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Phased microphone arrays have become an important tool in the localization of noise sources for

aeroacoustic applications. In most practical aerospace cases the conventional beamforming

algorithm of the delay-and-sum type has been adopted. Conventional beamforming cannot take

advantage of knowledge of the noise field, and thus has poorer resolution in the presence of noise

and interference. Adaptive beamforming has been used for more than three decades to address these

issues and has already achieved various degrees of success in areas of communication and sonar. In

this work an adaptive beamforming algorithm designed specifically for aeroacoustic applications is

discussed and applied to practical experimental data. It shows that the adaptive beamforming

method could save significant amounts of post-processing time for a deconvolution method. For

example, the adaptive beamforming method is able to reduce the DAMAS computation time by at

least 60% for the practical case considered in this work. Therefore, adaptive beamforming can be

considered as a promising signal processing method for aeroacoustic measurements.
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I. INTRODUCTION

Beamforming techniques with microphone arrays1–3 are

increasingly being used in the aerospace industry4,5 to local-

ize the distribution of airframe noise to allow the develop-

ment of efficient noise control strategies.6 Airframe noise is

particularly evident during landing when the engines operate

at a low power setting7 and the high lift devices and landing

gear are deployed. Generally, airframe noise is produced by

a fluid–structure interaction of aerodynamic surfaces and the

surrounding turbulent flow.8 Scaled models of airframe com-

ponents, which include high lift devices, landing gear, wheel

wells, and sharp trailing edges, have recently been tested in

wind tunnels and anechoic chambers to investigate aeroa-

coustic related flow mechanisms and localize noise source

distributions using acoustic imaging techniques.9

Beamforming is a technique that uses a sensor array to

visualize the location of a signal of interest.10 Various appli-

cations can be found in radar, sonar, communications, and

medical imaging. Aeroacoustic measurements are, to some

extent, challenging for beamforming because of the poor sig-

nal-to-noise ratio and multipath effects in a traditional aero-

dynamic testing facility.5 To address these issues, a test

facility has to be modified specifically to reduce background

noise and to mitigate wall reflections.11,12 Particular atten-

tion has also been paid to array design in order to reduce the

detrimental effect of the background noise. More design

details can be found in Refs. 4, 13, and 14. On the other

hand, although numerous beamforming methods have been

proposed in the last three decades, the conventional beam-

forming method10 with the delay-and-sum approach and its

variants3,13,15 are still the dominant technique used for aeroa-

coustic measurements.

From the perspective of signal processing, an acoustic

imaging process can be regarded as a convolution between

the array frequency responses and acoustic sources of interest.

The frequency response of the conventional beamforming

method has a wide main lobe and high side lobe peaks, which

masks the signal of interest through convolution, leading to

the well-known limited resolution problem. To address this

issue, several different deconvolution algorithms16–21 have

recently been proposed to post-process conventional beam-

forming results in order to restore the signals of interest.

Nowadays the conventional beamformer with the delay-

and-sum approach is rarely used in sonar, radar, and commu-

nication applications, for which the method was initially

developed. An alternative method, adaptive beamforming, or

the so-called Capon beamforming, has a much better resolu-

tion and interference rejection capability22 and has been

adopted as a de facto method in array signal processing. It is

natural to expect that an adaptive beamformer could be help-

ful to pinpoint aeroacoustic noise sources more accurately

and better minimize the convolution effects,5 which, in turn,

could produce array outputs of higher quality saving the

computational efforts of the aforementioned deconvolution
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methods. However, adaptive beamforming is quite sensitive

to any perturbations and its performance can quickly deterio-

rate below an acceptable level, preventing the direct applica-

tion of present adaptive beamforming methods for

aeroacoustic measurements.

It is generally assumed that errors in array measure-

ments are mainly from steering vectors,23 which are deter-

mined by the relative distances between a signal of interest

and the array microphones. More often than not, a steering

vector deviates from the expected one. Installation of a

microphone array on a vibrating testing facility wall is par-

tially responsible for this problem. Any mismatch in steer-

ing vector leads to significant computational error due to

the sensitive nature of adaptive beamforming. The steering

vector can therefore be regarded within a predefined uncer-

tainty ellipsoid and a robust beamformer24 can be conse-

quently designed to maintain an acceptable accuracy

within the complete uncertainty ellipsoid25 (see references

therein for more details of the approach). Diagonal loading

is the other popular approach to improve the robustness of

an adaptive beamformer. This method has been adopted in

the current work for its simplicity of implementation. The

same approach has already been used in previous aeroa-

coustic measurements.5,26 It can be seen that the perform-

ance of diagonal loading depends on a suitable choice of

loading parameter. An iterative procedure has been

adopted in this work to straightforwardly find an appropri-

ate value of the loading parameter in practical aeroacoustic

tests.

In previous work,5,26 adaptive beamforming for aeroa-

coustics has only been applied for numerical benchmark

cases or idealized cases with speakers as experimental noise

sources. To the best of our knowledge, there is no literature

dealing with development and/or application of adaptive

beamforming for practical aeroacoustic setups. Because the

only way to validate an algorithm is to apply it for practical

applications, the main contribution of this work fills the gap,

using an adaptive beamforming for one of the landing gear

components. First, the adaptive beamforming algorithm

developed specifically for aeroacoustics is proposed in

Sec. II. The experimental setup of the aeroacoustic test is

summarized in Sec. III and the related acoustic imaging

results are reviewed in Sec. IV. Advantages and shortcom-

ings of adaptive beamforming for aeroacoustics are dis-

cussed in Sec. V.

II. FORMULATIONS

A. Sound field model

The notations that generally appear in the literature5,23

are adopted in the following. Given a microphone array with

M microphones, the output x(t) denotes time domain meas-

urements of microphones, x 2 <M�1 and t denotes time. For

a single signal of interest s tð Þ 2 <1 in a free sound propaga-

tion space, using Green’s function for the wave equation in a

free space, we can have

x tð Þ ¼ 1

4pr
s t� sð Þ; s ¼ r

C
; (1)

where C is the speed of sound, r 2 <M�1 are the distances

between the signal of interest s and microphones, and s is

the related sound propagation time delay between s and the

microphones. For most aeroacoustic applications, beam-

forming is generally conducted in the frequency domain.18

The frequency domain version of Eq. (1) is

XðjxÞ ¼ 1

4pr
SðjxÞe�jxs ¼ a0 r; jxð ÞSðjxÞ; (2)

where j ¼
ffiffiffiffiffiffiffi

�1
p

, a0 is the steering vector, x is angular fre-

quency, (jx) and (r, jx) can be omitted for brevity, X and S

are counterparts in the frequency domain, and we can simply

write Eq. (2) as X¼ a0S.

The situation becomes more complex for a practical

case, for which the array output vector can be represented as

X ¼ a0Sþ Iþ N; (3)

where I is the interference from coherent signals and/or

reflections and N denotes the collective error from facility

background noise and sensor noise. It is worthwhile to note

that the signal of interest (S), interference (I), and noise (N)

are of zero-mean signal waveforms, and S and N are gener-

ally assumed statistically independent for simplicity.

Let RX, RIN, and RS denote theM�M theoretical covar-

iance matrix (also known as the cross spectrum matrix or

cross-spectral density matrix) of the array output vector and

interference-plus-noise covariance and signal of interest co-

variance matrices, respectively; and then we have

Rx ¼ E XX�f g; (4)

RIN ¼ E Iþ Nð Þ Iþ Nð Þ�f g; (5)

RS ¼ E a
2a0a

�
0

� �

¼ RX � RIN ; if E X Iþ Nð Þ�¼ 0f g;
(6)

where (�)* stands for conjugate transpose, E{�} denotes the

statistical expectation, and r
2 ¼ Ef Sj j2g is the variance of S.

In practical aeroacoustic measurements, N denotes back-

ground noise that can be measured separately without the

presence of any test model, which is a practice generally

adopted in aeroacoustic experiments.4,9,17,18 The measure-

ments of X can be conducted thereafter with the placement

of a test model within the test section. The statistics of the

signal of interest r2 can be subsequently estimated and a

suitable beamforming method with a narrow main lobe and

small side lobes can reduce interference from unknown I.

The assumption of E {X(IþN)*¼ 0} suggests that no corre-

lation between the signal of interest and the interference plus

the facility background noise. The assumption is normally

valid in most aeroacoustic experiments and therefore has

been widely adopted.17,18 For the correlated case, a so-called

observer-based beamforming method has been proposed in

the literature13,27,28 to address the issue.

In practical applications, the covariance matrix R is

approximated by sample covariance matrices, which are con-

structed based on array samples X and N. We can have
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R̂X � 1

K

X

K

k¼1

XX�; (7)

where the caret denotes approximations and K is the number

of sampling blocks which is preferably a large number (e.g.,

100 was empirically chosen in experiments), compared to

the period of signal of interest, for statistical confidence. In

addition, RIN has to be approximated in the following form

as the interference I is largely unknown:

R̂IN � 1

K

X

K

k¼1

NN�: (8)

And finally the approximation for RS is

R̂S � R̂X � R̂IN: (9)

B. Conventional beamforming

A narrowband beamformer output for each frequency

bin of interest can be written as

Y ¼ W�X; (10)

where Y is the beamformer output and W 2 CM�1 is the

beamformer weight vector. For the conventional beam-

former of delay-and-sum type, the beamformer weight vec-

tor is obtained by minimizing the approximation error10

min
w

W�W subject to W�a0 ¼ 1: (11)

It is easy to see that the solution is Wopt ¼ a0a
�
0

� ��1
a0 yield-

ing the following estimation of r2:

r̂
2 ¼ W�

optR̂SWopt ¼ a�0 a0a
�
0

� ��1
R̂S a0a

�
0

� ��1
a0; (12)

where R̂S can be approximated with Eq. (9) in experiments

and a0 can be obtained with array geometry and experimen-

tal setup details.

C. Adaptive beamforming

The fundamental idea behind Capon beamforming is to

obtain Wopt through maximizing the signal-to-interference-

plus ratio (SINR),

SINR ¼ W�RSW

W�RINW
; (13)

and maintaining distortionless response toward the direction

of the signal of interest.23,29 In other words, the expected

effect of the noise and interferences should be minimized,

thus leading to the following linearly constrained quadratic

problem:30

min
W

W�RINW subject to W�a0 ¼ 1; (14)

The solution can be obtained with a Lagrange multiplier,10

i.e., Wopt ¼ aR�1
IN a0, where a is a constant that equals

a�0R
�1
IN a0

� ��1
. In practical aeroacoustic applications the co-

variance matrix RIN is unavailable and has to be approxi-

mated by the sampling covariance matrix R̂X. We can have

r̂
2 ¼ Ŵ

�
optR̂SŴopt; (15)

where Ŵopt ¼ R̂
�1

x a0=a
�
0R̂

�1

x a0 and R̂S can be obtained using

Eq. (9). It is worthwhile to mention that Eq. (15) is different

from the classical form of adaptive beamforming,

r̂
2 ¼ Ŵ

�
optR̂SŴopt; (16)

where Ŵopt is the same as that in Eq. (15), whose solutions

contain both background noise and the desired signal.

Hence, Eq. (16) is not adopted in this work. In addition, the

covariance matrix of the desired signal R̂X and the noise R̂IN

can be approximated using Eqs. (8) and (9), respectively.

One could also propose another alternative adaptive beam-

forming algorithm as shown in

r̂
2 ¼ Ŵ

�
optR̂SŴopt; (17)

where Ŵopt ¼ R̂
�1

IN a0=a
�
0R̂

�1

IN a0. In this work we found that

this algorithm fails to generate satisfactory results for practi-

cal data. The potential reason could be mismatches in back-

ground noise covariance matrices. That is, R̂IN in Eq. (17) is

obtained without the presence of any test model. The instal-

lation of a test model, however, could alter the background

noise covariance matrix. As a result, Eq. (15) is adopted in

this paper for adaptive beamforming implementation.

It is worthwhile to emphasize that the method [Eq. (14)]

was originally proposed for rank-one signal (point source)

cases. However, the number of discrete noise sources distrib-

uted in a practical aeroacoustic case could be larger than the

number of array microphones. As a result, R̂X could have a

full rank. The direct application of Eq. (15) [the solution of

Eq. (14)] for acoustic imaging could lead to questionable

results. Hence, specific modifications of R̂X have to be con-

ducted, the details of which can be found in Sec. IV.

D. Robust adaptive beamforming

The main objective of this paper is to investigate the

performance of adaptive beamforming in practical aeroa-

coustic applications. In previous work we have already dem-

onstrated that conventional beamforming with a delay-and-

sum approach is independent of sample data and has been

successfully applied for various aeroacoustic cases.13,31,32 In

contrast, the adaptive beamforming method is well known

for its great sensitivity to any mismatches, perturbations, and

data errors. A systematic solution has been proposed to

improve the robustness of adaptive beamforming with

respect to any mismatches in steering vectors.23,25 In this

work the array is placed outside of the free stream and

should have little mismatch in steering vector (detailed setup

is given in the next section). It is therefore assumed that the

main computational error of an adaptive beamformer should
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come from the ill-conditioning of sample matrices. Regulari-

zation methods can be used to mitigate the ill-conditioning

by adding a suitable constant to diagonal elements of sample

matrices. This is the so-called diagonal loading technique,

which is one of the most popular approaches for robust

adaptive beamforming. The regularized problem can be

described by

min
W

W�RINWþ �W�W subject to W�a0 ¼ 1; (18)

where the diagonal loading factor � imposes a penalty to

avoid an inappropriately large array vector W. The diagonal

loaded version of Eq. (15) is

r̂
2 ¼ Ŵ

�
optR̂SŴopt; (19)

where Ŵopt ¼ R̂X þ �IM
� ��1

a0=a
�
0 R̂X þ �IM
� ��1

a0 and IM is

the M�M identity matrix. It is easy to see that the diagonal

loading ensures the invertibility of the loaded matrix

R̂X þ �IM regardless of weather R̂X is ill-conditioned.

The choice of the diagonal loading factor � is somewhat

ad hoc. Empirical criteria for � with respect to the so-called

white noise gain parameter has been given previously.16 The

latter parameter depends on physical insights. For simplicity,

an iterative procedure is used in this work to tune �, which is

set to k max [eig(R̂X)], eig (�) denotes the eigenvalues of a

matrix. The diagonal loading parameter k can be iteratively

chosen between 0.01 and 0.5. A smaller k normally produces

an image with better resolution, but the computation can fail

due to numerical instability. The computational failure is

determined by comparing the maximal sound pressure val-

ues. Once the difference between the classical beamforming

result and the adaptive beamforming result exceeds a thresh-

old (empirically set to 3 dB), the adaptive beamforming

computation fails. The value of k is thus improper and has to

be enlarged. On the other hand, a larger k generates a result

similar to that of a conventional beamformer. This finding is

understandable as a big k leads to a heavy penalty � in the

optimization in Eq. (19) that therefore approaches Eq. (11).

For the following practical case we found that the value

of k can be quickly determined within a couple of iterations.

The diagonal loading approach is hence used in the rest of

this paper for its simplicity of implementation. In summary

the beamforming algorithm for a narrowband frequency

range is conducted as follows:

Step 1: Compute sample covariance matrices R̂X and R̂S,

and compute eigenvalues of R̂X.

Step 2: Given an observed plane, which has N gridpoints,

construct steering vector a0 for each gridpoint.

Step 3: Calculate the diagonal loading factor � with an initial

guess of k¼ 0.01. �¼ k max [eig(R̂X)].

Step 4: Repeat the adaptive beamforming equation

[Eq. (19)] at each of N gridpoints to produce the acoustic

image.

Step 5: Qualitative check. The whole computation is com-

pleted if the quality is satisfactory and no numerical insta-

bility appears. Otherwise double the value of k and repeat

steps 3–5.

E. Deconvolution approach

Various deconvolution algorithms(16–21) have been

proposed to post-process beamforming results. The deconvo-

lution approach for the mapping of acoustic sources

(DAMAS)17 was adopted in this work. For convenience of

readers, the fundamental idea behind DAMAS is briefly

introduced in the following.

The DAMAS approach resolves an inverse problem,

Z¼AS, where Z 2 CN�1 are the N estimations of each grid-

point, using Eq. (12) or Eq. (19), respectively; S 2 CN�1 rep-

resents sound sources at each gridpoint and A 2 CN�N is

formed by the steering vectors, relating Z to S. The acoustic

images shown in this work have 121� 121 gridpoints and

N¼ 14 641. It is thus extremely difficult to calculate the

inverse of A. An iterative scheme has been proposed17 to

estimate S from Z, instead of the direct calculation of the

inverse of A. As a result, the resolution of acoustic images

could be extensively improved. For brevity, details of the

algorithms are omitted. The interested reader should refer to

the literature.17

III. EXPERIMENTAL APPARATUS

To test the performance, the above adaptive signal proc-

essing algorithm is applied for a practical aeroacoustic case.

The experiments have been conducted in an anechoic chamber

facility (9.15 m� 9.15 m� 7.32 m) at ISVR, University of

Southampton. Figure 1 shows the complete setup. A nozzle

(500 mm � 350 mm) connecting to a plenum chamber can

produce a jet flow of U1¼ 30 m/s. An array with 56 electret

microphones (Panasonic WM-60A) is placed on the ground.

The sensitivity of each microphone is �456 5 dBV/Pa. The

frequency response (amplitude and phase) of each microphone

is calibrated to a B&K 4189 microphone in order to reduce in-

herent amplitude and phase differences between array micro-

phones. An airframe model representing a part of a landing

gear was placed right above the microphone array. The coordi-

nates shown in Fig. 1 are used throughout the rest of the paper.

The coordinate origin is at the center of the link structure of

the triangle shape. The center of the array is aligned with the

origin, and the distance from the origin is 0.7 m.

Figure 2 shows a photograph of the experimental setup

in the test section. Two endplates are used to hold the bluff

FIG. 1. (Color online) The illustration of the setup of experiment units (not

to scale).
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body model and maintain two-dimensional free stream flow

in the open test section. A pitot tube is placed in front of the

model to measure the free stream speed. The array is under-

neath the model. The shear layer correction based on Snell’s

law9 is used in the beamforming signal processing as the

array is placed outside of the testing flow. Measurements

have also been conducted for a separate scenario without the

presence of the model to approximate the facility back-

ground noise.

The size of the complete array is 1 m� 1 m. The effec-

tive diameter is 0.64 m, within which microphones are

deployed. The layout of microphones was designed for the

particular purpose of reducing spatial aliasing.9 The accu-

racy of the microphone locations is within 1 mm. In addition,

the array was placed outside of testing flow and firmly fas-

tened to the ground to prevent any flow induced vibration,

reducing the chance of any potential mismatch in the steer-

ing vectors of the array.

An NI PXI-1033 chassis with four 24 bit PXI-4496

cards has been used to simultaneously sample 56 channels of

microphones at 44 000 samples/s. Each data acquisition is

operated through a band pass filter to remove the direct cur-

rent part and to avoid high frequency aliasing. The data

stream is cut into consecutive blocks, and each block con-

tains 4096 samples for the discrete Fourier transform (DFT).

The DFT amplitudes of each microphone are calibrated to a

sound source of 96 dB at 1 kHz, and the decibel values are

referenced to 2� 10�5Pa.

IV. RESULTS AND DISCUSSION

A literature review shows that most previous work is

focused on numerical examples. However, an application of

an algorithm to experimental data is required to determine

its applicability. In this work a practical aeroacoustic case

involving a bluff body model is considered.

Figure 3 shows nondimensionalized acoustic image

results at f¼ 5 kHz. The two horizontal lines in Fig. 3 repre-

sent the two endplates that help to maintain a better quality

of test flow. The rest of the sketch illustrates the bluff body

model. Two triangle-shaped bodies represent the compo-

nents installed on the cylinder model, which are intentionally

removed in Figs. 3(b)–3(d) to clearly show acoustic images.

The whole bluff body is an idealized model of the main ele-

ments of an aircraft landing gear. The free stream direction

FIG. 2. (Color online) Overall system working in an anechoic chamber.

FIG. 3. (Color online) Acoustic

image for the practical aeroacoustic

case with a bluff body model, (a) the

adaptive beamforming method [with

Eq. (19) at k¼ 0], (b) the adaptive

beamforming method [with Eq. (19)

at k¼ 0.1], (c) the adaptive beam-

forming method [with Eq. (19) at

k¼ 0.5], and (d) the conventional

beamforming method [with Eq.

(12)], respectively. f¼ 5 kHz and

U1¼ 30 m/s.
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of the open jet is from the left to the right. All experiments

have been conducted at U1¼ 306 0.5 m/s. The correspond-

ing Reynolds number with respect to the cylinder diameter is

in the order of 105. The dominant flow-induced noise sources

are located at the links [A–C in Fig. 3(b)]. More details

related to the test model and related flow-induced noise

mechanisms can be found in Ref. 31, whereas the attention

of this paper is focused on the array signal processing

method.

Figure 3(a) is the acoustic image obtained with Eq. (19)

but without diagonal loading (k and � equal 0). This figure

contains chaotic acoustic imaging patterns with much lower

sound pressure (see the upcoming Fig. 12), which suggests

that the adaptive beamforming method without diagonal load-

ing fails to identify dominant noise sources for practical aeroa-

coustic data. Any discrepancy in experimental measurements,

such as multipath propagation, background noise or interfer-

ence from coherent signals, and the mismatching of steering

vectors, can lead to failure of adaptive beamformers.

Diagonal loading is used to address the issue, although

the determination of a suitable diagonal loading parameter

remains an open problem. For the case considered in this

work, k¼ 0.1 and k¼ 0.5 have been tested and results are

shown in Figs. 3(b) and 3(c), respectively. Both figures show

that the background noise from the open jet has been

rejected. Compared to the conventional beamforming results

shown in Fig. 3(d), the positions and amplitudes of the domi-

nant noise sources at the middle locations of the model agree

well. Dynamic ranges of both adaptive beamforming and

conventional beamforming results are quite similar, whereas

the resolution has been improved. In addition, the resolution

of Fig. 3(b) with k¼ 0.1 is somewhat better than that of Fig.

3(c) with k¼ 0.5. In contrast the resolution of the conven-

tional beamforming results is relatively low and some cha-

otic patterns can be found in Fig. 3(d), which are caused by

the relatively high side lobes of the conventional beamform-

ing method. It is worthwhile to point out that weights can be

optimized (such as applying a window technique) to lower

the side lobes. However, the width of the main lobe will be

increased and the resolution will thus be sacrificed.

The adaptive beamforming method fails to improve re-

solution extensively for this practical case. This outcome

answers the question frequently raised by signal processing

experts: Why is adaptive beamforming so rarely used in

aeroacoustic measurements? However, for its distinctive

side lobe suppression capability, the adaptive beamforming

method can generate images with less spurious patterns,

which could save huge amounts of post-processing time for

a deconvolution method. DAMAS17 has been conducted for

the case to demonstrate the idea.

Figure 4 shows DAMAS results after 1000 iterations,

which are initially post-processed on the conventional beam-

forming result [Fig. 3(d)] and the adaptive beamforming result

[Fig. 3(b)], respectively. The noise sources in Fig. 4(a) fail to

form a distinctive pattern and therefore show less physical

insight. In contrast, the individual noise sources in Fig. 4(b)

are clearly distributed along the triangle parts (excluded for

clarity). This finding supports the above-mentioned statement

regarding the adaptive beamforming method.

All beamforming methods introduced in this work were

developed in MATLAB and computed on a desktop with an

Intel i7 CPU (920 @ 2.67 GHz) and 8 GB memory. The

code spent 110 s for the DAMAS method to finish 1000 iter-

ations. It took an additional 30 000 iterations for Fig. 4(a) to

achieve a pattern similar to that of Fig. 4(b). Hence, the

adaptive beamforming method can help DAMAS quickly

approach a reasonable source distribution. As a result, it is

advantageous to consider adaptive beamforming in aeroa-

coustics. It is also worthwhile to point out that the conven-

tional beamforming required 0.98 s to perform the

calculation, whereas the adaptive beamforming required 1 s

for the same case. These data are given here just for the read-

ers’ information as no particular optimization has been con-

ducted for our code.

Acoustic images at various frequencies are shown in

Figs. 5–8 to further illustrate the performance of beamform-

ing methods. Figures 5(a) and 5(b) present acoustic image

results at f¼ 2.5 kHz using the conventional beamforming

method and the adaptive beamforming method, respectively.

The adaptive beamforming method is unable to realize a re-

solution advantage. However, again, DAMAS post-

processing results can reveal the superior quality of the

adaptive beamforming. Figure 6 shows the related results of

1000 DAMAS iterations. It can be seen that the DAMAS

results for the conventional beamforming indicate a source

distribution along the trailing triangle parts, whereas the

DAMAS results for the adaptive beamforming identify the

main noise sources at the links [A–C in Fig. 3(b)].

Figures 7(a) and 7(b) are acoustic images at f¼ 7.5 kHz

by conventional beamforming and adaptive beamforming,

FIG. 4. (Color online) The DAMAS

post-processing outcomes (1000

iterations) of the results of (a) con-

ventional beamforming and (b)

adaptive beamforming (k¼ 0.5) in

Fig. 3, where f¼ 5 kHz.
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FIG. 5. (Color online) Acoustic

image results of the practical aeroa-

coustic case, (a) the conventional

beamforming method [with Eq.

(12)] and (b) the adaptive beam-

forming method [with Eq. (19)] with

diagonal loading at k¼ 0.5, where

f¼ 2.5 kHz.

FIG. 6. (Color online) The DAMAS

post-processing outcomes (1000 iter-

ations) of the results of (a) conven-

tional beamforming and (b) adaptive

beamforming (k¼ 0.5) in Fig. 5,

where f¼ 2.5 kHz.

FIG. 7. (Color online) Acoustic

image results of the practical aeroa-

coustic case, (a) the conventional

beamforming method [with Eq.

(12)] and (b) the adaptive beam-

forming method [with Eq. (19)] with

diagonal loading at k¼ 0.5, where

f¼ 7.5 kHz.

FIG. 8. (Color online) The DAMAS

post-processing outcomes (1000

iterations) of the results of (a) con-

ventional beamforming and (b)

adaptive beamforming (k¼ 0.5) in

Fig. 7, where f¼ 7.5 kHz.
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respectively. It can be seen that the acoustic image results at

this higher frequency include some chaotic patterns, which

are mainly caused by array sidelobes that are typically higher

at higher frequencies for a given array design. The potential

loss of sensitivity during the passage of the acoustic waves

through the open jet shear layer could be the other cause. A

high frequency sound suffers loss more than the low fre-

quency sound, as the former’s wavelength is more compara-

ble to the characteristic width of the shear layer. Figure 8

shows the post-processing results of 1000 DAMAS itera-

tions. It can be seen that adaptive beamforming helps to pro-

duce a DAMAS result with more distinctive noise

distributions. It is also worthwhile to mention that a similar

improvement is expected for other post-processing methods,

such as CLEAN.18 All results in Figs. 9–12 are shown in a nor-

malized form. A calibration can be conducted to achieve

absolute sound levels, which are shown in Fig. 9.

To quantitatively show the performance of different

beamforming methods, sound pressure squared-mean values

of the grid points within an integration region are summed

up. Similar operations can be found in the literature.17 The

integration region is represented by a dashed rectangle in

Fig. 10, which covers the dominant noise sources and is

deliberately kept away from the two endplates, where the

turbulent boundary flow affects acoustic measurements.

The total amount of the mean-squared values within the

integration region is shown in Fig. 11. For the 5 kHz beam-

forming results [Fig. 11(a)], it can be seen that the total noise

converges rapidly for the adaptive beamforming data. The

total noise is within 1 dB after 10 DAMAS iterations and

within 0.01 dB after 100 iterations. In contrast, the total

noise converges much slower in the case of the conventional

beamforming data. The total noise converges within 1 dB af-

ter 15 iterations. However, after 300 iterations, the conver-

gence speed slows down to less than 0.01 dB per 100

iterations. Convergence is still not achieved after 10 000 iter-

ations (which is not shown here for brevity). Similar findings

have been reported for low frequency cases in literature.17

These two results suggest that the adaptive beamforming

method used here can extensively reduce the required post-

processing effort for DAMAS.

It has also been found that DAMAS results converge

more quickly for high frequency cases.17 The same experi-

ments have been conducted for the 7.5 kHz case and the

results are shown in Fig. 11(b). Once again, the adaptive

FIG. 9. (Color online) The DAMAS

post-processing outcomes (10 000

iterations, k¼ 0.5), where (a,b) f¼
5 kHz and (c,d) f¼ 7.5 kHz; (a) and

(c) are DAMAS results for the con-

ventional beamforming solutions; (b)

and (d) are DAMAS results for the

adaptive beamforming solutions.

FIG. 10. (Color online) The mean-squared sound pressure values are

summed within the dashed rectangular integration region.
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beamforming method can help DAMAS to attain a conver-

gent solution with a smaller number of iterations (12 itera-

tions for the adaptive beamforming data compared to 31

iterations for the conventional beamforming data). The con-

vergence curves are more similar at 7.5 kHz, compared to

the curves at 5 kHz, because the conventional beamformer

has side lobes of small amplitudes at high frequency.

Although the convergence performance is not as distinctive

as that of the lower frequency case, the adaptive beamform-

ing method still reduces the DAMAS computation time by

almost 60%.

The convergent mean-squared values (after 30,000

DAMAS iterations) at frequency ranges between 1.5 and

7.5 kHz are shown in Fig. 12, where the DAMAS solutions of

the adaptive beamforming data computed with various k are

compared to the DAMAS solution of the conventional delay-

and-sum beamforming data. It can be seen that the DAMAS

results of the conventional beamforming data agree well with

those of the adaptive beamforming data when k¼ 0.5. The

difference is about 1.8 dB at 2.5 kHz, and is reduced along

with the increase of the frequency. The difference is less than

0.2 dB beyond 5 kHz. On the other hand, the DAMAS results

of the adaptive beamforming data with k¼ 0.1 are 5–6 dB

lower, although a similar spectral shape is maintained. The

deviation is too large (bigger than the empirically set thresh-

old: 3 dB) and the k¼ 0.1 setup is thus recognized as inappro-

priate. The DAMAS computation has also been conducted for

the classical adaptive beamforming data without diagonal

loading, i.e., k¼ 0. It can be seen that both the profile shape

and the amplitudes are quite aberrant, which reflects the fact

again that adaptive beamforming without diagonal loading is

unsuitable for practical experiments.

V. SUMMARY

In this work an adaptive beamforming algorithm has

been proposed for aeroacoustic applications. This algorithm is

applied to experimental aeroacoustic data and the acoustic

image results are compared to that of the conventional beam-

forming method. It can be seen that the adaptive beamforming

algorithm does not produce an acoustic image with significant

improvement in resolution. The possible reasons include: (a)

The adaptive beamforming is optimized for a rank-one signal

model,29 whereas the practical data contains many discrete

(and possibly correlated) noise sources distributed in a

region;13 (b) the passage of sound waves through the open jet

shear layer affects the coherence between microphone meas-

urements; and (c) the noise model adopted in adaptive beam-

former may be inconsistent with practical cases.

Few results for practical experimental data can be found

in literature. This work develops an adaptive beamforming

algorithm specifically for aeroacoustic tests and applies it to

the practical data in an effort to fill this gap. The algorithm is

applied to experimental data acquired in an anechoic cham-

ber facility. The present results from practical experimental

data suggest that the adaptive beamforming method could

not produce an acoustic image with a significant improve-

ment in resolution. However, deconvolution post-processing

for adaptive beamforming results can be enhanced compared

to that for conventional beamforming results. For example,

the adaptive beamforming method is able to reduce the

DAMAS computation time by at least 60% for the practical

case considered in this work. Hence, it is still advantageous

to consider the adaptive beamforming method in aeroacous-

tic measurements.

FIG. 11. The mean-squared sound

pressure values for the DAMAS

results of the conventional delay-

and-sum (DAS) beamforming and

the adaptive beamforming data at (a)

5 kHz and (b) 7.5 kHz.

FIG. 12. The convergent mean-squared values for the DAMAS results of

the conventional delay-and-sum (DAS) beamforming and the adaptive

beamforming data at frequencies range between 1.5 and 7.5 kHz.
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