
 

  
Abstract—A new iterative adaptive beamforming (ABF) 

algorithm based on conventional beamformers is proposed, in 
order not only to steer the main lobe towards a desired signal and 
place radiation pattern nulls towards respective interference 
signals, but also to achieve a desired side lobe level (SLL). Thus, 
the algorithm becomes less susceptible to unpredicted 
interference signals than conventional beamformers. In each 
iteration, the algorithm finds the direction of the peak of the 
greatest side lobe, which is considered as direction of arrival 
(DoA) of a hypothetical interference signal, and the conventional 
beamformer is then employed to find proper antenna array 
weights that produce an extra null towards this direction. The 
iterative procedure stops when the desired SLL is obtained. The 
algorithm is applied on three conventional beamformers and is 
tested for various signal DoA, while the direction deviation of the 
main lobe and the nulls is recorded, to evaluate the algorithm in 
terms of robustness. The proposed algorithm needs a few 
iterations to achieve the desired SLL, and thus is much faster 
than any evolutionary iterative method employed for side lobe 
suppression. Finally, unlike methods that employ neural 
networks, the proposed algorithm does not need any training to 
become functional. 
 

Index Terms—Adaptive beamforming, minimum variance 
distortionless response, recursive least squares, sample matrix 
inversion, side lobe level, side lobe suppression. 

I. INTRODUCTION 

DAPTIVE beamforming (ABF) is a real-time procedure 
applied on the feeding of antenna array elements [1]-[24]. 

The term “adaptive” indicates the ability of this procedure to 
dynamically steer the antenna array main lobe at the direction 
of arrival (DoA) of a desired incoming signal (DIS) and place 
a null at the DoA of every respective undesired incoming 
signal (UIS). Since the DoA of every signal is time varying, 
the ABF technique has to find at every moment the 
appropriate weights of the array elements, that create a main 
lobe towards the DoA of DIS and place nulls towards the 
respective DoA of UISs. The final goal is to maximize the 
signal to interference-plus-noise ratio (SINR). Since sample 
sets of DIS and UISs are used in the beamforming procedure, 
 
 
 
 
 
 

 
 

ABF belongs into the category of digital beamforming, which 
yields better results compared to conventional analog 
beamforming [25]. 

Several deterministic [2]-[5], [7], [8], [10], [12], [15], [17], 
[20], [23] and evolutionary ABF techniques [6], [9], [11], 
[13], [14], [16], [18], [19], [21], [22], [24] can be found in the 
literature, as well as applications of beamforming in different 
types of antennas and radars [23], [24], [26]-[34]. Among 
these techniques, the minimum variance distortionless 
response (MVDR), sample matrix inversion (SMI), and 
recursive least squares (RLS) [2], [3] are very popular. Like 
every conventional ABF technique, MVDR, SMI and RLS do 
not take into account the side lobe level (SLL) and therefore 
they cannot minimize it. On the other hand, new interference 
signals from various angles of arrival (AoA) may arise during 
the time span that a certain data sample set is processed by the 
beamformer to estimate the correlation matrices. Thus, the 
radiation pattern nulls created at the end of this time span 
cannot take into account these new interference signals. Such 
signals with DoA close to directions of strong side lobes lead 
to SINR degradation. Also, by ignoring the SLL, some 
radiated power is being wasted, resulting in poor power 
efficiency. 

The proposed algorithm has iterative structure and aims in 
each iteration at finding the direction of the strongest side lobe 
in order to guide the ABF technique (e.g., MVDR, SMI or 
RLS) to consider this direction as DoA of a hypothetical UIS. 
Thus, in each iteration, the ABF technique is employed to find 
proper weights that steer the main lobe towards the DoA of 
DIS and concurrently place nulls towards the respective DoA 
of the actual UISs together with additional nulls towards the 
respective DoA of all the hypothetical UISs found at the end 
of the current iteration and the previous ones. In this way, 
every strong side lobe found until the end of the current 
iteration splits into two smaller lobes. It is expected that these 
additional nulls help to suppress all the strong side lobes found 
during the iterative process. This process continues until SLL 
≤ –20 dB with respect to the main lobe peak, which is 
considered enough to suppress unexpected interference 
signals. To the best of the authors’ knowledge, extra radiation 
pattern nulls placed at the directions of strong side lobes have 
never been used so far by beamforming techniques to reduce 
the SLL. The proposed algorithm is computationally light and 
fast, due to the small number of iterations needed to achieve 
the desired SLL. 

For the purpose of this study, the proposed algorithm is 
applied to a linear array of thirty ideal omni-directional 
sources (M = 30) uniformly spaced at distance d equal to λ/2 
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(d = λ/2), where λ is the free space wavelength. Since the 
elements are ideal, there is no coupling between them, and the 
radiation pattern is calculated only by the antenna array factor. 
One DIS and two UISs are assumed to be concurrently 
received by the antenna array in the presence of zero-mean 
additive Gaussian noise with a certain signal to noise ratio 
(SNR). The MVDR, SMI and RLS are alternatively employed 
here by the proposed algorithm to estimate the antenna array 
weights that achieve proper main lobe steering together with 
null placing at desired directions. Also, we apply time average 
estimation of the correlation matrices in MVDR and SMI by 
using blocks of data samples. This makes the results become 
more realistic.  

The novelty introduced in this paper is the incorporation of 
well-known ABF techniques into a properly structured 
iterative algorithm to achieve not only main lobe and null 
control but also SLL control, which is not provided by 
conventional ABF techniques. So, several advantages are 
achieved by the proposed algorithm: Firstly, the computational 
procedure is light and is completed in a few iterations, making 
thus the algorithm capable of responding immediately in real 
time. Therefore, the algorithm is much faster than any 
evolutionary iterative method employed for side lobe 
suppression, since an evolutionary method usually needs 
several hundreds of iterations to come to a conclusion. 
Secondly, the SLL reduction is beneficial, because it helps the 
beamformer to suppress any interference signal, which has not 
been taken into account during the processing time span. 
Thirdly, unlike methods that employ neural networks (NNs), 
the proposed algorithm does not need any training to become 
functional. Finally, the algorithm seems to work efficiently, 
even when AoA of UISs are very close to AoA of DIS, as 
shown in the statistical results presented in section VIII. 

II. PRIOR ART 

Several techniques can be found in the literature that aim at 
reducing the SLL. In [13], particle swarm optimization is used 
to achieve harmonic beam steering with low SLL by defining 
on-off sequences of excitations in time-modulated linear 
arrays. In [14], ABF is achieved by applying a variant of an 
evolutionary method called invasive weed optimization. ABF 
techniques based on NNs are proposed in [16] and [19] in 
order to control the SLL. A genetic algorithm using Pareto 
front selection is introduced in [18] in order to provide beam 
patterns with reduced SLL in random antenna arrays. In [20], 
SLL reduction is achieved by decreasing the peak SLL of the 
Capon spectrum. An iterative algorithm called numerical 
pattern synthesis (NPS) is proposed in [35]. According to this 
algorithm, a very large number (two or three times the degrees 
of freedom of the antenna array) of artificial interference 
signals is used with their power being updated at each iteration 
until the desired SLL is achieved. In [23], [24] and [36] 
convex optimization is applied for beamforming and side lobe 
suppression. A low side lobe pattern synthesis method is 
proposed in [37] for large planar arrays. The method makes 
use of successive Fast Furrier Transforms (FFTs) of the array 
factor. Several methods of array pattern synthesis with low 
SLL can also be found in [38]. In [39], an iterative fast Fourier 
technique is introduced for null control. This technique needs 

2000 iterations to achieve the required null depth and the 
desired SLL, while only broadside cases were studied. A 
beamforming network based on Nolen matrix topology for use 
in low SLL linear multibeam antennas is introduced in [40]. In 
[41], SLL reduction and null control are applied to linear 
arrays by using Taguchi’s method. In this study, only 
broadside cases are considered, while the excitation weights 
are assumed to have symmetrically distributed amplitudes 
with respect to the center of the array and no phase 
differences. Nevertheless, the number of iterations determines 
the accuracy of the optimized solution derived by Taguchi’s 
method. Therefore, the number of iterations must be increased 
when an increased accuracy is required, or when the number 
of elements that compose the array increases, or when non-
broadside cases are studied (i.e., the excitation weights are 
composed of non-symmetrical amplitudes and unequal 
phases). In [42], a side lobe suppression algorithm is applied 
to holographic metamaterial antennas. The algorithm relies on 
the values of two parameters, which are optimized by applying 
backtracking search and the gradient descend method. In [43], 
the NPS algorithm is employed in conjunction with a 
determination procedure of the main lobe region, in order to 
synthesize 2-D patterns with low SLL. In [44], a low side lobe 
level time-domain adaptive beamforming technique has been 
proposed using convex optimization. A diagonal loading 
technique is introduced in [45] to keep the SLL at a desired 
value using Taylor excited antennas. Concentric ring isophoric 
sparse arrays are proposed in [46] to achieve optimal pattern 
shaping. Such arrays can effectively be used to perform static 
beamforming (for invariable environments) and concurrently 
achieve low SLL. In [47], a new method based on discrete 
dipole approximation is introduced to design metasurface 
antennas with low SLL. A novel pattern synthesis method is 
proposed in [48] to obtain low SLL. The method is applied to 
unequally spaced linear arrays, takes into account the mutual 
coupling between the array elements and is implemented by 
using iterative FFTs via virtual active element pattern 
expansion. Finally, in [49], thinned fractal antenna arrays are 
used to achieve main lobe steering together with null control 
and SLL reduction. The SLL reduction and the control of a 
single null are concurrently achieved by applying a 
combination of ant colony optimization (which is a discrete 
evolutionary method) and a least mean squares algorithm. 

A general comment would be that all the side lobe 
suppression techniques that employ evolutionary optimization 
methods encounter a great difficulty in responding promptly in 
practice, due to the large number of iterations required by the 
evolutionary methods. It is obvious that an iterative method 
can be used for real time applications only if a few iterations 
are required by the method to produce a result, as is the case 
of our proposed algorithm. Finally, it has to be noted that side 
lobe suppression techniques that employ NNs exhibit instant 
response, but the NNs must undergo a procedure of proper 
training as well as an evaluation procedure in order to become 
functional. 

III. FORMULATION 

According to the conventional narrowband beamforming 
problem, N+1 monochromatic signals at a wavelength λ are 



 

received by a linear array composed of M ideal 
omnidirectional sources uniformly spaced at distance d = λ/2, 
while it is assumed that M >N [2]. The array is assumed to be 
parallel to the z-axis. In general, the signals concurrently 
received by the antenna array are a DIS s0 with AoA defined 
as θ0 and N UISs sn (n=1,…,N) with respective AoA defined as 
θn (n=1,…,N), as shown in Fig. 1. In this study, it is 
considered that N = 2 and M = 30. Each AoA is defined by the 
DoA of the respective signal and the direction which is normal 
to the axis of the antenna array (see Fig. 1). Actually, each 
AoA is complementary to the elevation angle defined here by 
the DoA of the respective signal and z-axis.  

The mean power of DIS is defined as 

 ( ) ( )0 0 0SP E s k s k∗ =   , (1) 

where E[·] denotes the expected value and index k indicates 
the k-th time sample. PS0 is considered as reference power for 
all signals and is therefore assumed to be equal to one. The 
signal xm(k) created at the input of the m-th array element 
(m=1,…,M) includes a zero-mean additive Gaussian noise 
signal nm(k). Since n1(k),…,nM(k) are zero-mean signals, their 
variance σ2 will be equal to their mean power which, in turn, 
can be calculated by the value of the SNR. 

If we use blocks of K time samples (k=1,…,K), the input 
signals xm (m=1,…,M) can be expressed by an M×K input 
signal matrix given as follows: 

 ( ) ( ) ( ) ( )0 0b b b b= + +X a s AS N , (2) 

 

 
 
Fig. 1.  Adaptive beamformer block diagram. 
 
where b is the sequence number of the sample block. To 
clarify all the vectors and matrices in (2), we give the 
following definitions: 

 ( )1 sinsin1 , 0, 1, ,nn
Tj M dj d

n e e n Nβ θβ θ − = = a    (3) 

and 

 [ ]1 N=A a a  (4) 

are, respectively, the array steering vector that corresponds to 
a certain AoA θn, and the array steering matrix constructed by 
the steering vectors that correspond to AoA of all UISs 
(n=1,…,N). Also in (3), β is the free space wavenumber 
(β=2π/λ), and superscript T indicates the transpose operation. 

In addition, 

 
( )( ) ( )( )( ) 1 1 1 ,

0,1, ,

n n nb s b K s K b K

n N

 = + − + − 
=

s 


 (5) 

and 

 ( ) ( ) ( )1

T

Nb b b=   S s s  (6) 

are, respectively, a row vector that contains the K samples of 
the b-th sample block of incoming signal sn, and the UIS 
sample matrix constructed by the row vectors that correspond 
to all UISs. Also, 

 
( ) ( )( ) ( )( )1 1 1 ,

1, ,

m m mb n b K n K b K

m M

 = + − + − 
=

n 


 (7) 

and 

 ( ) ( ) ( )1

T

Mb b b=   N n n  (8) 

are, respectively, a row vector that contains the K samples of 
the b-th sample block of noise signal nm, and the noise sample 
matrix constructed by the noise row vectors that correspond to 
all array elements. As shown in (2), X is the sum of three 
terms. The first term is due to DIS, the second is due to UISs, 
and finally the third is due to noise signals. Therefore, 
equation (2) can be written in the form 

 ( ) ( ) ( ) ( ) ( ) ( )d u d ib b b b b b= + = + +X X X X X N , (9) 

where 

 ( ) ( )0 0d b b=X a s , (10) 

 ( ) ( )i b b=X AS , (11) 

and 

 ( ) ( ) ( ) ( ) ( )u ib b b b b= + = +X X N AS N  (12) 

are, respectively, the desired, the interference and the total 
undesired component of X. 

For each signal, a respective correlation matrix is defined. 
We assume that the beamforming process is ergodic in 
correlation. Thus, a statistical correlation matrix can be well 
approximated by the respective time average estimate of this 
matrix constructed from time samples of the corresponding 
signal. The correlation matrix of xm is defined as 

 ( ) ( ) ( )1 H
xx b b b

K
=R X X , (13) 

where superscript H indicates the Hermitian transpose 
operation. Similar definitions can be given for the correlation 
matrices that correspond to xdm (desired component of xm), xim 
(interference component of xm) and nm. By considering that 
there is no correlation among xdm, xim and nm, we easily get 

 ( ) ( ) ( ) ( ) ( ) ( )xx dd ii nn dd uub b b b b b= + + = +R R R R R R , (14) 

where Ruu is the correlation matrix of the total undesired 

 

 

 

wM
* 

wm
* 

w1
* 

x1 

xm 

xM 

 

 

  sn 

   θn 

θ0 

s0 

 array axis 
     (z-axis) 

y



 

signal component (i.e., xum = xim + nm ,  m = 1,…,M). 
The beamformer output y can be expressed by the following 

row vector: 

 ( ) ( ) ( )Hb b b=y w X , (15) 

where 

 ( ) ( ) ( )1

T

Mb w b w b=   w   (16) 

is the excitation weight vector that corresponds to the b-th 
sample block. From (9) and (15), it is obvious that the output 
can be considered as the sum of a desired and an undesired 
component: 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )0 0 .

H H
d u d u

H H

b b b b b b b

b b b b b

= + = +

= + +  

y y y w X w X

w a s w AS N
 (17) 

Since the mean power of DIS was assumed to be equal to one, 
the mean power of yd is given as 

 ( ) ( ) ( ) ( ) ( )0 0
H H H

yd d dP b E b b b b = = y y w a a w . (18) 

On the other hand, the mean power of yu is given as 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

H
yu u u

H H H
ss nn

P b E b b

b b b b b b

 = = 
= +

y y

w A R A w w R w
 (19) 

where Rss is the correlation matrix of UISs (n=1,…,N). This 
matrix is approximated by a time average estimate as 

 ( ) ( ) ( )1 H
ss b b b

K
=R S S , (20) 

where S(b) is given by (6). Equation (19) is extracted provided 
that there is no correlation between any two incoming signals 
and no correlation between any incoming signal and noise. 
Finally, (18) and (19) can be used to extract the value of the 
SINR that corresponds to the b-th sample block: 

 

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0 0 .

yd yu

H H

H H H
ss nn

SINR b P b P b

b b

b b b b b b

= =

=
+

w a a w

w A R A w w R w

 (21) 

IV. MINIMUM VARIANCE DISTORTIONLESS RESPONSE 

The MVDR technique aims at finding the optimum weight 
vector w that minimizes Pyu, while the desired output signal yd 
is not distorted, resulting thus in maximizing the SINR [2]. It 
must be noted that the MVDR solution is identical to the 
Maximum Likelihood (ML) solution, with the only difference 
that the ML approach needs all UISs and noise signals to have 
zero mean value and follow Gaussian distribution. Thus, the 
MVDR solution is more general. The optimum w is given by 
the following expression: 

 ( ) ( )
( )

1
0

1
0 0

xx
MVDR H

xx

b
b

b

−

−=
R a

w
a R a

. (22) 

V. SAMPLE MATRIX INVERSION 

In the SMI technique, the optimum weights are estimated 
by minimizing the Mean Square Error (MSE) between the 
output y of the beamformer and a reference signal r, which 
usually is a form of DIS [2]. The error signal vector is a row 
vector defined as 

 ( ) ( ) ( ) ( )Hb b b b= −ε r w X , (23) 

where 

 ( ) ( )( ) ( )( )1 1 1b r b K r K b K = + − + − r   (24) 

is also a row vector, which contains the K samples of the b-th 
sample block of the reference signal. The MSE between y and 
r for the b-th sample block is defined as 

 ( ) ( ) ( )1 H
MS b b b

K
ε = ε ε . (25) 

Then, by differentiating ( )MS bε  with respect to w(b), and by 

demanding the derivative to be equal to zero, we can find the 

optimum weight vector that minimizes ( )MS bε  as given 

below: 

 ( ) ( ) ( )1
SMI xxb b b−=w R z , (26) 

where 

 ( ) ( ) ( )1 Hb b b
K

=z X r  (27) 

is the estimate of the correlation vector between the reference 
signal and the array input signals for the b-th sample block. 

VI. RECURSIVE LEAST SQUARES 

Similar to SMI, RLS is another technique that aims at 
minimizing the MSE. Unlike MVDR and SMI, which make 
use of sample blocks to estimate Rxx and then invert Rxx to 
calculate the array weights, the RLS technique updates 
directly 1

xx
−R  every time an input signal sample is acquired, 

reducing thus the complexity of the whole process. 
Nevertheless, a drawback of this technique is that it needs 
several iterations to converge. The RLS technique makes use 
of a parameter a called “forgetting factor” in order to limit the 
effect of older samples. The update of 1

xx
−R  is achieved 

according to the following expression: 

( ) ( ) ( ) ( ) ( )1 1 1 1 11 1 ,
1

2, , ,

H
xx xx xx

k
k a k a k k k

k
k K

− − − − − = − − − −
=

R R h x R


 (28) 

where index k indicates the k-th time sample, K represents the 
total number of samples used by the technique to converge, 

 ( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

1

1 1
xx

H
xx

a k k
h k

a k k k

− −

− −

−
=

+ −
R x

x R x
,  (29) 

and finally 



 

 ( ) [ ]1 ( ) ( )
T

Mk x k x k=x    (30) 

is a vector that contains the k-th time samples of the M input 
signals. Then, the weights are recursively updated according 
to the expression: 

( ) ( ) ( ) ( ) ( ) ( )1 1H
RLS RLS RLSk k k r k k k∗ = − + − − w w h x w ,(31) 

where r(k) is the k-th time sample of the reference signal. The 
matrix 1

xx
−R  and the weights are respectively initialized as: 

 1(1)xx M Mδ−
×=R I   (32) 

and 

 ( )1RLS =w 0 , (33) 

where δ is a large arbitrary number, and IM×M is the M×M 
identity matrix. The reason that δ is chosen to be a large 
arbitrary number is because the RLS beamformer initially 
does not receive samples of the incoming signals and therefore 
X will be composed only of noise samples, which are 
uncorrelated and have small values. Thus, Rxx will be almost 
diagonal with small entries, and therefore its inverse ( 1

xx
−R ) 

will be diagonal as well but its entries will be large. Since in 
the RLS beamformer, 1

xx
−R  is directly initialized (and not by 

inverting Rxx), it can be approximated as an identity matrix 
multiplied by a large arbitrary number δ. The RLS technique 
could also work with small values of δ, but the convergence 
rate of the technique would be slower. 

VII. PROPOSED SIDE LOBE SUPPRESSION ALGORITHM 

As mentioned above, a conventional beamforming 
technique does not take into account the SLL. As a 
consequence, new interference signals may arise during the 
time span that a certain data sample set is processed by the 
beamformer. Since this sample set does not contain any 
information about these new interference signals, no null is 
created towards their DoA, resulting thus in SINR degradation 
especially in cases where these signals have DoA close to the 
directions of strong side lobes. In such cases, a low SLL 
would help to keep the SINR at high levels.  

The proposed algorithm finds in each iteration the direction 
that corresponds to the strongest side lobe. Then, this direction 
is considered as DoA of a hypothetical UIS (interference 
signal), and therefore the ABF technique is employed by the 
algorithm to place a null at this direction. In this way, the 
strongest side lobe splits into two smaller lobes. This process 
is repeated until SLL ≤ –20 dB with respect to the main lobe 
peak. This means, that for a 30-element linear array (M = 30), 
proper complex values for thirty weights must be found to 
steer the main lobe towards DoA of DIS, place nulls towards 
DoA of all UISs, and also keep the SLL below –20 dB. Since 
the hypothetical UISs may actually not exist and in any case 
we have no information about them, a set of K pseudo-samples 
must be generated for each hypothetical UIS, in order to make 
the ABF technique work. All pseudo-samples are random 
numbers following Gaussian distribution with zero mean value 
and variance equal to one (which is equivalent to a mean 

power value equal to one for each hypothetical UIS). The 
noise samples also follow Gaussian distribution with zero 
mean value and variance σ2 calculated by the value of the 
SNR. In the case of RLS, 1

xx
−R  is reinitialized at the start of 

each iteration of the proposed algorithm. 
It is well known that a linear array composed of M ideal 

sources uniformly spaced at distance d = λ/2 can produce M–1 
nulls. In this study, we consider one DIS with AoA θ0 and two 
UISs with respective AoA θ1 and θ2. By requesting two nulls 
respectively at θ1 and θ2, we are left with M–3 available nulls 
(i.e., M–3 hypothetical UISs). Therefore, in our study, where 
M = 30, the proposed algorithm must come to a conclusion at 
M–3 = 27 iterations at most (i.e., 27 more nulls can be placed), 
otherwise it is terminated regardless of whether the desired 
SLL has been achieved or not. The proposed algorithm is 
summarized in the flowchart of Fig. 2. 

 

 
Fig. 2.  Flowchart of the proposed side lobe suppression algorithm. 
 

The application of every ABF technique always results in 
complex-valued weights (i.e., weights with amplitudes and 
phases). The proposed algorithm also results in complex-
valued weights, because the algorithm employs an ABF 
technique in each iteration. Therefore, a significant problem 
arises concerning the feasibility of complex weights in reality. 
If the antenna array, utilized by the ABF technique or the 
proposed algorithm, operates in reception mode, then the 
implementation of complex weights and the calculation of the 
respective radiation pattern are easy tasks, because they are 
just algorithmic procedures performed by a high complexity 
processing unit (e.g., a multi-core CPU or GPU). Such 

Employ ABF technique to calculate the 
weights and the respective radiation pattern

Begin 

Initial data processed by beamformer 

Find the direction of the greatest side lobe  

EndWhile  SLL > –20dB  
and  i < M–3 

i = 0 

Create an additional interfering signal and a 
respective null towards the above direction

Employ ABF technique to calculate the new 
weights and the respective radiation pattern 

i = i+1 



 

procedures do not depend on the type of the elements used to 
compose the antenna array. However, if the antenna array 
operates as transmitter, the required weights must be 
implemented either as input currents or as input voltages 
(including amplitudes and phases) by using a proper active 
electronic circuit driven by the processing unit that has 
calculated these weights. The implementation of such currents 
or voltages is not an easy task, because it depends on the 
electronic circuit employed for this purpose, but is out of 
scope of this study. Once these currents or voltages have been 
implemented, it is easy to apply them to the antenna array 
regardless of the type of the array elements. 

VIII. SIMULATION RESULTS 

To estimate the correlation matrices, we use blocks of either 
100 or 500 samples (K = 100 or 500), for all the ABF 
techniques employed here (i.e., MVDR, SMI and RLS). To 
thoroughly evaluate the performance of the proposed 
algorithm, we run the algorithm for each possible value of θ0 
from –60° to +60° (i.e., within a 120° sector) with a step of 1°, 
while the values of θ1 and θ2 may either be both larger or both 
smaller or one larger and the other smaller than θ0. In addition, 
the distance Δθ between any adjacent two of θ0, θ1 and θ2 is 
kept equal to 6°, 8° or 10° (i.e., three different scenarios). For 
every scenario, the SNR is considered to be equal to 5dB. It is 
obvious that cases with Δθ = 6° are the most difficult ones, 
because we demand either a main lobe peak between two nulls 
and very close to them, or a null between and very close to a 
main lobe peak and another null. Then, we calculate the mean 
value and standard deviation of the SLL, before and after the 
application of the proposed algorithm, as well as the mean 
value and standard deviation of the total number of iterations 
made by the algorithm to achieve the desired SLL. The results 
are shown in Tables I and II for 100 and 500 samples, 
respectively. 

 
TABLE I 

MEAN VALUE AND STANDARD DEVIATION OF THE SLL (BEFORE AND AFTER 

THE APPLICATION OF THE PROPOSED ALGORITHM), AND MEAN VALUE AND 

STANDARD DEVIATION OF THE NUMBER OF ITERATIONS OF THE PROPOSED 

ALGORITHM, FOR 100 SAMPLES PER BLOCK AND SNR=5dB 
 
 
 

SLL (dB) 
before 

[mean/std] 

SLL (dB) 
after 

[mean/std] 

Number of 
Iterations 

[mean/std] 
Δθ = 6°    
MVDR –10.5/1.5 –20.0/2.5 19.0/6.0 

SMI –10.5/1.5 –19.0/3.5 21.5/5.5 
RLS –8.0/1.5 –16.5/6.0 26.5/0.5 
Δθ = 8°    
MVDR –10.5/1.5 –20.5/1.0 16.5/4.0 

SMI –10.0/1.5 –20.5/2.0 19.5/4.5 
RLS –8.5/1.5 –20.0/5.0 26.5/0.5 

Δθ = 10°    
MVDR –10.5/1.5 –21.0/1.0 15.0/3.0 

SMI –10.0/1.5 –21.0/1.0 18.0/3.5 
RLS –8.0/1.5 –20.5/3.5 26.0/1.0 

 
At the same time, we calculate the average deviation of the 

actual main lobe direction from the respective desired 
direction (that corresponds to θ0) as well as the average 
deviation of the actual nulls directions from the respective 
desired directions (that corresponds to θ1 or θ2), before and 
after the application of the proposed algorithm. The results are 

shown in Tables III and IV for 100 and 500 samples, 
respectively. 

 
TABLE II 

MEAN VALUE AND STANDARD DEVIATION OF THE SLL (BEFORE AND AFTER 

THE APPLICATION OF THE PROPOSED ALGORITHM), AND MEAN VALUE AND 

STANDARD DEVIATION OF THE NUMBER OF ITERATIONS OF THE PROPOSED 

ALGORITHM, FOR 500 SAMPLES PER BLOCK AND SNR=5dB 
 
 
 

SLL (dB) 
before 

[mean/std] 

SLL (dB) 
after 

[mean/std] 

Number of 
Iterations 

[mean/std] 
Δθ = 6°    
MVDR –13.5/2.0 –20.0/1.5 11.5/8.5 

SMI –13.5/2.0 –20.0/2.0 12.0/9.0 
RLS –11.0/1.5 –17.0/5.5 26.0/1.0 
Δθ = 8°    
MVDR –13.0/1.0 –20.5/0.5 7.0/4.0 

SMI –12.5/1.5 –20.5/0.5 7.0/4.0 
RLS –11.0/1.5 –20.0/5.0 26.0/1.0 

Δθ = 10°    
MVDR –12.5/1.0 –20.5/0.5 6.0/1.5 

SMI –12.5/1.0 –20.5/0.5 6.5/2.0 
RLS –11.0/1.5 –21.0/3.0 25.5/1.5 

 
TABLE III 

AVERAGE DEVIATION OF MAIN LOBE AND NULLS DIRECTIONS BEFORE AND 

AFTER THE APPLICATION OF THE PROPOSED ALGORITHM, FOR 100 SAMPLES 

PER BLOCK AND SNR=5dB 
 Main lobe 

average 
deviation 

before (deg) 

Main lobe 
average 

deviation 
after (deg) 

Nulls 
average 

deviation 
before (deg) 

Nulls 
average 

deviation 
after (deg) 

Δθ = 6°     
MVDR 0.20 0.27 0.06 0.13 

SMI 0.25 0.37 0.12 0.20 
RLS 0.29 0.40 0.13 0.22 
Δθ = 8°     
MVDR 0.17 0.25 0.04 0.10 

SMI 0.19 0.31 0.10 0.17 
RLS 0.24 0.34 0.11 0.18 

Δθ = 10°     
MVDR 0.15 0.20 0.03 0.08 

SMI 0.18 0.23 0.08 0.15 
RLS 0.23 0.31 0.10 0.16 

 
TABLE IV 

AVERAGE DEVIATION OF MAIN LOBE AND NULLS DIRECTIONS BEFORE AND 

AFTER THE APPLICATION OF THE PROPOSED ALGORITHM, FOR 500 SAMPLES 

PER BLOCK AND SNR=5dB 
 Main lobe 

average 
deviation 

before (deg) 

Main lobe 
average 

deviation 
after (deg) 

Nulls 
average 

deviation 
before (deg) 

Nulls 
average 

deviation 
after (deg) 

Δθ = 6°     
MVDR 0.10 0.15 0.04 0.08 

SMI 0.11 0.25 0.07 0.13 
RLS 0.18 0.35 0.11 0.16 
Δθ = 8°     
MVDR 0.09 0.13 0.03 0.07 

SMI 0.10 0.22 0.05 0.11 
RLS 0.17 0.29 0.09 0.15 

Δθ = 10°     
MVDR 0.08 0.12 0.02 0.06 

SMI 0.09 0.15 0.03 0.08 
RLS 0.15 0.26 0.07 0.10 

 
As shown in Tables I and II, the proposed algorithm 

achieves the desired SLL in most cases. It also needs the 
fewest iterations to come to a conclusion when combined with 
the MVDR technique, and the most iterations when combined 



 

with the RLS technique. The standard deviations of both the 
SLL and the number of iterations required by the algorithm 
become smaller when Δθ increases. Also, when more samples 
are used (i.e., 500 instead of 100), the number of iterations 
required by the algorithm to converge and the standard 
deviation of the SLL become both smaller if the MVDR or the 
SMI technique is employed by the algorithm. However, the 
increased number of samples can neither help the algorithm 
finish faster nor noticeably reduce the SLL’s standard 
deviation, when the algorithm employs the RLS technique, 
due to the recursive nature of this technique. It must be noted 
that a decrease in the SLL’s standard deviation means that the 
algorithm achieves the desired SLL for more combinations of 
θ0, θ1 and θ2. 

As shown in Tables III and IV, the proposed algorithm does 
not induce any significant difference between the main lobe 
direction and DoA of DIS, or between the direction of a null 
and DoA of the respective UIS. By using more samples, these 
differences become smaller, even when Δθ=6° (worst case 
scenario). 

The performance of the proposed algorithm is also 
evaluated in terms of SINR. For this reason, we examine six 
separate scenarios. The three of them use blocks of 100 
samples and correspond to three different values of SNR, 
respectively equal to 0dB, 5dB and 10dB. The other three 
scenarios use blocks of 500 samples and correspond to the 
same three values of SNR as previously defined (i.e., 0dB, 
5dB and 10dB). In every scenario, we run all the ABF 
techniques for each possible value of θ0 from –60° to +60° 
with a step of 1°, while the values of θ1 and θ2 may either be 
both larger or both smaller or one larger and the other smaller 
than θ0. In addition, the distance Δθ between any adjacent two 
of θ0, θ1 and θ2 is kept equal to 6°, 8° or 10°, defining thus 
three respective sub-scenarios per scenario. The mean values 
of SINR before and after the application of the proposed 
algorithm for each ABF technique, each sub-scenario and each 
scenario are displayed in Tables V and VI. It can be seen that 
the SINR is slightly reduced (0.4dB on average) after the 
application of the proposed algorithm. Nevertheless, this 
reduction is expected due to the slight displacement of the 
main lobe and the nulls after the application of the algorithm.  

 
 

TABLE V 
MEAN VALUE OF THE SINR BEFORE AND AFTER THE APPLICATION OF THE 

PROPOSED ALGORITHM, USING 100 SAMPLES PER BLOCK 
 
 
 

Mean SINR (dB) 
for SNR=0dB 
[before/after] 

Mean SINR (dB) 
for SNR=5dB 
[before/after] 

Mean SINR (dB) 
for SNR=10dB 
[before/after] 

Δθ = 6°    
MVDR 14.7/14.1 19.7/19.1 24.7/24.1 

SMI 14.4/13.8 19.5/18.9 24.5/23.9 
RLS 13.0/12.7 18.1/17.7 23.0/22.6 
Δθ = 8°    
MVDR 14.8/14.4 19.8/19.3 24.9/24.4 

SMI 14.6/14.0 19.6/19.0 24.6/24.0 
RLS 13.2/12.8 18.2/17.8 23.2/22.8 

Δθ = 10°    
MVDR 15.0/14.7 19.9/19.6 25.0/24.6 

SMI 14.7/14.1 19.7/19.1 24.8/24.2 
RLS 13.3/12.9 18.3/18.0 23.3/22.9 

 
 

TABLE VI 
MEAN VALUE OF THE SINR BEFORE AND AFTER THE APPLICATION OF THE 

PROPOSED ALGORITHM, USING 500 SAMPLES PER BLOCK 
 
 
 

Mean SINR (dB) 
for SNR=0dB 
[before/after] 

Mean SINR (dB) 
for SNR=5dB 
[before/after] 

Mean SINR (dB) 
for SNR=10dB 
[before/after] 

Δθ = 6°    
MVDR 14.8/14.4 19.8/19.5 24.8/24.3 

SMI 14.5/14.0 19.6/19.0 24.7/24.2 
RLS 13.5/13.2 18.6/18.3 23.6/23.1 
Δθ = 8°    
MVDR 14.9/14.6 19.9/19.6 24.9/24.5 

SMI 14.8/14.2 19.8/19.2 24.8/24.3 
RLS 13.7/13.4 18.7/18.4 23.8/23.3 

Δθ = 10°    
MVDR 15.1/14.7 20.0/19.7 25.1/24.7 

SMI 15.0/14.4 19.9/19.3 24.9/24.5 
RLS 13.8/13.5 18.8/18.5 24.0/23.6 

 
To visualize the effectiveness of the proposed algorithm, we 

display three figures per ABF technique that correspond to the 
three different values of Δθ. The values of AoA for Δθ=6° are 
θ0=30°, θ1=24° and θ2=36°, for Δθ=8° are θ0=30°, θ1=22° and 
θ2=38°, and finally for Δθ=10° are θ0=30°, θ1=20° and θ2=40°. 
In all cases, 500 samples are used, while the SNR is 
considered to be equal to 5dB. Figs. 3-5 display the radiation 
pattern before and after the application of the proposed 
algorithm by employing the MVDR technique for Δθ = 6°, 8° 
and 10°, respectively. Figs. 6-8 display respective patterns for 
the SMI technique, and Figs. 9-11 display respective patterns 
for the RLS technique.  

 

 
Fig. 3.  Normalized radiation patterns produced, respectively, by the 
conventional MVDR technique, and the proposed algorithm which employs 
the MVDR technique, for θ0 = 30°, θ1 = 24° and θ2 = 36° (Δθ = 6°). 

 

 
Fig. 4.  Normalized radiation patterns produced, respectively, by the 
conventional MVDR technique, and the proposed algorithm which employs 
the MVDR technique, for θ0 = 30°, θ1 = 22° and θ2 = 38° (Δθ = 8°). 

 



 

 
Fig. 5.  Normalized radiation patterns produced, respectively, by the 
conventional MVDR technique, and the proposed algorithm which employs 
the MVDR technique, for θ0 = 30°, θ1 = 20° and θ2 = 40° (Δθ = 10°). 

 

 
Fig. 6.  Normalized radiation patterns produced, respectively, by the 
conventional SMI technique, and the proposed algorithm which employs the 
SMI technique, for θ0 = 30°, θ1 = 24° and θ2 = 36° (Δθ = 6°). 
 

 
Fig. 7.  Normalized radiation patterns produced, respectively, by the 
conventional SMI technique, and the proposed algorithm which employs the 
SMI technique, for θ0 = 30°, θ1 = 22° and θ2 = 38° (Δθ = 8°). 

 
 
All the radiation patterns shown in Figs. 3-11 reveal that the 

SLL is reduced after the application of the proposed 
algorithm. It must be noted that every radiation pattern, that 
corresponds to a certain ABF technique and certain values of 
θ0, θ1 and θ2, may vary a bit from simulation to simulation, 
due to the stochastic nature of noise and interference signals. 
A side effect of suppressing side lobes is the slight widening 
of the main lobe, which is expected because a reduction in the 
SLL may result in power being gathered towards the main 
lobe, as shown in the radiation patterns. However, this does 
not affect the position of the nulls initially placed for the 
interference signals. 
 

 
Fig. 8.  Normalized radiation patterns produced, respectively, by the 
conventional SMI technique, and the proposed algorithm which employs the 
SMI technique, for θ0 = 30°, θ1 = 20° and θ2 = 40° (Δθ = 10°). 
 

 
Fig. 9.  Normalized radiation patterns produced, respectively, by the 
conventional RLS technique, and the proposed algorithm which employs the 
RLS technique, for θ0 = 30°, θ1 = 24° and θ2 = 36° (Δθ = 6°). 
 

 
Fig. 10.  Normalized radiation patterns produced, respectively, by the 
conventional RLS technique, and the proposed algorithm which employs the 
RLS technique, for θ0 = 30°, θ1 = 22° and θ2 = 38° (Δθ = 8°). 
 

 
Fig. 11.  Normalized radiation patterns produced, respectively, by the 
conventional RLS technique, and the proposed algorithm which employs the 
RLS technique, for θ0 = 30°, θ1 = 20° and θ2 = 40° (Δθ = 10°). 
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IX. CONCLUSIONS 

A new ABF algorithm based on conventional ABF 
techniques has been introduced in order to reduce the SLL, 
which is not taken into account and is thus not controlled by 
conventional beamformers. In this way, better power 
efficiency is achieved, while susceptibility to unpredicted 
interference signals is reduced. The results derived in this 
study reveal that the proposed algorithm is capable of 
achieving its purpose after a few iterations, even when the 
interference signals have DoA very close to DoA of the 
desired signal. In addition, this algorithm does not induce any 
significant difference between the main lobe direction and 
DoA of DIS, or between the direction of a null and DoA of the 
respective UIS. Finally, it seems that such differences as well 
as the number of iterations needed by the algorithm to come to 
a conclusion are reduced when using more samples, improving 
thus the overall results even when the interference signals 
have DoA very close to DoA of the desired signal. 
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