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and Steffen Leonhardt, Senior Member, IEEE

Abstract—A ballistocardiograph records the mechanical activ-
ity of the heart. We present a novel algorithm for the detection
of individual heart beats and beat-to-beat interval lengths in
ballistocardiograms (BCGs) from healthy subjects. An automatic
training step based on unsupervised learning techniques is used
to extract the shape of a single heart beat from the BCG.
Using the learned parameters, the occurrence of individual heart
beats in the signal is detected. A final refinement step improves
the accuracy of the estimated beat-to-beat interval lengths.
Compared to many existing algorithms, the new approach offers
heart rate estimates on a beat-to-beat basis. The agreement of the
proposed algorithm with an ECG reference has been evaluated.
A relative beat-to-beat interval error of 1.79 % with a coverage
of 95.94 % was achieved on recordings from 16 subjects.

Index Terms—ballistocardiography, beat-to-beat heart rate
estimation, clustering

I. INTRODUCTION

WORLD-WIDE, cardiovascular diseases are the major

cause of death [1]. Unobtrusive long-term monitoring

of patient’s vital signs shows great promise for the prevention

and management of such diseases. Home monitoring, for

instance, can help to reduce mortality rates, the amount of

time spend in hospitals, and the overall costs of treatment

[2]. At the same time, patients do not have to be removed

from their familiar environment while adverse developments to

their condition can still be detected. Furthermore, unobtrusive

vital signs monitoring systems can serve as additional safety

measure in the general ward of hospitals. A key requirement

for the acceptance of such a system is that it does not reduce

the patients’ comfort nor increase the burden on the hospital

staff.

Ballistocardiography (BCG) allows cardiac activity to be

monitored unobtrusively. A ballistocardiograph records the

vibrations of the body which are caused by the mechanical

activity of the heart. While the basic concept has been known

since the late 19th century [3], it has gained renewed interest

in recent years. Modern ballistocardiographic systems can be

fully integrated into everyday objects such as beds [4]–[8],

chairs [9] or weighing scales [10] in ways which make the

presence of the system unnoticeable to the patient. Further-

more, wearable BCG system based on accelerometers worn
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on the subject’s chest have been proposed [11]. The main

advantage of ballistocardiography over electrocardiography is

that, in general, no electrodes, textiles, or the like have to be

attached to the patient’s body. Therefore, ballistocardiographic

systems are well suited for monitoring cardiopulmonary activ-

ity at night over longer periods of time. Due to the underlying

measurement principle, additional information concerning the

general activity level of the patient can also be derived from

such a system.

Current signal processing algorithms for the estimation of

heart rates from BCGs can be divided into two groups: those

which only provide heart rates averaged over several seconds

and those that detect individual heart beats in the signal.

The latter split the signal into segments. For each segment,

the average heart rate is estimated by finding the maximum of

the auto-correlation function [12], [13] or the power spectral

density [5], [14]. Other approaches average over a number

of fiducial points [8] or apply empirical mode decomposition

[15]. These algorithms give only coarse estimations of the

heart rate. They cannot provide information about beat-to-beat

heart rate variability or irregular arrhythmias. Furthermore,

they can produce incorrect results when strong harmonics

are found in the signal. Beat-to-beat interval information,

however, is necessary for advanced applications such as heart

rate variability analysis or sleep staging.

Of the algorithms that detect individual heart beats, many

work by detecting the largest deflection or other fiducial

points in the BCG signal [16]–[20]. In some cases, the

signal is pre-processed using a variety of techniques, such as

discrete wavelet transform [7], [21]–[23], low-pass filtering

[24], wavelet-transform-based de-noising [25], or a Hilbert

transform [26]. The algorithms that rely on fiducial points lack

robustness on general BCG data, as often dominant deflections

are missing from the BCG or change their position with respect

to the heart beat.

In [4] and [27], a signal template of a single heart beat

is used to detect subsequent beats by calculating the cross-

correlation between the template and the signal. In both works,

however, the templates were selected manually, which makes

this approach unsuitable for a fully automatic monitoring sys-

tem. Another approach makes use of a multi-sensor array [28].

The authors apply FFT averaging together with a cepstrum

analysis to determine the inter-beat intervals. The method

presented in [29] is based on clustering short signal segments

centered around minima and maxima of the signal. However,

the authors report that their algorithm was not able to find more

than 49.2% of all heart beats during their evaluation. The use
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Fig. 1: Overview of the operating principle of a general bed-

mounted BCG system.

of so-called heart valve components in the BCG signal was

suggested in [30]. These components are reportedly related to

the closure of the heart valves during the cardiac cycle.

In this article, we present and evaluate a novel method for

the estimation of beat-to-beat interval lengths from BCGs:

the Beat-to-beat Estimation by Adaptive Training (BEAT)

algorithm. The BEAT algorithm works on signals recorded

by a single sensor and drops the assumptions of a regularly

beating heart. At its core, it is based on unsupervised learn-

ing techniques to adapt to the high inter- and intra-subject

variability of BCG recordings. The algorithm automatically

adapts itself to the given BCG signal using a short (e.g. 30

seconds long) training phase. During this training, a set of

parameters describing the properties of an individual heart beat

in the given signal is determined. Using these parameters, three

independent methods are combined to locate heart beats in the

BCG signal. These estimations are further refined to obtain

accurate beat-to-beat interval length information. Based on

the beat-to-beat interval lengths, a heart rate can be computed

for each interval. An initial overview and first results of this

method were previously published in [31] and [32].

Section II presents a short background on our acquisition

system and general BCG signal characteristics. We continue

by discussing the details of our proposed algorithm in Section

III. In the final sections, we evaluate our algorithm and discuss

the results.

II. BACKGROUND

A. Signal Acquisition System

For the purpose of this study, a regular hospital bed was

instrumented to allow the sensing of forces acting perpendic-

ular to the surface of the bed (see Fig. 1). This was achieved

by attaching four strain gauges to one slat of the bed’s slatted

frame. Located at the center of the slat, these strain gauges

form a full Wheatstone bridge which measures the deformation

of the slat. The instrumented slat was installed under the

subject’s thorax in order to optimally record cardiopulmonary

activity. An ordinary mattress was placed on top of the slats.

Data were acquired by means of a 12 bit ADC using a

sampling rate of 128 Hz. A lead I ECG was simultaneously

recorded for reference purposes.
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Fig. 2: High-pass filtered BCG tracings of two heart beats

from two different subjects, each measured in supine and left

lateral position. The vertical lines indicate the occurrence of

R peaks in the ECG reference.

B. Ballistocardiogram

In the 1950s, three axes of measurement for translational

BCG recordings were defined [33]: longitudinal (head-foot),

transverse (side to side), and dorsoventral (back to chest).

Historically, most BCG recording systems were of the longi-

tudinal kind [3], [34]. Weighing scales used in recent studies

[10] also measure along this axis. Many recently introduced

unobtrusive BCG systems, however, especially those which

are bed-based [5]–[8], measure along a combination of the

transverse and dorsoventral axes. In these system, the exact

axis of measurement, i.e. transversal, dorsoventral, or a com-

bination thereof, depends on the subject’s current posture with

respect to the sensor. As shown in Fig. 1, the system used in

this work belongs to this class of systems. Other examples

of systems measuring along the transverse-drosoventral axis

include accelerometers worn on the chest [11]. For the sake

of brevity, we will deviate from the original 1950s definition

and denote modern transverse-dorsoventral BCG systems as

transverse in the following discussion.

The distinction between longitudinal and transverse BCGs

is important, as the signal morphology differs significantly

between the recordings shown in transverse BCG studies and

those presented in longitudinal BCG studies. While longitu-

dinal BCGs reportedly have a strong cardiac output related

component [34], this is not generally true for transverse BCGs.

In fact, the exact combination of sources contributing to

the signal components recorded by modern transverse BCG

system, such as ours, are not yet well understood. This is

partly due to the introduction of difficult to model mechanical

components, such as mattresses, into the measurement sys-

tems. Hence, the very sources of the measured signal poses

interesting research questions for future work in this field.

Furthermore, unlike longitudinal BCGs, transverse BCG

recordings are highly variable, much more so than e.g. ECGs.

The waveform of a single heart beat in a transverse recording

changes depending on the subject and on how the subject is

positioned on the bed with respect to the sensor. Figure 2
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Fig. 3: Overview of the proposed algorithm.

shows BCG tracings of two heart beats recorded from two

subjects. Each subject was recorded in two different postures.

Even tough the transverse BCG seems to come with many

strings attached due to its higher morphological variability,

its major advantage is that it allows an easy implementation

of unobtrusive monitoring systems. Due to this fact, many

contributions to the field of ballistocardiography in the recent

past have dealt with transverse measurement systems. This

is also the reason why we chose to develop an heart beat

detection algorithm which specifically addresses the variability

that is inherent in these types of BCGs.

Specifically, even if occasionally a characteristic BCG peak

seems to coincide with each heart beat, it usually distinguishes

itself not enough from other peaks in the signal to be detected

reliably. A solution to this problem is to detect signal patterns

which repeat themselves with each heart beat and which

consist of several peaks instead of a single outstanding peak.

Surely, the individual peaks also vary from beat to beat, but

the overall pattern is still preserved and can thus be better

detected by some algorithm than single peaks.

III. THE BEAT ALGORITHM

A. Overview

In the following, we present the Beat-to-beat Estimation

by Adaptive Training (BEAT) algorithm which autonomously

learns and detects BCG peak patterns corresponding to indi-

vidual heart beats. An overview of the proposed algorithm is

given by the flowchart shown in Fig. 3.

First, the raw BCG signal is pre-processed by applying a

second order Butterworth high-pass filter with a 3 dB cut-off

frequency of 1 Hz to remove the low-frequency respiratory

components. The use of a filter with a cut-off frequency of

1 Hz might appear counter-intuitive since, at 60 bpm, 50 %

of the power of the pulse shape will be removed. However,

we have found this frequency to be a good trade-off between

preserving the pulse shape and suppressing undesired artefacts

of the respiratory motion in the filtered signal.

A short segment of the filtered signal is then analyzed

to determine the features of the heart beat in the so-called
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Fig. 4: Parameters used to describe a local maximum in the

low-pass filtered BCG signal. The i-th peak is parameterized

in terms of its amplitude amax, the amplitude of the local

minimum amin between the i-th and the (i + 1)-th peak, the

distance dmax to this local minimum as well as the distance

dmin from the local minimum to the local maximum of the

(i+ 1)-th peak.

“training phase”. In the next phase, i.e. the beat detection

phase, the remaining signal is scanned for heart beats using

the features that were extracted during the training procedure.

This results in a list of estimated heart beat locations. In a final

step, the estimated heart beat locations are used to produce a

refined list of beat-to-beat interval lengths. Whenever subjects

enter the bed or change their posture with respect to the BCG

sensor, the shape of the heart beat pattern changes. In this

case, the training phase is repeated so that the algorithm can

adapt to the changed heart beat pattern.

B. Training Phase

During the training phase, a short signal segment with a

duration of Ttrain (e.g. Ttrain = 30 s) is analyzed to extract a

set of parameters describing the principal morphology of the

heart beat in the BCG. First, the pre-processed BCG signal

is smoothed by applying a second order Butterworth low-pass

filter with a 3 dB cut-off frequency of 10 Hz. In this smoothed

signal, maxima and minima are located and parameterized as

shown in Fig. 4 in order to obtain a low-dimensional, rough

description of the signal.

As outlined before, the presented algorithm tries to detect

patterns consisting of several peaks. For this purpose, each

peak in the smoothed BCG signal is assigned a feature vector

f containing the parameters of the peak itself and of the N−1
consecutive peaks. We set N = 7, as this provides the most

accurate results on our dataset. The feature vector assigned to

the i-th peak is defined as

f i = (amax,i, dmax,i, amin,i, dmin,i, . . . ,

amax,i+N−1, dmax,i+N−1, amax,i+N−1, dmax,i+N−1)
T.

(1)

Each feature vector f i encodes the morphology of a signal

segment beginning at the i-th peak and encompassing a total

of N peaks. The similarity between two feature vectors can

be quantified, for instance, by the Euclidean distance between

them. If a group of feature vectors describe a similar signal

pattern, they will be located close to each other and thus form a

cluster in the feature space. Hence, we identify recurring peak

patterns by identifying clusters of similar feature vectors.

Prior to further processing, the feature vectors are normal-

ized. Principal component analysis is applied to reduce the
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Fig. 5: Feature vectors from a training segment projected onto

their first two principal components. The feature vectors form

four clusters in feature space. The appearance of a smaller fifth

cluster of triangles is a visual artefact caused by the projection

of the higher-dimensional vectors onto two dimensions.

dimensionality of the feature vectors by keeping the minimal

number of principal components necessary to maintain 99 %

of the original variance.

A modified version of the k-means clustering algorithm

[35] is then performed to identify clusters of feature vectors.

Fig. 5 shows a set of feature vectors forming four clusters

in feature space. Each cluster represents a different repeating

pattern found in the BCG signal. The described morphology

is extracted from each cluster in the form of two parameters:

1) The cluster center ck is the mean of all feature vectors

belonging to the k-th cluster.

2) The cluster prototype pk(n) is the signal subsegment

from which the feature vector with minimum distance

to ck was derived, i.e. a time-domain representation of

the signal pattern described by the cluster.

In addition to the cluster analysis, a modified version of

the heart valve (HV) signal which was presented in [30] is

also considered. The heart valve signal is reportedly related to

the closure of the heart valves during the cardiac cycle. It is

computed from the BCG by first applying a band-pass filter,

then squaring the resulting signal, and finally estimating an

envelope by low-pass filtering. Instead of using a fixed 20–

40 Hz bandpass to extract the heart valve signal, we apply

a filter with a narrower, 4 Hz wide, passband and a tunable

center frequency. A suitable center frequency is heuristically

selected during the training phase.

In combination with the modified heart valve signal, the

parameter set (cbest, pbest(n)) which relates best to the heart

beat is identified. This is achieved by using each parameter

set separately to detect heart beats in the training segment

(see Subsection III-C). The most suitable set of parameters is

then determined based on the results of these test runs using

a set of heuristics.

C. Detection Phase: Heart Beat Indicators

The following three methods are used to locate individual

heart beats in the BCG signal. Each methods makes use of a

different parameter that was derived during the training phase.
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Fig. 6: BCG signal and corresponding plots of the cross-

correlation function (Corr.) and its upper envelope (dotted

line), the distance function (Dist.), and the heart valve sig-

nal (HVS). The vertical lines show the heart beat locations

suggested by each of the methods.

1) Cross-Correlation: Using the cluster prototype pbest(n),
further heart beats can be located by computing the cross-

correlation between the prototype signal and the remaining

BCG signal. Local maxima in the cross-correlation function

are detected and linearly interpolated to obtain an upper

envelope of the correlation signal. Clear peaks in this envelope

appear at locations where the pattern described by the proto-

type, i.e. a heart beat, occurs. An exemplary plot of the cross

correlation function, its upper envelope, and the indicated heart

beat locations are shown Fig. 6.

2) Euclidean Distance: The second method detects heart

beat locations by computing the Euclidean distance between

the feature vectors of the remaining signal and the cluster

center cbest. As shown in Fig. 6, the resulting distance function

exhibits local minima when a signal segment is similar to the

heart beat pattern which is represented by the cluster.

3) Heart Valve Signal: Using the center frequency selected

during the training, the heart valve signal is computed. Fig.

6 shows that the maxima in the HV signal coincide with the

occurrence of heart beats in the BCG.

D. Detection Phase: Indicator Fusion

1) Reliability Heuristics: Each of the discussed methods

produces either a minima or a maxima in its output wherever

a heart beat is found in the BCG signal. In order to reasonably

merge these outputs, we reduce each output function to a set

of indicator pairs. Each indicator pair

q = (t, w) (2)

consists of the time t at which the extreme value occurred and

a reliability score w which indicates how reliable this extreme

value is as an indicator for a heart beat location.

Local maxima in the envelope of the cross-correlation,

for example, are evaluated by means of their height relative

to their two neighboring minima and maxima. Analogous
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(f) The indicators are removed to obtain a graphical repre-
sentation of the merged representative indicators which is
equivalent to the heart beat score H(t).

Fig. 7: Step-by-step visualization of the procedure to merge

indicators.

to the reliability values for cross-correlation maxima (wc),

reliability heuristics for minima in the distance function (wd)

and for maxima in the heart valve signal (wh) are computed.

By constructing the reliability heuristics based on relative

parameters, they are normalized to a range from 0 to 1.

2) Merging Indicators: Ideally, each heart beat will be

detected by each method and the resulting indicators would

perfectly align. In real world scenarios, however, the indi-

cated locations slightly differ from each other, while spurious
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Fig. 8: Automatically detected motion artefact (gray back-

ground) in the recording of Subject 4. During these artefacts,

no BCG heart rates could be computed.

indicators and heart beats which are not detected by all of

the methods further complicate the situation. We suggest a

procedure to coalesce these disparate indicators by identifying

and merging indicator triplets which are close to each other

and which therefore seem to correspond to the same heart beat.

Each indicator selects up to one partner from each of the

other indicator classes. For example, a distance indicator qd

should be merged with one cross-correlation indicator qc and

one HV signal indicator qh that have a high reliability and

that are close to its own position. Possible partner indicators

are selected from the interval td±0.33 s. The indicator qd and

its partners are merged to form a representative indicator pair

Qd =
(

T d,W d
)

(3)

=

(

tdwd + tcwc + thwh

wd + wc + wh
,
wd + wc + wh

3

)

which is located at the weighted average of the indicators’

locations and whose reliability score is computed as the

average of the reliabilities of the indicators.

A representative indicator pair is computed for every indi-

cator, with correlation criterion and HV criterion indicators

yielding representative indicators Qc and Qh, respectively.

Afterwards, a heart beat score H(t) is computed for every

time point t, where H(t) = 0 if no representative indicators

are found at time t, otherwise H(t) equals the sum of the

reliability scores of the representative indicators located at time

t. Figure 7 visualizes this process. If all members of a group

select each other, the resulting representative indicators are

identical and their reliability scores, therefore, add up. Spuri-

ous peaks with low reliabilities, on the other hand, will also

form a triplet but no other indicator will select them as partner.

Hence, their heart beat scores will be significantly lower than

those of triplets that selected each other consensually. The

locations of heart beats can then be detected as time points t

where the heart beat score H(t) exceeds a certain threshold.
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TABLE I: Beat-to-beat performance results of the BEAT algorithm compared to the method proposed in [30].

Subject Dur. (min) Coverage (%) RRabs (ms) RRrel (%) HR10 (bpm)

BEAT [30] BEAT [30] BEAT [30] BEAT [30]

x P90 x P90 x P90 x P90 x P90 x P90

1 26:53 96.37 98.31 12.26 23.44 98.71 679.69 1.74 3.26 14.08 96.78 0.52 0.91 8.73 20.35

2 27:25 96.31 100.00 13.33 23.44 52.50 70.31 1.66 2.91 6.64 8.85 0.42 1.12 2.96 7.75

3 27:09 96.71 95.87 16.96 31.25 49.31 78.13 1.75 3.55 4.74 7.63 0.52 1.29 1.41 4.47

4 27:12 96.49 93.10 14.88 15.63 25.94 39.06 1.51 1.68 2.62 3.73 0.53 1.15 0.64 1.79

5 26:14 96.08 100.00 18.48 23.44 42.03 117.97 1.55 2.23 3.61 10.34 0.42 1.17 0.85 2.37

6 26:53 93.77 100.00 26.06 54.69 46.34 78.12 3.00 5.77 5.50 9.08 0.59 1.89 2.14 6.84

7 27:56 93.38 100.00 9.44 23.44 43.09 46.88 0.69 1.78 3.08 3.48 0.10 0.31 1.23 6.26

8 28:04 97.37 99.54 15.58 31.25 40.23 54.69 1.46 2.88 3.81 5.38 0.31 0.49 0.91 2.25

9 27:36 96.27 100.00 37.99 91.41 72.07 234.38 4.30 10.83 8.97 26.03 1.39 4.52 4.44 13.40

101 20:50 94.77 98.48 15.56 23.44 73.82 289.06 1.42 2.38 6.88 26.65 0.30 0.86 1.36 3.87

11 26:57 97.40 100.00 8.30 15.63 33.09 46.88 0.86 1.72 3.70 5.08 0.40 1.29 1.26 3.95

12 26:26 94.86 95.88 19.40 31.25 38.54 23.44 2.32 3.91 4.77 3.24 0.53 1.29 1.94 7.06

13 26:49 97.43 97.25 13.29 23.44 73.06 335.94 1.38 2.52 7.53 34.51 0.27 0.67 1.71 6.41

14 26:49 97.19 99.69 14.83 39.06 70.80 218.75 1.81 4.47 8.98 26.47 0.34 0.80 4.34 12.55

15 26:26 94.71 92.91 17.54 15.63 29.50 23.44 1.96 1.79 3.16 2.54 0.43 0.48 0.66 2.14

16 26:26 95.92 98.66 11.90 23.44 34.81 46.88 1.25 2.42 3.74 4.68 0.31 0.71 0.74 2.11

Mean 26:38 95.94 98.11 16.61 30.62 51.49 88.72 1.79 3.38 5.74 17.16 0.46 1.19 2.21 6.47

1 Right lateral segment is not included due to a loose ECG electrode.
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Fig. 9: Modified Bland-Altman plot showing the agreement

between the averaged heart rates obtained from the BEAT

algorithm with those obtained from the ECG reference.

E. Interval Refinement

The accuracy of the beat-to-beat interval lengths is further

improved by applying the refinement step proposed in [30].

Given two consecutive heart beat locations, the BCG signal

recorded during this interval should represent a characteristic

pattern of a single heart beat. We refine each interval individ-

ually by determining when the corresponding characteristic

pattern first repeats itself using the autocorrelation function.

IV. PERFORMANCE EVALUATION

A. Performance Metrics

The performance of the BEAT algorithm with respect to

the estimated heart beat events and the beat-to-beat interval

lengths was evaluated using a synchronized lead I ECG as

gold standard. After acquisition, the recorded signals were

processed off-line by algorithms implemented using the MAT-

LAB software package. In the recorded ECGs, the locations of

the R peaks were detected using the Pan-Tompkins algorithm

[36]. Furthermore, the resulting R-R intervals were computed.

The closest BCG heart beat location within a window of

±0.25 s around each R peak was assigned to the R peak.

Unassigned BCG heart beats were considered false positives

while R peaks to which no BCG heart beat was assigned were

considered false negatives.

However, the number of false positives and false negatives

gives no indication on the accuracy of the estimated beat-to-

beat intervals. Therefore, for each estimated BCG interval, the

absolute and relative error between its length and the length

of the corresponding R-R interval was computed (RRabs and

RRrel, respectively). Since false negatives and false positives

directly affect the lengths of their neighboring beat-to-beat

intervals, interval errors are suitable for measuring the overall

quality of the heart beat estimation.

Another quality measure is aimed at evaluating the al-

gorithm’s adequacy for heart rate monitoring. According to

the recommendations of ANSI/AAMI/ISO EC13 (cf. [37]),

cardiac monitors are supposed to update their displayed heart

rates every 10 seconds. Hence, for each non-overlapping 10

second window, the error between the mean heart rate derived

from the BCG during that window and that derived from the
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ECG is computed (HR10).

For each of the discussed error measures the mean of the

absolute errors (x) is reported. Furthermore, the spread of the

errors is computed using the 90th percentile of the errors (P90),

i.e. 90 % of the errors lie below this value.

In addition to the accuracy of the estimation, the percentage

of the BCG signal that was automatically classified as artefact-

free (coverage) is also recorded. Artefacts are detected based

on the signal energy in a moving window. Only the signal

segments that are artefact-free were considered for the evalu-

ation as the presence of artefacts impedes a reliable heart rate

estimation (see Fig. 8).

B. Measurement Scenario

Measurements were performed in the instrumented bed on

a group of 16 healthy volunteers (9 male, 7 female, ages: 20–

50) who gave their informed written consent to participate in

the test. Each test subject was measured for a total duration

of 30 minutes switching their positions every 7.5 minutes (left

lateral → supine → right lateral → prone).

Segments belonging to the individual postures in bed were

identified manually in the resulting recordings and were an-

alyzed separately by the algorithm. Remaining body motion

artefacts in the segments were detected automatically by the

algorithm and disregarded in the further analysis.

The signal segments were processed by the BEAT algorithm

and the results obtained from each subject were combined by

averaging them with respect to the segments’ lengths.

C. Results

Table I shows the results of the BEAT algorithm for each

subject. Furthermore, we also evaluated the performance of

the beat-to-beat estimation method proposed in [30] using the

same dataset. The results of this comparison are also shown

in Table I.

The BEAT algorithm was able to derive beat-to-beat heart

rates from the BCG signals of all subjects. On average, 95.94

% of each signal was identified as artefact-free and usable for

heart rate estimation. The quality of the estimations is rather

consistent between all subjects. The average false positive and

false negative rates were 0.12 % and 0.41 %, respectively.

Further, the mean absolute RR error was 16.61 ms (P90: 30.62

ms) while the mean relative error was 1.79 % (P90: 3.38 %).

This value can be put into perspective by considering that the

time interval between two consecutive sampling points in the

BCG signal, which is sampled at 128 Hz, is 7.8 ms. This

means that the average interval length is off by two samples.

The mean error of the heart rates averaged over 10 seconds

was 0.46 bpm (P90: 1.19 bpm). Figure 9 shows a modified

Bland-Altman plot comparing the averaged heart rates to the

ECG reference. The plot indicates that there is no systematic

bias in the heart rates obtained through the BEAT algorithm.

Compared to [30], the BEAT algorithm provides better overall

accuracy but slightly lower coverage as shown in Table I.

A second comparison was performed using the averaging

heart rate estimator presented in [12]. This algorithm provides

one heart rate estimate every 30 seconds, hence we averaged

TABLE II: Comparison of the BEAT method to the averaging

BCG algorithm presented in [12] with respect to heart rate

averages of 30 second intervals (HR30).

Subject Coverage (%) HR30 (bpm)

BEAT [12] BEAT [12]

x P90 x P90

1 100.00 100.00 0.50 0.98 0.65 1.70

2 100.00 100.00 0.40 0.76 0.75 1.81

3 100.00 100.00 0.57 1.47 11.15 60.61

4 100.00 100.00 0.51 0.53 0.83 1.96

5 100.00 98.00 0.30 0.71 4.58 6.95

6 100.00 100.00 0.54 1.07 1.35 2.79

7 98.15 100.00 0.21 0.53 0.81 1.65

8 100.00 100.00 0.28 0.69 1.04 1.94

9 100.00 100.00 1.02 2.16 2.02 4.68

10 97.50 100.00 0.63 1.41 3.42 6.26

11 100.00 98.08 0.58 1.22 3.66 9.26

12 100.00 98.04 0.39 0.89 0.83 1.86

13 100.00 100.00 0.34 0.97 0.74 1.69

14 100.00 100.00 0.57 1.33 1.37 3.13

15 100.00 100.00 0.78 1.25 1.18 2.72

16 100.00 100.00 0.47 0.96 7.27 22.08

Mean 99.73 99.63 0.50 1.06 2.60 8.19

TABLE III: Relative beat-to-beat interval errors of the BEAT

algorithm in each of the four postures described in the mea-

surement protocol.

Posture Dur. (min) Cov. (%) RRrel (%)

x P90

Left lateral 111:28 96.39 1.45 2.80

Right lateral 101:34 96.36 1.74 3.42

Supine 108:44 95.44 2.57 4.45

Prone 104:21 95.64 1.42 2.61

the beat-to-beat heart rates obtained by the BEAT methods

using consecutive non-overlapping windows of equal length.

Table II shows the results of both algorithms. Compared to

the beat-to-beat results in Table I, higher coverages could by

achieved since the larger window length makes the algorithms

less susceptible to artefacts of short duration. The average

heart rate error of the BEAT algorithm (0.5 bpm) is lower

than the error achieved by [12] (2.6 bpm).

It should be noted, however, that the methods presented in

[12] and [30] were developed for the use with an EMFi foil

BCG sensor as opposed to the strain gauge sensor used to

record the data for this study. Hence, the inferior performance

of these methods could be due to the differences in the sensor

modalities.

We also evaluated the BEAT algorithm’s performance with

respect to the four postures in which the subjects were

recorded. Table III shows the relative beat-to-beat interval error

for each posture. While the prone and the left lateral positions

give the best results, the overall accuracy does not vary
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Fig. 10: Accuracy of the BEAT algorithm depending on the

indicators that were used during the detection phase.

significantly between the different postures. It is not surprising

that the supine position produces the worst results as it causes

the ribcage and spine of the subjects to be located between

the heart and the sensor, thus causing a slight attenuation of

the signal.

Further evaluation of the BEAT algorithm was performed

with respect to the contribution of the three types of heart

beat indicators presented in Section III-C. First, we applied

each of the methods separately to detect beat-to-beat interval

lengths. Then, we tested combinations of two methods using

our proposed merging algorithm. Finally, all three methods

were combined. Figure 10 shows the results for each of these

tests. By combining multiple methods using the proposed algo-

rithm, the relative interval error can be significantly improved.

Combining two methods already provides a significant benefit

over using a single method. However, the combination of all

three methods provides the best overall results.

The BEAT algorithm was designed to also correctly identify

heart beats with irregular beat-to-beat intervals. Figure 11

demonstrates this capability on the recordings taken from

subject 11 who seems to exhibit a very pronounced case

of respiratory sinus arrhythmia. The BEAT algorithm clearly

follows these fluctuations on a beat-to-beat basis. While this

is a promising result, further work is necessary to assess

the algorithms performance in the presence of arrhythmias

which not only affect the timing between beats but also their

morphology, such as atrial fibrillations.

While the BEAT algorithms provides accurate heart rate

estimations for the majority of the analysed signals, its results

can be unreliable if the assumption of a repeating pattern co-

inciding with each heart beat is not fulfilled. Figure 12 shows

a short segment of the BCG signal recorded from subject 09

as well as the computed heart rates and the ECG reference

values. The BCG signal in this example exhibits significant

irregularities which causes severe errors in the output of the

BEAT algorithm. However, these severe irregularities were

only observed with subject 09 lying in a supine position.

Whether they were caused by external influences or by the
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subject’s physiology could not be determined.

We would also like to point out that the dataset used to

evaluate the BEAT algorithm presents a best-case situation for

heart rate estimation from BCGs. All subjects were healthy

and were instructed to move as little as possible between the

prescribed turning events. Hence, we expect that, especially,

the coverage will be reduced for subjects that are more active

and thus cause more motion artefacts. Increasing artefacts are

also likely to negatively affect the accuracy of the beat-to-beat

estimation.

V. CONCLUSION

A novel algorithm for the estimation of beat-to-beat heart

rates from BCGs was presented. The BEAT algorithm uses

unsupervised learning techniques to derive information about

the heart beat pattern from a short BCG signal segment. This

training step is based on the parameterization and collation of

local maxima in the BCG as well as on a modified k-means
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clustering algorithm. Using the parameters derived during the

training phase, heart beats are located in the remaining BCG

signal by merging the results of three independent indicator

functions. The resulting estimated heart beat locations are

processed by a refinement step to obtain a list of beat-to-beat

interval lengths.

To evaluate the achieved quality of the beat-to-beat heart

rate estimations, BCGs and reference ECGs were recorded

from 16 test subjects in a laboratory environment. Good

agreement between the output of the BEAT algorithm and

the gold standard could be observed. We also compared the

proposed algorithm to two methods known in the literature

with favorable results.

Future work on the BEAT algorithm could focus on fine-

tuning the automatic triggering of the training phase. Fur-

thermore, the performance of the BEAT algorithm on explicit

arrhythmia data could be analysed as well as its application

to other sensor modalities.
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[31] C. Brüser, K. Stadlthanner, A. Brauers, and S. Leonhardt, “Applying
machine learning to detect individual heart beats in ballistocardiograms,”
in Proc. 32nd Ann. Int. Conf. of the IEEE EMBS, Buenos Aires,

Argentina, 2010, pp. 1926–1929.

C. Brüser, K. Stadlthanner, S. de Waele, and S. Leonhardt, “Adaptive Beat-to-Beat Heart Rate Estimation 

in Ballistocardiograms,” IEEE Tans. Inf. Technol. Biomed., vol. 15, no. 5, pp. 778–786, 2011.

Copyright 2011 IEEE Preprint version. Final version available at 

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5732696

http://www.who.int/whr/2004/annex/topic
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5732696


10

[32] ——, “Combining Multiple Methods to Improve Beat-to-Beat Interval
Length Estimations in Ballistocardiograms,” in 44. Jahrestagung der

Deutschen Gesellschaft für Biomedizinische Technik Rostock, Germany,
2010.

[33] W. R. Scarborough, S. A. Talbot, J. R. Braunstein, M. B. Rappaport,
W. Dock, W. F. Hamilton, J. E. Smith, J. L. Nickerson, and I. Starr,
“Proposals for ballistocardiographic nomenclature and conventions:
Revised and extended: Report of committee on ballistocardiographic
terminology,” Circulation, vol. 14, no. 3, pp. 435–450, 1956.

[34] I. Starr, A. J. Rawson, H. A. Schroeder, and N. R. Joseph, “Studies
on the estimation of cardiac output in man, and of abnormalities in
cardiac function, from the heart’s recoil and the blood’s impacts; the
ballistocardiogram,” American Journal of Physiology, vol. 127, no. 1,
pp. 1–28, 1939.

[35] R. Xu and I. Wunsch, D., “Survey of clustering algorithms,” IEEE Trans.

Neural Netw., vol. 16, no. 3, pp. 645–678, 2005.
[36] J. Pan and W. J. Tompkins, “A realtime QRS detection algorithm,” IEEE

Transactions on Biomedical Engineering, vol. 32, no. 3, pp. 230–236,
1985.

[37] ANSI/AAMI/ISO EC13: Cardiac Monitors, Heart Rate Meters, and

Alarms, ANSI Std., 2002.
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