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Abstract: Conventional multibeam satellite communications systems ensure coverage of wide areas through
multiple fixed beams where all users inside a beam share the same bandwidth. The authors consider a new
and more flexible system where each user is assigned his own beam, and the users can be very
geographically dispersed. This is achieved through the use of a large direct radiating array coupled with
adaptive beamforming so as to reject interferences and to provide a maximal gain to the user of interest.
New fast-converging adaptive beamforming algorithms are presented, which allow one to obtain good signal
to interference and noise ratio with a number of snapshots much lower than the number of antennas in the
array. These beamformers are evaluated on reference scenarios.
1 Introduction
Satellite telecommunications systems specified today require
high-gain satellite antennas to supply sufficient link
budgets towards small user terminals. In this context,
satellite on-board multiple beam antennas (MBA) have
been successfully employed either for personal
communications, military communications or Internet
applications [1]. They allow one to insure high gain by
means of multiple adjacent patterns covering an extended
zone. They also allow one to introduce some frequency
reuse on non-adjacent beams, thereby increasing the
available capacity for a given bandwidth.

Standard MBA provide a fixed coverage with adjacent
beams crossing typically 3–4 dB below maximum gain
level. They are associated to a fixed bandwidth to beam
allocation, with typical 1:3 or 1:4 frequency reuse scheme,
that is to say, the frequency is reused on one beam over
three or four. On classical payloads, beamforming is
performed in radio frequency domain, prior to
channelisation function (usually on intermediate frequency
or in digitised baseband). By introducing digital
beamforming networks associated to transparent or
0

regenerative processor, the interest of such a multibeam
antenna can be considerably improved. As a matter of fact,
digital beamforming allows one to introduce fully flexible
beamforming. Moreover, by crossing on board
beamforming functions with channelisation, it becomes
possible to introduce some flexibility in terms of bandwidth
to beam allocation. Finally, the coverage reconfigurability
offered by digital beamforming associated to flexible
channelisation makes it possible to set capacity where
required when required, thus adapting the provided
resources to effective traffic requirements [2, 3].

When considering a moderate bandwidth, it is possible to
generalise this flexible approach, and go towards a ‘one beam
per user’ concept within a reasonable on board processing
complexity. In such a system, a suited capacity (i.e.
bandwidth) can be attributed to each user, or to a small
group of users. A specific beam, pointed towards the user
of interest (UOI), provides the maximum gain made
available by the antenna aperture, thus improves the link
budget by up to 3 or 4 dB with regard to traditional
multibeam coverage where edge of coverage gain must be
considered. Furthermore, if considering several users
associated to the same radio resource, it is possible to



adaptively form the beams associated to each of these users, in
order to reject specifically co-users interferences. The
rejection of interfering signals results in a significantly
improved signal-to-interference and noise ratio (SINR) for
each user, as compared to standard solution where antenna
pattern sidelobes are minimised over an extended zone.

Thanks to combined gain improvement, and isolation
enhancement, the obtained SINR on each link can then be
dramatically increased with regard to the performance
obtained with a standard coverage provided by an
equivalent antenna aperture. The improved SINR can lead
to increase effective payload throughput by using more
efficient modulation and coding scheme on user to satellite
link. Alternatively, keeping given SINR specification, the
system capacity can be improved by increasing cumulated
processed bandwidth. As a matter of fact, the adapted
isolation between users makes it possible to reuse frequency
on closer users than what was made possible with standard
systems. However, to provide significant improvement by
properly pointing and shaping antenna patterns, it is
necessary to introduce some adaptive antenna beamforming.

It has been shown in previous works [4, 5] that digital
beamforming antenna can provide flexible beams to
individual users on demand. The combination of both
adaptive processing and a suited resource allocation scheme
ensure the best use of available capacity. We can then refer
to space division multiple access (SDMA). Frequency
channels are reused as much as made possible by antenna
spatial filtering capacity. The allocation process highly
impacts final capacity, but the optimisation of such
algorithm is outside the scope of the present paper.
However in [4], the restricted area covered by the antenna
(about 1000 km wide) leads one to use a focal array
antenna including few radiating elements, thus few array
controls. The associated adaptive array processing then
stays within a reasonable complexity, and no specific effort
was set on considering adaptive algorithm optimisation in
terms of computational cost.

In this paper, we study the reception antenna of a
geostationary satellite communication system, operating in
Ka-band, which must provide high-gain beams towards
users located anywhere on the visible earth surface. We
present in the first part of the paper the constraints that are
associated with such a coverage, and show that the antenna
design leads to a radiating panel including a large number
of controls. The classical adaptive beamforming methods
such as those considered in [4–6] are then not suited any
more, as leading to excessive complexity. The second part
of the paper is then devoted to the description of specific
adaptive beamforming algorithms that allow one to avoid
array elements covariance matrix inversion and work in a
low-dimensional subspace. This matrix can thus be
estimated with a much reduced number of samples,
without affecting adaptive processing convergence leading
to a dramatic reduction of the algorithm associated
complexity and number of acquisitions. Finally, the last
part of the paper presents simulation results illustrating the
performances expected in a reference scenario.

2 Antenna design and constraints
related to adaptive beamforming
2.1 Coverage constraints and associated
antenna design

We here consider a ‘one beam per user’ coverage. Beams are
digitally formed by applying proper weighting, after prior
channelisation of the signal sampled after each radiating
element. The same radio resource can be used in several
beams as long as spatial filtering allows separating
associated signals. Beams are pointed individually towards
each user, thus the gain provided in the direction of the
user is maximised with regard to antenna size. Users can be
placed anywhere on visible side of the Earth as seen from a
geostationary satellite. Locally contiguous coverage can be
needed implying isolation capacity requirement. Isolated
users can also be covered. Fig. 1 gives an example of the
coverage that can be needed and illustrates time-frequency
resources reuse for close users. The square represents the
UOI. The UOI is assumed to share the same resource as
the co-users represented here by full circles, whereas the
diamonds are the symbols of users of the system sharing a
different resource. Finally, the cross symbolises a jamming
station for the UOI.

The system has to work, even if intentional or
unintentional interferences or jammers are active in the
coverage. If users are sharing a resource (the same
frequency channel for instance), they are interfering with
each other. Intentional jamming stations may also be
present. We consider here that jammers are acting like

Figure 1 Example of required coverage
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co-users interferences, except that their power is much higher
(typ. 10 dB).

The simplest way to implement an MBA is to provide each
beam with a single radiating element, located at the focal
plane of an optical device (single or multiple reflectors).
However, such an implementation cannot provide a
continuous multiple beam coverage with high efficiency. As
a matter of fact, the inter-feed spacing is driven by beam
spacing requirement. The allowable feed size is then small,
leading to non-optimum illumination of the reflector and
degraded performances for edge of coverage gain. To
obtain sufficient performances, one possible solution is to
use three or four ‘one feed per beam’ antennas, having their
beam lattice interleaved. The feed size is then allowed one
to increase, without compromising beam spacing. Three or
four reflector antennas must be used to provide the
complete coverage. In addition to its bulkiness, the main
issue of such a solution lies in its lack of flexibility, since no
beam reconfigurability is possible.

Another solution to provide multiple beams, using only
one reflector, is to use overlapping sub-arrays to increase
the effective aperture of each equivalent feed. The
focalising device associated with the array can be a single or
a double reflector. The array fed reflector (AFR) beams are
generated by combining signals coming from clusters of
typically 7–19 active feeds per beam depending on gain
and inter-beam isolation specifications. As compared to a
‘one feed per beam’ solution using identical focalising
device, the C/I ratio (power received from the nominal
beam, divided by that coming from the ones which
interfere in the same sub-band) can be increased by 3–
5 dB. Each feed contributes to several beams, typically 1 to
7, for central feeds. The total number of feeds of the
antenna is mainly related to the global extension of the
coverage. Such antennas are privileged for moderately
extended coverage (typically Europe or the contiguous
USA) or when lower-frequency reuse scheme are required.
For instance, Inmarsat 4 satellite uses a seven colours
frequency reuse scheme [7]. It is, however, difficult to
provide both high gain and rejection capacity on a widely
extended coverage as required in our application with such
an antenna.

Finally, the best antenna solution to provide multiple high-
gain beams spread all over Earth coverage without
compromising spatial filtering capacity for close users is a
direct radiating antenna (DRA). In such an antenna, each
radiating element contributes to every beam. In addition to
being well suited to the coverage requirements, such a
phased array antenna is also attractive, as it is likely to
reduce the dynamics of beamforming network signal, which
is critical for DBFN implementation. Furthermore the
graceful degradation principle avoids the ‘2 per 1’
redundancy, which is very expensive for antenna receiving
devices. For an example of system using a DRA, there is
the WINDS satellite which has two 128 elements DRA,
2

aiming at covering the Asia-Pacific region with four
reconfigurable beams (two for transmission and two for
reception) using analogue BFN [8].

Designing a DRA radiating panel mainly consists in
considering the two following constraints [9]:

† Antenna diameter is mainly determined by minimum
directivity level, which must be insured for all users of the
coverage, in order to comply with link budget requirements.

† Grid lattice is constrained by grating lobe rejection outside
a given domain (typically outside the Earth, for a
geostationary satellite antenna considered here), to avoid
losses and possible interferences related to grating lobes.
The maximum size of radiating elements is then related to
coverage global extension, defining maximum beam
pointing angle.

For our particular case, both high gain and extended
coverage are required. DRA sizing for geostationary satellite
and extended coverage lead typically to a number of
radiating elements going from one to a few hundreds.
Some solutions are investigated to reduce the number of
controls used in the beamforming process either by
thinning the array, or by introducing a first stage of
analogue beamforming. The irregular subarray division
allows one to break lattice periodicity, thus avoids grating
lobes keeping a reduced number of digital controls [10].
However, for our case, the remaining number of control
stays too important to use classical beamforming
techniques. Indeed, complexity of usual adaptive algorithms
issues become a bottleneck for SDMA-like
implementation. We here briefly review conventional full-
dimension adaptive beamforming techniques, prior to
presenting the solutions that could allow for fast
convergence at a low computational cost.

2.2 Adaptive beamforming

Adaptive beamforming consists in spatially filtering the
received array data with a view to recover a signal of
interest (SOI) while eliminating the interferences that
could possibly be present. This area has been extensively
studied in recent years and numerous solutions have been
proposed, see for example [11] for a thorough review. The
optimal beamformer amounts to solving the following
minimisation problem

min
w

wH Rw, subject to wH v = 1 (1)

where v is the spatial signature of the SOI and R is the
covariance matrix of the array output. The constraint in (1)
guarantees that the SOI will be undistorted after
beamforming, and because of the minimisation of the
output power, the beamformer will tend to place nulls
towards the interferences in order to reduce their
contribution. When the array measurements contain the



interferences and noise only, R = Ri+n where Ri+n denotes
the interferences plus noise covariance matrix, and the
beamformer is usually referred to as the minimum variance
distortionless response (MVDR) beamformer. When the
SOI is also present in the measurements, R = Ri+n+
PvvH and the terminology minimum power distortionless
response (MPDR) beamformer is used [11]. Whatever the
value of R, the solution to (1) is given by [11]

wopt =
R−1v

vH R−1v
(2)

When the covariance matrix is known, wopt is the same
whether R = Ri+n or R = Ri+nPvvH and the optimal
beamformer enables one to achieve the optimal SINR

SINRopt = PvH R−1
i+nv (3)

where P stands for the SOI power. At this point, we would
like to emphasise a significant difference between the two
beamformers. The MVDR beamformer requires that data,
free of the SOI, be available, which may be a major
constraint in communications systems. Hence, specific
access schemes need to be planned in order to obtain SOI-
free measurements and to implement the MVDR
beamformer. In contrast, this requirement does not hold
for the MPDR beamformer.

In practical situations, R is not known and is estimated
from N available snapshots X = [x(1) x(2) · · · x(N )] as

R̂ = N −1XX H = N −1
∑N

t=1

x(t)xH (t) (4)

with the latter referred to as the sample covariance matrix
(SCM). When the number of snapshots N is larger than
the number of array elements m, that is N . m, the SCM
is invertible with probability 1 and one usually substitutes
R for the SCM in (2) to yield

wsmi =
R̂
−1

v

vH R̂
−1

v
(5)

where the subscript ‘smi’ stands for sample matrix inversion.
The computational complexity associated with (5) depends
on the number of snapshots N and the number of elements
m since one needs to invert a m × m matrix. Therefore
considerable effort has been devoted to design beamformers
that can provide good SINR with a limited number of
snapshots and at a low computational cost. A commonly
admitted criterion is the so-called convergence measure of
effectiveness (MOE), that is the number of snapshots
required for a beamformer to achieve–on average–the
optimal SINR (3) within 3 dB. The MOE directly impacts
the computational load as well as the rate at which the
beamformer can be updated, in case of non-stationary
environments for instance. The MOE of the MVDR is
significantly lower than that of the MPDR when using the
SCM. Since the landmark paper by Reed Mallett and
Brennan [12], it is known that the MOE of the MVDR is
approximately 2m 2 3 snapshots. In contrast, for the same
performance, 2m − 3 + (m − 1)SINRopt snapshots are
necessary [11, 13, 14], which is prohibitive in most
applications. We would also like to stress that, in the case
N , m we consider in this paper, the beamformer in (5) is
even not implementable as R̂ is not invertible, actually its
rank is N. The methods we are looking for should, once
again, avoid the estimated covariance matrix inversion while
keeping a good MOE.

3 Low-complexity adaptive
beamforming
In order to improve the beamformer MOE, several strategies
have been proposed in the literature. Our aim here is not to
provide an exhaustive review of them, rather to sample the
most widely used and most effective techniques. A premier
choice is diagonal loading [15] which consists in adding a

scaled identity matrix to R̂ before inversion, yielding

wdl =
(R̂ + s2

dlI )−1v

vH (R̂ + s2
dlI )−1v

(6)

The above beamformer can be implemented even for N ≤ m,
its MOE is commensurate with twice the number of
interferences J, and it is thus very effective. The drawback
of such a method lies in the fact that it is not always simple
to fix the diagonal loading level s2

dl although some ways to
fix it, either adaptively or automatically have been proposed,
see for example [16–18]. Additionally, the inversion of a
m × m covariance matrix is still required, which is
computationally intensive for large m.

A second and important class of fast-converging
beamformers consists of the so-called reduced-rank (RR)
beamformers [19, 20] whose principle is to operate in a
subspace of the measurements, hence reducing the size of
the observations, and subsequently the sample support
required. They exploit the fact that the interferences occupy
a subspace that can be estimated by eigenvalue
decomposition (EVD) of the covariance matrix. In this
category, the more widely known methods are the principal
components (PC) method [21, 22] and the cross-spectral
metric method (CSM) [23]. Although their MOE is of the
order of 2J, and they do not require directly a matrix
inversion, these methods are still computationally intensive
as they require the EVD of R̂. Given the scenario we
consider in this paper–large number of elements m and
small number of snapshots N ≪ m–we are looking for
methods whose MOE is of the order 2J without requiring
the inversion of a large matrix or its EVD. Hence, the
methods listed above are not entirely satisfactory and we
now focus on three recently proposed approaches which can
meet our requirements.
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3.1 Conjugate gradient (CG) beamformer

The CG is a well-known technique to solve linear systems of
equations such as Rw = v [24]. It enables to obtain the
solution in m steps without any matrix inversion and is
thus computationally attractive. For the sake of
convenience, a possible implementation of the CG
beamformer is displayed in Fig. 2. As for all algorithms,
the input matrix R should be considered as a “generic”
input matrix, keeping in mind that it can correspond to the
covariance matrix of interferences plus noise (MVDR
scenario) or the covariance matrix of the SOI, the
interferences and the noise (MPDR scenario). Moreover, in
practice all algorithms considered will use R̂ in place of R
as input. In fact, the CG algorithm was not really used to
obtain the MVDR solution until its connection with the
multi-stage Wiener filter (MWF) [25] was discovered [26].
The MWF is an RR filter in which the RR subspace is
determined by maximising cross-correlations between the
desired signal and the observed data. Therefore in contrast
to PC or CSM, it does not require EVD. Yet, its
performance was shown to be generally better than that of
PC and CSM with a possibly smaller MOE. The MWF
was found to operate in the Krylov subspace
K(v, R, n) = R{v, Rv, . . . , Rn−1v} where R{·} stands for
the range space, hence its connection with the CG since
the latter, at iteration n, is known to operate in this subspace.

In Fig. 2, the iterations should be run till r = m to solve
Rw = v. However, as explained now, it may be
recommended to stop the iterations earlier. If the
covariance matrix contains J interferences with high
interference to noise ratio (INR), its EVD can be written
as R = U iLiU

H
i + s 2U nU H

n with Li = diag(l1, . . . , lJ )
and lk ≫ s 2. It follows that Rn ≃ U iL

n
i U H

i and hence, at
iteration n = J + 1, the Krylov subspace will capture the
interference subspace: the filter will then be most effective

Figure 2 CG beamformer
4

in rejecting the interferences. In other words, Fig. 2 should
not be necessarily run until n = min(m, N ) but should be
stopped at n = J + 1 where the SINR will be maximum.
In fact, when using R̂ instead of R, it has been observed
that the SINR generally decreases when n is increased
above J + 1 and tends to that of wsmi in (5), provided that
R̂ is invertible. The problem is that in practical situations
one does not know exactly the number of interfering
signals. On one hand, one should not stop before
n = J + 1 as all interferences will not be suppressed. On
the other hand, a too large r will result in poorer SINR,
especially if a rank deficient R̂ is used in Fig. 2. In order to
remedy this problem, we propose to include diagonal
loading directly in the CG beamformer, and refer to as the
CG–DL beamformer. This simply amounts to replacing
R–actually R̂–by R̂ + s 2

dlI in line 1 of Fig. 2. Although
the modification is minor, it yields considerable
improvement. Indeed, one does not need to know J, only
an upper bound for this value. In contrast to the original
CG, choosing r . J + 1 does not result in a decrease of the
SINR in a MPDR-type scenario. In fact, we observed, by
varying r, that the SINR is generally optimum at r ¼ J + 1
but then tends to be rather constant. Moreover, when one
uses the SCM and the latter is rank deficient (because of
N , m), one does not encounter any numerical problem as
the inverse of R̂ + s 2

dlI exists whatever N. This fact will be
illustrated in the next section.

3.2 Auxiliary vector (AV) beamformer

The AV beamformer was introduced in [27] as a simple
solution to compute the MVDR solution without resorting
to any matrix inversion. The implementation of the AV
beamformer is described by Fig. 3 where P⊥

v in line 3 of
Fig. 3 stands for the orthogonal projector onto the
subspace orthogonal to v. The basic idea behind this
algorithm is to build, at each iteration step n, an AV gn

which is orthogonal to v. This AV is able to capture the

Figure 3 AV beamformer



most (in sense of maximum magnitude cross-correlation) of
the interferences present at the previous iteration filter
output. In [27], it was shown that, with R a positive
definite covariance matrix, the AV weight vector converges
to wopt in (2) as r goes to infinity. In fact, the AV weight
vector comes very close to its limit for a relatively small
number of iterations, and a procedure to select the value of
r in Fig. 3 was presented in [28]. In finite samples, that is
when using R̂ instead of R, the AV beamformer was
shown to have performances commensurate with those of
the CG beamformer [29] and is thus a method to consider
for our problem. However, the proof of convergence in
[27] is based on the fact that the input matrix R is positive
definite. When R̂ is used this implies that N . m. In the
case of most interest to us, N ≤ m and hence R̂ has rank
N. In [30], we proved that if the input matrix R of Fig. 3
is rank deficient, with EVD R = ULU H where
U = [u1 u2 · · · up] [ C

m×p is a unitary matrix, then the
limit of the weight vector wn of Fig. 3 is

lim
n�1

wn = U⊥U H
⊥ v

vH U⊥U H
⊥ v

W wAV−1 (7)

where U⊥ is an orthonormal basis for R{U }⊥.

First observe that this limit belongs to a low-rank subspace,
and hence the AV beamformer asymptotically (in n) belongs to
the class of RR beamformers. Hence it should inherit their
properties in terms of low MOE. Moreover, it enables one
to achieve effective interference cancellation. As explained in
[30], in a MVDR scenario, the columns of U⊥ will mostly
lie in the null space of the interferences, that is, U H

⊥Ai ≃ 0,
where the columns of Ai [ Cm×J are the interferences
steering vectors. In an MPDR-type scenario, the SOI is also
present. In the absence of noise, the matrix X has rank J + 1
for N ≥ J + 1, and its range space is R{X } = R{[ v Ai ]}.
It follows that U⊥ will be orthogonal to both v and Ai,
which is desirable for Ai but is to be avoided for v. In the
presence of noise, the rank of R̂ is again N and most of the
energy of v and Ai will be confined in U. It follows that, in
a MPDR scenario, the asymptotic vector wAV − 1 may not
be advocated. However, in order to balance the previous
comment, one should mention that usually the iterations are
not run until convergence, mainly because convergence may
be very slow and thus the corresponding computational cost
becomes prohibitive. In fact, the transient behaviour of
Fig. 3 is more interesting. Indeed, in order to keep the
computational cost low, r is chosen relatively small.
Moreover, it can be observed, see the next section, that the
beamformer obtained after a few iterations has a better
performance than the asymptotic beamformer, especially in a
MPDR scenario.

3.3 Random beamspace processing

Beamspace processing is a usual way to operate in a low-
dimensional subspace [11]. It consists in applying first a
beamspace transformation on the data, that is,
x � x̃ = FH x where F is a m × r matrix and then in
computing the adaptive weight in the transformed space,
that is, in solving

min
w̃

w̃H R̃w̃, subject to w̃H ṽ = 1 (8)

where ṽ = FH v and R̃ = FH RF. The solution to the above
problem is obviously

w̃ = R̃
−1

ṽ

ṽH R̃
−1

ṽ
(9)

and the ‘equivalent’ beamformer is Fw̃. Note that the only
matrix to be inverted is R̃ whose dimension is r × r, and r is
typically small. Usually, the columns of the transformation
matrix F are steering vectors, and the corresponding beams
should let the SOI pass undistorted and capture the
interferences. When these conditions are met, such a
technique is very efficient from a computational point of
view and effective in terms of MOE. However, the
directions of the interfering signals are seldom known and
fixing F a priori is a delicate issue. Of course, the
beamspace transformation can be chosen adaptively, for
example, from the largest eigenvectors of the covariance
matrix, but, as said previously, we wish to avoid such EVD.
An interesting alternative, suggested in [31], is to select
random unitary matrices F and to average the corresponding
beamformers, so as to benefit from a diversity effect.

In [31], the technique was used for direction finding
problems and the idea is to average, over a certain number of
random F, the output power after beamspace processing.
This method can work with singular covariance matrices –
which is our case herein – and avoids diagonal loading and
the problem of choosing the loading level. It was shown to
perform well with a number of snapshots smaller than the
number of array elements. In this paper, we adapt this idea
to the problem of designing a beamformer. Since the
transformation is constrained to let the SOI pass through
undistorted, the matrix F can be chosen as

F = v
‖v‖ f2 · · · fr

[ ]
(10)

where f2, . . . , fr are mutually orthonormal beams and are
orthogonal to v. Let Q be a unitary matrix that rotates v
into the first component, that is,
QH v = ‖v‖[ 1 0 · · · 0 ]T = ‖v‖e1. Then, F can be
written as

F = [ Qe1 f2 · · · fr ]

= Q[ e1 QHf2 · · · QHfr ]

= Q
1 0T

r−1

0m−1 C

[ ]
(11)

where C is an m − 1 × r − 1 unitary matrix, which is
unconstrained, and chosen isotropically random. For
355
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instance, C can be generated from a m − 1 × r − 1 matrix W
with independent and identically distributed Gaussian entries
as

C = W (W H W )−1/2 (12)

Once C is drawn, the beamforming transformation F is
applied to the data, and the corresponding beamspace
weight vector w̃ is computed, as well as the equivalent
weight vector Fw̃. The latter is averaged over multiple
realisations with different matrices C to yield the final
beamformer, which we refer to as the unitary beamspace
(UB) beamformer. The steps involved can thus be
summarised by Fig. 4.

The three presented algorithms are potential solutions for
an adaptive algorithm implementation on an antenna with a
high number of elements. We are now going to assess their
performances in a particular scenario.

4 Numerical results
4.1 Antenna design and simulation
scenarios

In this section, we illustrate the performances of the
beamformers described above: we compare the CG
beamformer, with possibly diagonal loading, the AV
beamformer, the UB beamformer and the asymptotic AV
beamformer, based on their output SINR, which is defined as

SINR = P|wH v|2

wH Ri+nw
(13)

The latter is averaged over 1000 independent Monte-Carlo
trials where, for each trial, a different data matrix X is
drawn randomly and a weight vector w is calculated as well
as the corresponding SINR in (13). In addition, we also
display the worst-case (over 1000 independent Monte-
Carlo trials) SINR. Each SINR is plotted in decibels. We
will particularly investigate:

Figure 4 UB beamformer
6

1. the influence of r, that is the number of iterations at which
Fig. 2 –the CG beamformer– and Fig. 3 –the AV
beamformer– are stopped. It should be recalled that r also
corresponds to the dimension of the subspace where the
CG and UB weight vectors lie.

2. the influence of the number of snapshots N.

We distinguish two scenarios, a MVDR-type scenario
where the array data contain only the interferences and the
noise and a MPDR-type scenario where, in addition to
interferences and noise, the SOI is also present. Note that a
MVDR scenario can be a serious constraint for some
communications systems, since the communication needs to
be interrupted to obtain SOI-free data matrices. The reasons
for this distinction are that the output SINRs will be
significantly different but corresponds to different operating
modes. Analysis show that the relative performance between
the beamformers might be different in both cases.

To this aim, we consider a 1.2 m wide circular DRA with
m ¼ 401 non-isotropic elements, each of them of size
5.7l× 4.93l, that are distributed on a triangular grid at
30 GHz (reception mode), see Fig. 5. The maximum
possible gain provided by the array is 50.8 dB and the half-
power beam-width is 0.438. We deliberately chose an array
of several hundreds of radiating elements to illustrate a case
where the computational is highly critical. The array is also
chosen to provide a high gain all over the visible earth.

We consider a scenario where the UOI is located in the
(u, v)–space at u0 = v0 = 0, where u = sin(u) cos(f),
v = sin(u) sin(f) and u, f stand, respectively, for the
elevation and azimuth angles. We assume that J = 3
interferences are present: two of them are users of the
system sharing the same resources as the UOI and one is a
jamming station. They are located at 0.28 from the UOI
and their INR are respectively 0, 0 and 10 dB. The output

Figure 5 Layout of the array



SINR obtained with the conventional –non-adaptive–
beamformer is 28.8 dB, which is considered as a value of
reference we would like to enhance. Towards that end, it
appears a need to consider adaptive beamformers. Besides,
as concerns the UB beamformer, L = 50 random matrices
F are used to compute the weight vector.

4.2 MVDR scenario

In Figs. 6 and 7 we plot the average and worst-case output
SINR against r. The number of snapshots is fixed to
N = 20. The CG beamformer is possibly combined with
diagonal loading, and the loading levels are either 10 or
20 dB above the white noise level.

Let us consider first the average SINR in Fig. 6. From
inspection of this figure, it is clear that the CG
beamformer achieves the best performance with the lowest
number of iterations. As we already discussed, the
maximum SINR is obtained for r = J + 1 = 4 iterations
and comes very close to the optimum SINR which is equal
to 37.5 dB. Moreover, once the iteration index exceeds
J + 1, the SINR remains constant. This is a very appealing
feature as one does not need to know exactly the number of
interferences but only an upper-bound for this value in
order to decide when the iterations should be stopped.
Diagonal loading is not really helpful in this scenario and
can even degrade the performance in case of a too large
loading level. Regarding the AV beamformer, the following
observations can be made. The SINR of the asymptotic AV
beamformer wAV−1 in (7) is very close to that obtained
with the CG beamformer. This asymptotic regime is
reached for r ¼ 60 which is not very high but still larger
than the number of iterations required by the CG
beamformer. Therefore if the two beamformers have the
same steady SINR, the CG converges faster. The UB
beamformer has a lower maximum SINR than the two other

Figure 6 MVDR scenario

Average SINR against iteration index
beamformers (note that r is kept lower than N, the rank of
R̂, as FH R̂F must be invertible). Moreover, this maximum
is achieved for r ≃ 12, which is larger than the actual size of
the interference subspace. The reason for this is that the
beamspace matrix F is drawn randomly and hence a larger
subspace dimension is required to include, with high
probability, the true interference subspace. If r is too small F
may not capture the interference subspace, which results in
poorer SINR. In order to improve the UB beamformer, the
matrix F should not be drawn completely at random but
randomly within a spatial sector where the interferences are
known to lie. This method, which would require some a
priori information about the interferences localisation, may
lead to some improvement. Since this is beyond the scope of
the present paper, we do not elaborate further.

Regarding the worst-case SINR in Fig. 7, we can make the
following comments. For all algorithms, except the AV
beamformer, the worst-case SINR curves have the same
characteristics as their average SINR counterparts, with a
simple shift of about 2–3 dB, which indicates that the SINR
are rather concentrated around their mean. In contrast, the
worst-case SINR for the AV beamformer can be quite far
from the average SINR, which shows a greater variability.

We now study the influence of the number of snapshots.
Each algorithm is used with a ‘close to optimal’ value of r
and the latter varies between the methods. As explained
above, if J was known, one should use the CG with
r = J + 1. Here we simply assume that an upper-bound of
the number of interferences Jsup = 5 is known and the CG
algorithm is stopped at r = Jsup + 1. The AV beamformer
is stopped at r = 40, that is, before convergence in order to
have a reasonable computational complexity. Finally, the
UB beamformer is used with r = 10, so as to slightly
overestimate the actual interference subspace dimension.
Results are shown in Figs. 8 and 9, which confirms the

Figure 7 MVDR scenario

Worst-case SINR against iteration index
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hierarchy established earlier, viz the CG beamformer is
superior to the AV beamformer and the UB beamformer.
Additionally, it can be observed that the MOE of the three
beamformers is very good. More precisely, the CG and the
AV beamformers attain the optimal SINR within 3 dB
with only ten snapshots while slightly more snapshots are
required for the UB beamformer. Finally, that the CG
beamformer enjoys the smallest difference between average
and worst-case SINR, followed by the UB beamformer and
the AV beamformer.

4.3 MPDR scenario

We now consider that the SOI is present in the array
measurements, in addition to the interferences and the

Figure 9 MVDR scenario

Worst-case SINR against number of snapshots

Figure 8 MVDR scenario

Average SINR against number of snapshots
8

noise. The SNR is set to 0 dB. Similarly to the previous
case, we successively investigate the influence of r and N.
In Figs. 10 and 11, we display the output SINR as a
function of r, for N ¼ 20.

Several observations can be made, that contrast with those
made for the MVDR scenario.

† The CG still achieves its maximum SINR at r = J + 1
but, beyond this value, one can observe a significant drop
of the SINR. Hence, in contrast to the MVDR scenario,
the iterations should be stopped precisely at r = J + 1.
Otherwise, a performance loss is incurred. In practice, this
requires an accurate knowledge of the number of

Figure 10 MPDR scenario

Average SINR against iteration index

Figure 11 MPDR scenario

Worst-case SINR against iteration index



interferences, which is seldom available. Diagonal loading
can be very helpful to alleviate this phenomenon, provided
that the loading level is chosen properly. Indeed, for
sDL

2 ¼ 10 dB, one can still observe a SINR drop after
r = J + 1 but this drop is limited and the steady-state
SINR is better. With sDL

2 ¼ 20 dB, the SINR remains
constant. Therefore this simple modification we introduced
in the CG beamformer tends to be effective. However, the
choice of the loading level remains a delicate issue in practice.

† The AV beamformer has a performance equivalent to the
best CG–DL beamformer and reaches a close to maximum
possible SINR very quickly, viz r = 30 in this case.
Therefore it is a very interesting method since no parameter
such as sDL

2 needs to be chosen. Moreover, it is not required
to choose r with a high degree of accuracy –the SINR is
constant in Fig. 10 from r = 30 to r = 100– which is very
appealing. We would like to emphasise that at r = 100 the
AV beamformer is still in a ‘transient’ behaviour as the
SINR obtained with wAV−1 is equivalent to that of the CG
beamformer. It means that if r was increased further, the
SINR of the AV beamformer would decrease and would
converge to the SINR of wAV−1 as r � 1. Consequently,
there is a double advantage not to increase r too much, in
terms of SINR and computational load.

† The UB beamformer exhibits a similar behaviour as in the
MVDR scenario, except that the maximum SINR is achieved
for r = 6. However, when r increases too much the SINR drops.

† The difference between the average SINR and the worst-
case SINR is more pronounced than in the MVDR scenario.
Indeed while the average SINR is around 8–9 dB, the worst-
case SINR are around 0 dB. Again, the AV exhibits the
largest difference.

Figure 12 MPDR scenario

Average SINR against number of snapshots
Figs. 12 and 13 display the output SINR against the
number of snapshots. One can observe that the AV
beamformer provides the highest SINR and outperforms
the CG beamformer. The performance of the latter does
not really improve when N is increased, mainly because r is
not matched to J + 1. Introducing diagonal loading leads
to some improvement of the SINR but, again, s2

DL should
be chosen properly. The UB beamformer performs very
well. Even if r = 10 is not an optimal choice for the UB
beamformer, its SINR is better than that of the CG for
N ≥ 20 and is close to the best SINR.

4.4 Summary about the simulations
results

To conclude this section, we can make the following remarks:

† In a MVDR scenario, the CG appears to be the method of
choice. It converges very quickly in r and N, enables one to
achieve a close to optimal SINR and does not need to know
the exact number of interferences (only an upper-bound).

† In a MPDR scenario, the hierarchy is not as clear. The AV
beamformer has a very good performance without requiring
any user-parameter to tune. Its transient behaviour enables
to obtain the highest SINR and it is rather robust to the
choice of r. Diagonal loading is very helpful for the CG
beamformer but the issue of selecting s 2

DL is delicate.
Without diagonal loading, the CG beamformer does not
perform as well as the AV beamformer.

† The UB beamformer is potentially very interesting but the
choice of the ‘random’ matrices F needs to be investigated
further in order to obtain some improvement. In fact, the
matrices F are drawn randomly and therefore they are
likely to focus on spatial sectors which do not contain all

Figure 13 MPDR scenario

Worst-case SINR against number of snapshots
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interferences. It then results that a larger number L of
matrices should be averaged in order for all interferences to
be captured. In order to improve the UB beamformer (and
reduce L), it would be interesting, if available, to use some
a priori information about the location of the interferers so
as to draw matrices F not isotropically but selectively in
order for the beams drawn to contain the interferers with
higher probability.

5 Conclusions
In this paper, we showed the feasibility of a satellite
communications system that offers a global coverage for
dispersed users and that allows one to optimise SINR and
radio resource utilisation efficiency. This was achieved with
the use of a large antenna array coupled with adaptive
beamforming. We proposed three iterative, computationally
efficient, and fast-converging beamformers that can provide
good SINR with a very limited number of snapshots. In a
MVDR scenario, we showed that the CG beamformer
provides the best performance, at least when a tight upper-
bound of the number of interferences is known. In a
MPDR scenario, the AV beamformer is advocated as it is
robust to the choice of the number of iterations.
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