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Adaptive Beamforming: Spatial
Filter Designed Blocking Matrix

Sven Nordebo, Ingvar Claesson, and Sven Nordholm

Abstract—Controlling the resolution in adaptive beamformers
is often crucial. A simple method that works for both narrow-
band and bread-band arrays is presented. This method is based
on the normalized leaky LMS algorithm in conjunction with a
generalized sidelobe canceller (GSC) structure, where the GSC
is designed using a spatial filtering approach. In essence, the
suppression of the spatial filters and the implicit noise of the leaky
LMS algorithm together determine the adaptive beamformer.
Analytical expressions are given for the Wiener filters and the
output spectrum versus frequency and point source location.
These expressions are employed in the design specification of
the spatial filters and to obtain conditions for a controlled qui-
escent beamformer response. Simulation results are presented to
illustrate the behavior of the array.

1. INTRODUCTION

Y using adaptive filters behind the array elements in

delay- and sum-beamformers (see Fig. 1), the resolution
can be substantially increased [1], [2] and a simultaneous
cancellation of multiple jammers obtained. Such an increase
in resolution and capability is often desired, but it might also
lead to target cancellation caused by inaccuracies in far-field
approximations or sensor and target locations.

Careful calibrations can sometimes solve the problem, but
there are situations, such as with widespread sources, where
this super-resolution must be constrained in some target area
[3]. Typical methods are linear and quadratic constraints on
the beamformer derived from eigenvector expansions [2], [4],
derivatives of the signal power [5]-[7], and nulling an area
of coefficients in the adaptive filters [8]. However, several of
these methods are reported to be sensitive to the choice of
array origin [6], [9] since the constraints imposed are origin
dependent. This- drawback limits their usefulness, although
different methods to eliminate the origin dependence have
been proposed [6], [9].

We propose a method to design the blocking structure in
a GSC using a spatial filtering technique. This technique
is not dependent on the choice of array origin since the
spatial filter specification, which imposes the constraints, is
origin independent. The idea is straightforward, and several
filter design methods can be used to calculate the blocking
structure. The major advantage using this method is the direct
approach. The desired spatial resolution and the frequency
interval of interest, together with the built-in noise level of the
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Fig. 1. A broad-band adaptive generalized sidelobe canceller. Here, G and

B are fixed beamformers and Hy — Hg are adaptive filters.

leaky LMS algorithm, directly determine which frequency and
spatial/angle regions the beamformer conforms to the upper,
desired branch of the GSC.

II. MAIN IDEA AND GENERAL SOLUTION

The signals received by the array elements are assumed
to be stationary uncorrelated point sources m, with spectral
densities R,,,(f). When located in the far field, the signals
impinge as plane waves. The array consists of N elements
taking L snapshots. Mutually uncorrelated noise is present at
the array inputs with spectral density R, (f). An adaptive GSC
with K adaptive filters is used (see Fig. 1), and it discriminates
between the target signal and jammer signals only by their
spatial locations and spectral contents. Hence, the single-input
signal scenario is highly interesting, in particular with regard
to the behavior of the beamformer response when this signal
arrives from different points.

The array response vector d from a point source to each
weight is determined by the frequency w = 27 f and the time
delay 7 to each weight. The delay 7 is determined by the
wave propagation velocity ¢, the snapshot number [, and the
distance from the source to the corresponding array element
n. The array response vector is, in general, also dependent on
each array element characteristic which we omit in the sequel.
The array response vector is thus given by

d — [eéju'rl . _e—jw‘rNL]T (1)

in a reflectionless and isotropic medium. The response vector is
not dependent on the coordinate system since only the distance
between the source and the elements enters into the expression.
The filter function G(f) from a point to the output of the upper
beamformer is given by

G(f) =g"d 2

where the vector g contains the weights of the upper
beamformer.
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Fig. 2. Upper beamformer with quiescent response constraints imposed.
Passband within f = 1600-3200 Hz and § = 0-15°.

Assuming that the injected noise is chosen to dominate over
the sensor element noise, the Wiener solutions with a single-
input signal are approximately given by (see also Appendix A)

(DG, O
1+ K(Ru(f)/ By (INIB(S, O)?
_ RGO
1+ K- SNRz(f’ 9)

Rﬁ(f7 9) ~

©

when SNR,(f, 6) is the signal-to-noise ratio at the input of
the adaptive filters. This is the key expression of the beam
former. In the protected region, the adaptive beamformer is
given by [G(f, )] ~ 1 if |B(f, O)F < Ry(f)/KRn(f).
Thus, in the passband region, R.(f, §) ~ R, (f, ). In the
stopband region, the signal is suppressed by the beamformer
since |G(f, 8)| is small and |B(f, 8)| = 1 implies further
reduction via the canceller.

A design with quiescent response constraints included is
shown in Figs. 2 and 3. The lower beamformer is designed as
the “inverse” of the upper beamformer. The objective in this
design has been to obtain a rectangular region in frequency
and direction where no signal cancellation occurs, while full
adaptivity is allowed outside this region. Fig. 4 shows the
result for a single target signal when the upper and lower
beamformers are combined and the adaptive filters are active.
Here, a target source m(t) with constant spectrum was moved
between 0° and 30°, and the optimum filters H(f, 8) and the
corresponding output spectrum R.(f, §) were calculated for
each position.

IV. 1-D SpPATIAL FILTER SOLUTION

A further restriction is now imposed on the fixed beamform-
ers g and by. We force their sample depth to 1, ie., L = 1,
and we are back to a more conventional beamformer situation.
In this case, the spatial filter B(f, #) is given by

M-—1
B(f,0) = B(Q) = ) fne /M (10)
m=0
where
Q) = 2wfdﬂrﬁ. (11)
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Fig. 3. Lower beamformer with no constraints imposed. Stopband within
f = 1600-3200 Hz and 6 = 0-15°.
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Fig. 4. Total adaptive beamformer behavior for white signal incident from
different directions. The region f = 1600-3200 Hz and § = 0-15° protected.
Output spectral density plotted for varying 6 = 0-30°.

The kth spatial filter By (f, 6) is again obtained as

By(f, 8) = e~ DI=OB(f, 6). (12)
Since we now have lost one design dimension, we propose the
following procedure to obtain a desired beamformer [14].

1) Determine over which temporal frequency band [fi, fu]
the array is aimed to operate.

2) Select an angular interval [6;, 6,,] over which the array is
not allowed to cancel the target signal. Normally, #; = 0 since
the look direction is chosen to broadside.

3) Using the relationship in (11), a spatial filter B is de-
signed suppressing the region [, ¢, 1 ] sufficiently, where

Q= d sin 6;

27 fi

dsm@ o fue(13)

Ql, u

4) Put the spatial filter coefficients in the columns of the
blocking matrix B, and shift them one step per column.

The filter specification above is a conventional digital high-
pass filter specification if either 6; or f; is zero. Such a
design can easily be fulfilled using equiripple filters [13].
The necessary filter stopband suppression is determined via
the Wiener solution. The design parameters are, in particular,
the ratio R,,/R, and the number of adaptive filiers K. With
these parameters set and the filter length M chosen, the filter
coefficients can effectively be found using ParksMcClellan
optimum FIR filter design. Since one normally wants a perfect
zero at the spatial frequency zero (no cancellation in the
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Fig. 8. Power spectrum density PSD R. and R,,: finite length Wiener
sotution evaluated for 3000 Hz and simulation end results (weights adapted,
frozen, and response calculated). Spectral expressions evaluated for 3000 Hz.
N = 12 elements and d = S cm, 1 spatial filter with 12 coefficients designed
to protect f = 0-3200 Hz, and & = 0-2°. Adaptive filter with 21 coefficients.

The leakage factor «v is given by

v=1-2uo] (21)
where 03 is the variance of the “injected” white noise.

Signals incident from different directions will cause a wide
spread in the power of the adaptive filter input signals. A
power normalization of & with an estimate of ¢r R is therefore
vital. This facilitates stability of the algorithm, and at the same
time, a reasonable excess mean-square error is obtained.

Figs. 8 and 9 show simulation results with a single source
using the normalized leaky algorithm described above. Af-
ter adaptation from each direction, the filter coefficients are
frozen, and the spectral density of the output signal of the
beamformer is calculated and compared with the finite Wiener
solution. Fig. 10 shows a corresponding learning curve. Good
resemblance with the theoretical curves is obtained, where the
input power is significant despite the statistical fluctuations of
the weights.

VI. CONCLUSIONS

In this paper, we have described a general method for
controlling super-resolution in adaptive arrays using a spatial
filter design for the blocking structure of a generalized sidelobe
canceller. Expressions were given to explain the behavior of
the adaptive array, which aids in the design. Simulations verify
the expected behavior of the array.

VII. APPENDIX A
WIENER SOLUTIONS

The infinite Wiener solution in the general case with no
restrictions on geometry or causality satisfies the normal
equations in the frequency domain:

R,z = HRzz (22)
where R, ¢ is a 1 x K vector containing the cross-spectral
densities R, ., H is a 1 x K vector of frequency functions
H;, and Bgyg is a K x K matrix of cross-spectral densities
Rzimj. For notational convenience, the arguments ¢, f, and ¢
are omitted in this Appendix.
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Fig. 9. R.: adapted, frozen, and calculated beamformer response for differ-
ent directions. Microphone array with 12 elements and 5 cm interspacing, 1
spatial filter with 12 coefficients designed to protect f = 0-3200 Hz, and § =
0-2°. Adaptive filter with 21 coefficients.
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Fig. 10. Typical learning curve. Incident signal from 7°. Array with 12
elements and 5 cm interspacing, 1 spatial filter with 12 coefficients designed
to protect f = 0-3200 Hz, and 8 = 02°. Adaptive filter with 21 coefficients.

The upper beamformer output signal y4 is given by

ya=g"a. (23)
The array weight vector g is divided into NN subvectors,
one per sensor, g, of length L so that g = [gy---gn_1]7
The array input vector is analogously divided, yielding z =
[zo---zn-1]T.

The adaptive filter input vector x is obtained as = =
B 247, where 5 is a vector containing the leaky noise sources
1;. The NL x K blocking matrix B is given by

B = [b; ---bg] (24)

where each column b; is also divided into N subvectors b;; of
length L. The input signal to the ith adaptive filter is
T; = bZHz + ;. (25)

We define the vector dy = [1 e=927fT ... g=327f(L-1)T|T,
In the upper beamformer, the source m and noise n; are filtered

by gfd and g dy, respectively. In the lower beamformers, the
corresponding frequency functions are be d and bflI do.
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VIII. APPENDIX B
CONTROLLED QUIESCENT RESPONSE

In this Appendix, we regard all frequency functions and
spectra from Appendix A as functions of the normalized
frequency variable v = fT, assuming that all signals are band-
limited and sampled properly with the sampling rate 1/7'. The
quiescent response is the response of the beamformer with
the adaptive weights frozen to the situation when the only
signals present are sensor noise. A zero quiescent Wiener filter
solution implies a controlled quiescent response given by (see
Appendix A)

R, = Rm|G|2 + RngHDO.q ~ Rm‘G|2 (44)
where G is the response of the upper beamformer. From
Appendix A, we see that the requirement for a controlled
quiescent response is zero cross correlation of the sensor noise,
filtered by the upper and lower beamformer, respectively.
Assuming that all sensor noise sources are uncorrelated and
have the same spectral density R,, from (29), a sufficient
condition for a controlled quiescent response is

g'DyB =0 (45)
for all v. From (26), with G; = g/dy and B = b dy, the
same condition is given by

N-1
Y aBy=0 i=1--K
=0

(46)

for all v. Note that G; and B;; are frequency functions of the
FIR filters with tap weights ¢;(n) and b;(n) corresponding
to the elements in the vectors g, and b;;, respectively. The
condition above is thus given in the time domain as

N-1
> g(n)kby(-n) =0  i=1--K 47
=0

for all integers n. Here, % denotes discrete-time convolution.
Since the FIR filters ¢;(n) and b;;(n) both are of length L,
(47) implies K (2L — 1) linear constraints on the array weight
vector g, assuming that the blocking matrix B is designed
unconstrained.

It is convenient to give a matrix formulation for these
quiescent response constraints. Let Ag(n) denote a sequence
of block diagonal matrices, each with N blocks A(n):

A(n)
Ap(n) = (48)
A(n)
where
&(n) §(n+1) 6(n+ L —1)
A(n) = §(n:— 1) 5(n) :
(5(77,—.11—}—1) é(n

and 6(n) = 1 for n = 0 and zero otherwise. The quiescent
response condition according to (47) is now given by

gHA(n)b; =0  i=1--K

for all integers n, or

(50)

BEAf (n)g=0 (5D

for all integers n. Note that the left side of (45) is the discrete-
time Fourier transform of the left side of (51) transposed.
Since Ag(n) is zero unless |n| < L — 1, (51) implies K
linear constraints on g for every n such that |n| < L — 1.
These constraints can be collected in a constraint matrix C of
dimension r x NL where r < K(2L — 1). Thus, any linear
dependent constraints are assumed to be removed so that C' is a
full rank matrix. The controlled quiescent response condition
is compactly expressed as

Cg =0. (52)
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