)/M, 
where M is the number of array elements. It is also com-
mon to apply some window function to give different 
weights to the elements (apodization) for the purpose of 
lowering the amplitude of the side lobes in the beampat-
tern. This comes at the cost of reduced resolution.

The steering vector for a uniform rectangular array 
(URA) can be formed by stacking rows of ULA steering 
vectors [18]. Consider a URA with Mc columns, and Mr 
rows, with a total number of M elements. Let the steering 
vector for the mr row be
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where d is the element spacing. The stacked steering vec-
tor takes the form
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The unwindowed output of the standard beamformer is

 y t k k
M

k k tx y x yBF
H( , , ) =

1
( , ) ( ).a g  (7)

Without any constraints, the DAS beamformer is sim-
ply a filter with unit gain for signals having wavenumber 
(kx, ky).

The MVDR method, also known as Capon’s method, 
was originally proposed for frequency-wavenumber esti-
mation of seismic waves [19]. The MVDR method sets a 
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Fig. 2. Normalized excitability of modes S0 and A0.

1 A narrowband signal has a complex envelope that can be considered 
constant during its propagation over the array.

2 Note that kx and ky represent the direction of arrival. This differs 
from the wavenumber vector, which describes the direction of propaga-
tion, by a minus sign.



data-dependent weight vector which minimizes the influ-
ence of interfering signals while passing the desired sig-
nal undistorted. Common to many other advanced array 
processing methods, the standard MVDR approach as-
sumes narrowband signals and is unable to handle cor-
related sources. Besides requiring that the gain for signals 
with wavenumber (kx, ky) is 1, i.e., wHa(kx, ky) = 1, it also 
requires the filter to minimize the output power from the 
array, minw wHRw [20]. R is the covariance matrix, R = 
E{g(t)gH(t)}, where E denotes the expected value. Thus, 
the covariance matrix consists of the covariances between 
the signals received by the different array elements, and is 
in practice replaced by the sample covariance matrix

 R̂ g g=
1

( ) ( ).
=1

N
t t

t

N

å H  (8)

This means that the algorithm produces a weight vector 
that minimizes the influence of the interferers. The solu-
tion to this optimization problem is simply [20]
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The estimated power of the signal with wavenumber 
(kx, ky) is

 P k k
k k k k

x y

x y x y

MVDR H
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1
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.

1a aR̂-
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A major disadvantage of the MVDR algorithm is that 
it is sensitive to errors in the steering vector, where even 
small errors can lead to underestimation of the desired 
signal. Another issue that needs to be addressed is that 
the MVDR method is incapable of handling highly corre-
lated sources, which may lead to cancellation of the signal 
of interest. For the steering vector error, this leads to un-
derestimation of the signal amplitude. Finally, broadband 
signals cannot be modeled using the narrowband steer-
ing vector in (6). The following sections address these is-
sues and propose suitable solutions for MVDR imaging of 
Lamb waves.

IV. M

There are some fundamental differences between ac-
tive near-field imaging applications and traditional far-
field passive sensing for which the MVDR algorithm was 
originally proposed. This section will describe the steps 
required to employ the MVDR approach for Lamb wave 
imaging.

A. Focusing

In previous work on medical ultrasound imaging [15], 
[16], the so-called steered covariance matrix approach [21] 

has been used for near-field focusing. Applying delays to 
focus the data to a particular point enables the estima-
tion of a broadband covariance matrix where the steering 
vector for all frequency components will be equal to the 
unit vector, 1, at that point. This enables direct appli-
cation of the MVDR method to calculate a weight vec-
tor for the steered data. However, because the frequency 
components of Lamb waves propagate at different phase-
velocities, simply applying time-delays will not align the 
signals properly. By performing the focusing in frequency 
domain, each frequency component can be phase-shifted 
using the dispersion characteristics of the plate, thereby 
compensating for the propagation over the transmitter–
reflector–receiver path. This is performed for a particular 
mode n as [10]

 h z G em n d m
jk zn d

,
( )( ) = ( )z

w

wwå , (11)

where zd = || z − zm || + || z − zt ||. The first factor com-
pensates for the divergence in the plate. The focused sig-
nals are arranged in the array

 h z z z zn n n M n
Th h h( ) = [ ( ) ( ) ( )] .1, 2, ,  (12)

This operation is performed at each point in a grid cover-
ing the monitored region of the plate. Because it is as-
sumed that gm(t) is the analytic signal, only frequency 
components below the Nyquist frequency are nonzero.

B. Spatial Smoothing

Recall that the backscattered signals in an active setup 
are likely highly correlated. Thus, the most significant 
limitation of the MVDR algorithm for array imaging ap-
plications is its deficiency in handling correlated signals. 
As mentioned in Section III-C, this may result in signal 
cancellation causing underestimation of the amplitude of 
the reflected signals. Several different approaches have 
been proposed to reduce signal cancellation [22], [23]. In 
the medical ultrasound field [15], [16] this problem has 
been mitigated through so-called spatial smoothing [22] of 
linear arrays. This approach can be directly extended to 
rectangular arrays.

For a single transmitter, each point in focus, z, will re-
sult in a vector hn(z) that can be used to form a focused 

sample covariance matrix with rank one, R̂ zn( ) = h z h zn n( ) ( )H . 

A rank one covariance matrix can, of course, only repre-
sent a single scatterer. To capture the statistics in a mul-
tiscatterer and multimode environment, the rank of the 
covariance matrix must be increased using multiple snap-
shots. The sample covariance matrix in (8) is formed by 
temporal averaging over several samples, or snapshots, 
and can thereby acquire a sufficient rank. For the focused 
covariance matrix, this could be achieved through spatial 
averaging, which is performed by focusing and forming 
covariance matrices over several points close to the point 
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of interest. The covariance matrices are then averaged, 
resulting in a spatially averaged covariance matrix. How-
ever, because the broadband signals are spatially local-
ized, averaging over adjacent points may not improve the 
estimate. Furthermore, spatial or temporal averaging of 
this kind does not decorrelate the signals.

The spatial smoothing approach addresses both of 
these problems; it decorrelates signals and increases the 
number of snapshots. Spatial smoothing is performed 
by dividing the array into L rectangular subarrays, see  
Fig. 3, each consisting of M′ elements. The covariance ma-
trices calculated for each of the subarrays are then aver-
aged. The approach requires the subarrays to have identi-
cal shape, which poses a limitation on the shape of the 
array. This motivates using a rectangular array instead of, 
for example, a circular array. The disadvantage with the 
approach is that the effective aperture size is reduced to 
that of the subarrays.

In [24], an optimal subarray size of a uniform linear 
array for two closely spaced narrowband coherent sources 
was derived. It was shown that an optimal size of sub-
arrays for a uniform linear array is 0.6(number of array 
elements + 1). However, it should be expected that back-
scattered signals from two defects are not perfectly coher-
ent because they are never identical. This could motivate 
a slightly larger subarray size for measurement data than 
the optimal size for ideal coherent signals.

The focused signals from element m′ of subarray l are 
denoted hl,m′,n(t). The dispersion compensated and focused 
spatial signal of subarray l is

 h z z z zl n l n l n l M n
Th h h, ,1, ,2, , ,( ) = [ ( ) ( ) ( )] . ¢  (13)

Hence, the sample covariance matrix of subarray l at point 
z is given by

 R̂ z h z h zl n l n l n, , ,( ) = ( ) ( ).H  (14)

Finally, the smoothed covariance matrix is found by aver-
aging over the subarray covariance matrices
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The decorrelating effect from the spatial smoothing 
can be further improved by also including the backward 
covariance matrix estimates through so-called forward-
backward averaging [18]. The backward covariance matrix 
is given by

 ˆ ˆ ,R Rz J z Js n s n, , ,( ) = ( )B
H  (16)

where J is the exchange matrix, which is a square matrix 
with ones on the counter-diagonal and all other elements 
zero. The forward-backward spatially smoothed covari-
ance matrix is the average of the forward and backward 
estimates,

 ˆ ˆ ˆ( )R R Rz z zs n s n s n, , , , ,( ) =
1

2
( ) ( ) .FB B+  (17)

After these steps, the power of a particular mode in 
point z can now be estimated using the MVDR algorithm. 
Because the covariance matrix is already focused, the 
steering vector is simply the unit vector, 1. This makes 
the MVDR-filtered output for subarray l
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The outputs from the subarrays are then averaged
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and the MVDR power estimate is calculated as

 P̂ yn nMVDR | |,
2( ) = ( ) .z z  (20)

Because the DAS approach does not require spatial 
smoothing, it can utilize the full array. The vector hn(z) 
is already focused, making the unwindowed DAS power 
estimate simply

 P̂ n
T
nDAS | |,

2( ) = ( ) .z 1 h z  (21)

Apodization can be applied by replacing the unit vector 
with a suitable window function.

Spatial smoothing allows the MVDR algorithm to 
work in the coherent signal environment of active imag-
ing by reducing signal cancellation. Increasing the number 
of subarrays reduces the effects of signal cancellation, at 
the cost of lower resolution and interference suppression. 
The spatially smoothed covariance matrix has at most 
rank L. In the examples used in this work L is less than 
the number of array elements in each subarray M′, which 
leads to a non-invertible covariance matrix. The next sec-
tion explains how the issue of invertibility can be handled 
and how the problem with underestimation of the signal 
amplitude caused by steering vector errors can be further 
reduced.
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Fig. 3. Spatial smoothing. The array is divided into L overlapping subar-
rays.



C. Robustness

The MVDR algorithm is very sensitive to errors in the 
steering vector (6). A mismatch between the steering vec-
tor and the signal of interest may lead to an underes-
timation of the amplitude of the signal. Steering vector 
errors can be caused by uncertainties in element position, 
physical differences between array elements, or errors in 
the estimated dispersion characteristics of the plate. In 
practical implementations, some kind of regularization is 
often required. The simplest and most common method is 
diagonal loading. This is performed by adding a diagonal 
matrix αI to the sample covariance matrix,

 ˆ ˆ ,R R Iload = + a  (22)

where α > 0. Selecting a suitable α is a user-selected de-
sign parameter. There are methods for setting an optimal 
α based on the uncertainties of the steering vector [25]. A 
straightforward way to set α is to make it proportional to 
the average power of the received signals, which can be 
estimated through the trace of the covariance matrix [16]

 a
e

=
1

{ }
¢M
tr ˆ ,R  (23)

where ε scales the amount of loading and M′ is the number 
of elements in the subarrays. The diagonal loading leads 
to the same result as adding white noise to the signal 
does; it reduces the adaptivity of the MVDR algorithm 
and thereby also the effects of steering vector errors. To 
some extent, it also reduces underestimation of the ampli-
tude caused by weakly correlated sources. Furthermore, a 
sufficiently large amount of diagonal loading ensures that 
the covariance matrix is invertible. By increasing the di-
agonal loading, the MVDR estimate approaches the DAS 
estimate.

D. The Algorithm

The previous sections explained in detail the proposed 
method. The whole procedure can be summarized as the 
following steps performed for each point z in the region of 
interest and for a particular Lamb mode n

 1)  Compensate for dispersion and propagation using 
the dispersion curve of mode n for point z (11).

 2)  Form the focused array for point z (12).
 3)  Calculate covariance matrices and perform spatial 

smoothing (13) and (14).
 4)  Apply diagonal loading (22).
 5)  Apply the MVDR filter to calculate the estimated 

power (18)–(20).

The dispersion-compensated DAS approach only requires 
steps 1 and 2. The DAS power estimate is then given by 
(21).

V. R

The proposed method was evaluated on both simulat-
ed and experimental data and compared with the DAS 
beamformer. The object used for the evaluation was a 
6-mm-thick, 750 × 750 mm aluminum plate (6082-T6) 
with artificial defects. The artificial defects included pairs 
of drilled through holes, a 1-cm-wide notch, and some ar-
tificial pits with depths 1 to 3 mm. Because of difficulties 
in creating realistic simulation models for the notch and 
the pits, only the circular holes were used in the simula-
tion model. The layout of the defects and the positions of 
the array and the transmitter are shown in Fig. 4. The 
pairs of holes are labeled A, B, and C. Pair A consists of 
two holes, 7 mm in diameter, 28 mm apart, whereas pairs 
B and C consist of two 5-mm holes each, located 21 and 
10 mm apart, respectively.

A single stand-alone transducer was used for the ex-
citation and the back-scattered signals were received by 
an 8 × 8 element rectangular array. Small pinducers from 
Valpey Fisher Corp. (Hopkinton, MA) were used both as 
receivers and transmitter. The pinducers had a diameter of 
1.5 mm and a resonance frequency of 1.1 MHz, which was 
well above the frequency range used in the experiments. 
The pinducers were coupled to the plates through a thin 
layer of oil, which limited the detection and generation to 
out-of-plane displacement. Two different element spacings 
in the array were evaluated, 3.5 and 7 mm, labeled Array 
1 and 2, respectively. Spatial smoothing was applied on all 
results for the MVDR approach using 9 overlapping 6 × 
6 subarrays, thereby making the effective array size 6 × 
6. Following the rule derived in [24], the optimal subarray 
size for each side of the rectangular array would be 0.6(8 
+ 1) = 0.54, which shows that a 6 × 6 rectangular subar-
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Fig. 4. Layout of the inspected aluminum plate. The labels A, B, and C 
identify three pairs of closely spaced holes.



ray was a reasonable size. The DAS approach did not ben-
efit from spatial smoothing, hence the full array was used 
for the DAS results. The signal focusing was performed 
using frequencies between 50 and 450 kHz.

To experimentally determine the amplitude of the 
transmitted Lamb modes and to validate the theoretically 
determined dispersion curves, a single transmitter/receiv-
er pair was used to perform measurements allowing the 
calculation of a spatio-temporal FFT [26]. In this experi-
ment, the transmitting transducer was excited by a single 
square pulse, 1 µs long with amplitude 16 V. The receiv-
ing transducer was shifted along a 75-mm line in 1-mm in-
tervals, resulting in 75 signals. The spatio-temporal FFT 
resulted in a multi-mode signal that can be seen in the 
frequency-wavenumber power spectrum in Fig. 5. From 
the figure, it can be seen that the received S0 mode had a 
higher amplitude than the A0 mode around 350 kHz. The 
longitudinal and shear wave velocities for the aluminum 
plate were unknown. Various velocities typical for alumi-
num alloys were used for calculating theoretical dispersion 
curves that were compared with the experimentally deter-
mined dispersion curves. A good match for the A0 mode 
was achieved when setting the longitudinal wave velocity 
to 6198 m/s and the shear wave velocity to 3158 m/s. 
The resulting theoretically determined dispersion curve is 
shown in Fig. 5.

Ideally, all received modes should be processed and 
used as a basis for the evaluation of the structure. Be-
cause of the shorter wavelength of the A0 mode compared 
with the S0 mode, and poor agreement between simulated 
and measured dispersion characteristics for the S0 mode, 
only results from focusing using the A0 mode dispersion 
characteristics are presented here. For the frequency range 
used in the experiments, the A0 mode had wavelengths 
down to 7 mm. To avoid spatial aliasing, this required an 
array element spacing of a maximum of 3.5 mm, which 
was satisfied by Array 1. Using Array 2, with wider ele-
ment spacing and the same number of elements as Array 
1, improved resolution but could lead to aliasing effects.

Neither the simulated or experimental results benefited 
from spatial averaging (see Section IV-B). All results from 
the MVDR approach were obtained using diagonal load-
ing according to (22).

A. Simulation Results

Two Lamb modes were included in the simulations, the 
S0 and the A0 mode. The simulations assumed reflectors 
with real frequency independent reflection coefficients, no 
multiple scattering and no mode conversion. The reflection 
coefficients were set to be proportional to the diameter of 
the holes and equal for both modes. The amplitude of the 
edge reflections were assumed to be 10 times the ampli-
tude of the smallest defects, holes B and C. The notch 
and pits were not included in the simulation. Because 
the transducers were coupled to the plate using oil, the 
transducer-plate interaction was modeled assuming out-
of-plane components only. The transfer functions used for 

this purpose were calculated using the model described in 
Section III-B. The input signal was a 300-kHz, single-cycle 
sinusoid, bandpass filtered to a bandwidth of 260 kHz. 
White Gaussian noise was added to the simulated received 
signals, giving an SNR of 25 dB.

The theoretical level of relative excitation between the 
S0 and A0 modes, expressed as a normalized |Hn(ω)|, is 
shown in Fig. 2. It can be seen that the A0 mode has 
a higher excitability than the S0 mode around 300 kHz. 
Because this transfer function operates on the input sig-
nal, the slope of the curve shifts the center frequency of 
resulting A0 mode from 300 to 280 kHz, maintaining ap-
proximately the same bandwidth. The wavelength of the 
A0 mode is 10.5 mm at 280 kHz.

Fig. 6 shows the result from the MVDR and the DAS 
on signals obtained through the simulation of Array 1. 
Reflections from the hole pairs A, B, and C can be seen in 
the lower part of the images. The true hole positions are 
marked with white crosses. In some images, the defects are 
indicated by arrows to improve visibility. The results from 
Array 2 are shown in Fig. 7.
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Fig. 5. Theoretically (a) and experimentally (b) determined dispersion 
curves for the 6-mm aluminum plate.



Fig. 8 shows the angle and range resolvability of the pair 
of holes A obtained for the results presented in Fig. 7. The 
projections were created by taking the maximum values in 
range and angle, respectively, in the vicinity of the defects. 
Note that the transmitter position outside the array in 
conjunction with the holes locations in the near field of 
the array, leads to elliptical beams, where the transmitter 
and the center of the array are in the focus points of the 
ellipses. This makes angle and range resolution somewhat 
distorted when plotting range and angle from the center of 
the array. The projections were therefore created using a 
point between the center of the array and the transmitter 
as a reference for range and angle.

B. Experimental Results

Because of the limited number of available transduc-
ers and limitations of the electronics only an 8-element 
uniform linear array was used simultaneously for the re-
ception. The linear receiving array used in all experi-
ments consisted of 8 pinducers with an inter-element 
distance of 7 mm. The input signal was generated by an 
HP8116 function generator (Agilent Technologies, Santa 
Clara, CA) and was a single square pulse, 1 µs long with 

amplitude 16 V. The array pinducers were connected to 
an Agilent Infiniium oscilloscope through a custom built 
multiplexing box followed by an AD8335 amplifier from 
Analog Devices (Norwood, MA). The sampling rate of 
the oscilloscope was set to 25 MHz. Because of the lim-
ited resolution of the oscilloscope (8 bits), the received 
edge reflections had to be saturated to get sufficient reso-
lution of the weaker defect reflections. Increasing the dy-
namic range and using a 12-bit analog-to-digital convert-
er, common in ultrasonic systems, would allow resolution 
of the defects without saturating the edge reflections for 
this particular setup. The received signal from each ele-
ment was averaged 16 times.

To form the 8 × 8 rectangular array with 7 mm element 
spacing (Array 2) the measurements were repeated with the 
linear receiving array shifted at 8 different positions. Array 
1 with 3.5 mm element spacing was formed by taking mea-
surements at 2 × 8 different positions using 4 elements of 
the receiving array. The direct signal from the transmitter 
to the array was removed before processing the signals.

A comparison between the DAS and the MVDR ap-
proaches using Array 1 and 2 can be seen in Figs. 9 and 
10, respectively. The log scale is cut at −12 dB compared 

2719  :        

Fig. 6. Simulation results from the 6-mm plate for Array 1, ε = 50. MVDR (a) and DAS (b) focusing on the A0 mode. Holes are indicated by white 
crosses or arrows. Note that the arrows do not point at the exact position of the defect. Log scale cut at −30 dB.

Fig. 7. Simulation results from the 6-mm plate for Array 2, ε = 20. MVDR (a) and DAS (b) focusing on the A0 mode. Holes are indicated by white 
crosses or arrows. Note that the arrows do not point at the exact position of the defect. Log scale cut at −30 dB.



with −18 dB for Array 1 because of poor SNR. The holes 
are well pronounced in the lower part of the images where 
their true positions are marked with white crosses, or 
where necessary, arrows. The pit and the notch are seen 
at 0 and 180°, respectively.

Similarly to the simulated results in Fig. 8, Fig. 11 
shows the angle and range resolvability of hole pair A 
obtained for the results presented in Fig. 10. The effect 
from the elliptical beams also applies to the experimental 
results.
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Fig. 8. Angle and range resolvability of hole pair A using the MVDR and DAS on simulated data from Array 2 on the 6-mm plate.

Fig. 9. Measurement results from the 6-mm plate for Array 1, ε = 50. MVDR (a) and DAS (b) focusing on the A0 mode. Defects are indicated by 
white crosses or arrows (holes, lower part of the image) and dashed lines (pittings and notch, at 0° and 180°, respectively). Note that the arrows do 
not point at the exact position of the defect. Log scale cut at −18 dB.

Fig. 10. Measurement results from the 6-mm plate for Array 2, ε = 5. MVDR (a) and DAS (b) focusing on the A0 mode. True positions of the defects 
are indicated by white crosses or arrows (holes, lower part of the image) and dashed lines (pittings and notch, at 0° and 180°, respectively). Note that 
the arrows do not point at the exact position of the defect. Log scale cut at −12 dB.



To evaluate the sensitivity to uncertainties in the 
plate characteristics, dispersion curves were calculated 
based on a ±3% change in the longitudinal and shear 
velocity using Array 2 with 7 mm element spacing (all 
other settings were identical). Fig. 12 presents the 
results analogous to those in Fig. 10 but for a +3% 
change in the longitudinal and shear wave velocities, 

whereas Fig. 13 shows the corresponding result for a 
−3% change.

VI. D

From both the simulated and experimental results pre-
sented in the previous sections it is apparent that the 
MVDR approach performs much better than the DAS 
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Fig. 11. Angle and range resolvability of hole pair A using the MVDR and DAS on measured data from Array 2 on the 6-mm plate.

Fig. 12. The images resulting from the measured data using Array 2 with a +3% change in the wave velocity. MVDR (a) and DAS (b). Cut at 
−12 dB.

Fig. 13. The images resulting from the measured data using Array 2 with a −3% change in the wave velocity. MVDR (a) and DAS (b). Cut at 
−12 dB.



method in terms of resolution, side lobe suppression, and 
interfering mode suppression. For some cases, the MVDR 
approach has problems with underestimation of the am-
plitudes. This may be caused by either steering vector er-
rors, or signal cancellation caused by the correlated back-
scattered signals. This will be discussed in detail in this 
section.

From the profiles in Figs. 8 and 11, it is clear that the 
MVDR approach yields higher resolution than the DAS 
method on both simulated and experimental data. Under-
estimation is most clearly seen in the simulated results, 
in which the DAS correctly estimates the same amplitude 
for both defects, whereas the MVDR underestimates the 
amplitude of one of the holes.

Note also that the range resolution of the MVDR ap-
proach is better, which might not be expected. This is be-
cause the steering vector for near-field reflectors is range-
dependent, and may therefore improve range resolution. 
Hence, because hole pair C is in the near-field of Array 2, 
the MVDR can perform better than the DAS approach. 
In the far-field, the range resolution will be equal for both 
approaches.

Even though the range and angle profiles are slightly 
distorted, it may be of interest to make a comparison with 
the theoretical far-field resolutions. The location of hole 
pair C, used for the profiles, makes the effective aperture 
size a linear array with a length of approximately the di-
agonal of the array. The angular resolution of the DAS ap-
proach as the half-power beamwidth in degrees is 50.8λ/D, 
where λ is the wavelength. This makes the expected far-
field resolution of the DAS approach approximately 7.7°, 
which seems reasonable when observing Fig. 8. For a non-
dispersed pulse the range resolution is limited by c/(2B), 
where c is the velocity and B is the bandwidth. The group 
velocity of the A0 mode is 3182 m/s at 280 kHz, making 
the minimum resolvable distance between two reflectors 
approximately 6.1 mm. The difference in range between 
hole pair C is 5.2 mm. This is confirmed by observing that 
the peaks are not clearly resolved (only −2 dB between 
the peaks) in the range plot of Fig. 8.

Recall that the focusing was performed between 50 and 
450 kHz, which corresponds to wavenumbers between 200 
and 1000 rad/m for the A 0 mode. The wider Array 2 yield-
ed higher resolution but also proved to be more sensitive 
to the S0 mode. To explain the reason for this increased 
sensitivity, Fig. 14 shows the steered response of Array 2 
when steered to angle 0° and wavenumber 600 rad/m. The 
steered response shows the output from an unweighted 
steered beamformer for a range of wavenumbers. The fig-
ure illustrates aliasing for the URA, where a grating lobe 
can be seen at 300 rad/m on the opposite side (180°) of the 
array. When steering the beamformer over the A 0 mode’s 
range of wavenumbers from 0°, the grating lobe will pass 
over the wavenumber range of the S0 mode. The S0 mode is 
faster and the edge-reflected S0 mode will therefore appear 
to come from the inner area of the plate. Because of the 
grating lobe, the edge-reflected S0 mode from the opposite 
side of the array will contribute to the edge-reflected S0 

mode from 0°, which will lead to more significant interfer-
ence. Array 1, having smaller element spacing, has twice 
the distance between the grating lobes and the results 
therefore show less interference from the S0 mode.

The interference seen in the simulated results for Ar-
ray 1 in Fig. 6 is mainly caused by the S0 mode at 90° 
intervals, with corner reflections in between. More severe 
interference appears for Array 2 in Fig. 7, where aliasing 
effects from both the S0 and the A 0 mode can be seen in 
addition to the non-aliased S0 mode. The interference is 
smeared out because the frequency components for the 
aliasing peaks are not coherently phase adjusted. From 
the results, it is apparent that the MVDR algorithm bet-
ter suppresses aliasing from the A 0 and S0 modes as well 
as the interference from the S0 mode than the DAS. How-
ever, the highly effective suppression of the aliasing from 
the A 0 and S0 modes is only possible because the aliasing 
occurs in the near-field. Far-field aliasing occurs because 
the steering vector is identical for two different incident 
angles and possibly wavenumbers, which makes it impos-
sible for the MVDR algorithm to discriminate the two 
signals. In near-field, there is also a range component in 
the steering vector, which may lead to non-identical steer-
ing vectors because the range does not properly align the 
aliasing wavenumber from the other direction. This en-
ables the MVDR approach to suppress the aliasing seen in 
the DAS results in Fig. 7.

The two major causes of underestimation are steering 
vector errors and adjacent defects. Steering vector errors, 
caused by, for instance, errors in the dispersion character-
istics, can potentially cause the MVDR filter to underes-
timate amplitude. The effect of steering vector errors can 
be seen in Figs. 12 and 13, where the effects of errors in 
the dispersion characteristics are shown. The performance 
of the MVDR is much poorer in this situation, but still 
matches the performance of the DAS. The DAS shows 
similar behavior with and without steering vector errors, 
besides the obvious errors in position.

Signal cancellation caused by closely spaced defects is 
an important issue for the MVDR algorithm. In the simu-
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Fig. 14. Steered response of Array 2 when steered to angle 0° and wave-
number 600 rad/m. Note that kx and ky represent the direction of arrival, 
and not as in the typical response plots: the direction of propagation.



lation results using Array 2 in Fig. 7, the reflections from 
the pair of holes labeled C seem to cancel, which leads to 
underestimation of the amplitude. The cancellation was 
much less severe when using Array 1 even with less di-
agonal loading (Fig. 6). The problems were not apparent 
for the DAS approach for either of the arrays in the simu-
lations. In the experimental results, the underestimation 
problem was most severe for Array 1 as can be seen from 
Fig. 9. Both methods yield different amplitudes for the 
holes A but show reasonable accuracy in position. The 
MVDR has significant problems with both power and po-
sition of pairs B and C. The DAS approach yields more 
reasonable amplitude estimates but it is very difficult to 
determine the positions of the defects.

In the experimental results for Array 2 presented in 
Fig. 10, both holes in pair B are detected. Although both 
methods estimate the amplitude of the right hole lower 
than for the left, its position is too far to the right. Pair C 
cannot be resolved and is detected as a single defect. Both 
methods underestimate the amplitude but the MVDR 
more severely. Because both methods have problems with 
pairs B and C, it cannot be concluded that this is an effect 
related to the MVDR approach. Effects from steering vec-
tor errors can be reduced by using either a higher level of 
diagonal loading or by increasing the number of subarrays 
used for spatial smoothing, but this is achieved at the cost 
of lower resolution and reduced interference suppression.

The saturation of the edge reflections created a sig-
nificant amount of noise in post-processed data from both 
algorithms in the areas closer than 100 mm to the edges, 
which is the reason for not showing images covering the 
whole plate. After increasing the amplitude range of the 
oscilloscope, and thereby avoiding saturation, these prob-
lems disappeared. Unfortunately, the insufficient dynamic 
range made the much weaker signals from the defects un-
detectable using either of the algorithms.

An obvious limitation of the measurement setup is the 
simultaneous use of only 8 array elements, which hindered 
assessing the potential effects of interelement scattering 
that may be encountered for a full 2-D array.

VII. C

A method for adaptive beamforming of Lamb waves 
has been presented in the paper. The dispersion of the 
Lamb modes was compensated using theoretically pre-
dicted dispersion curves. Dispersion compensated data 
was processed using both a standard DAS beamformer 
and the MVDR beamformer. Simulated and experimental 
results show that the MVDR approach can yield better 
performance compared with the standard DAS approach 
in terms of higher resolution and better suppression of 
interfering Lamb modes.

Signal cancellation, causing underestimation of the sig-
nal amplitudes, is an issue that needs to be addressed 
when working with the MVDR algorithm. Increasing the 
number of subarrays used for spatial smoothing can re-
duce signal cancellation effects and increase robustness at 

the cost of lower resolution and adaptivity of the filter. 
Diagonal loading also reduces signal cancellation to some 
degree and improves robustness of the estimation.

The MVDR algorithm presented in the paper can be 
easily generalized to an active array with multiple trans-
mitters.
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