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1 Introduction

Bitonic sorting [Ba68] is an interesting parallel algorithm based on a merge-sort scheme and
an ingenious merging technique known as bitonic merging. Originally proposed for a network
of comparators, bitonic sorting has been considered for implementation on a variety of ar-
chitectures like the shuffle-exchange [St71], the binary cube [Pe77], the mesh [TK77], [NS79],
the cube-connected cycles [PV81] and its pleated version [BP84], and on array processors
[St78]. Various properties of bitonic networks have been investigated (e.g., [Kn73], [HS82],
[Pr83], [BI85]).

On an input of N elements, the bitonic merger performs 6(/N log N) operations (compar-
isons and exchanges), coming within a constant factor of a lower bound due to R.W.Floyd
for merging networks of comparators ([Kn73}, pp. 230). However, in other models of parallel
computation merging can be done with O(NN) operations [BH85], and therefore the bitonic
algorithm is not optimal in these models.

In this paper we present procedures for merging and sorting, which we propose to call
adaptive bitonic algorithms. Like Batcher’s, our algorithms are based on bitonic sequences,
but unlike Batcher’s, they perform a set of comparisons that is a function of the input values.
As a result, our approach cannot be used in the context of a network of comparators, but will
be shown to be more efficient than Batcher’s, in terms of the number of operations performed,
on a general purpose shared-memory machine. When necessary to avoid confusion, we shall
refer to Batcher’s algorithm as the non-adaptive or the network algorithm.

Adaptive bitonic merging [sorting] can be implemented on a PRAC of P processors in
time T = O(N/P) [T = O((N log N)/P)], for 1 < P < N/2llcglogeN] The PRAC [LPV81] is
a shared-memory multi-processor where simultaneous access of the same memory location is
disallowed. The product TP is optimal for both merging and sorting.

The merging algorithm also achieves the T = ()(log N') lower bound established in [Sn85]
for merging on a PRAC. To our knowledge, ours is the first algorithm that attains the
minimum time T = O(log N) with an optimal number of processors P = O(N/log N), on
the PRAC model. An algorithm recently proposed in [AS85] achieves an optimal T'P product,
but for T = Q(log? N).

As for sorting on the PRAC, the question of asymptotic complexity was settled by the



network of [AKS83], which is logspace uniform [L85], and therefore yields a PRAC algorithm
with TP = O(N log N) for T = Q(log N). Very recently, the same asymptotic performance
has been achieved by an adaptive algorithm proposed in [C86|, building on the previous
work of [P78] and [Kr83]. Our algorithm also achieves an optimal rate of growth for the T'P
measure, for T = Q(log?N), with a much smaller constant factor than the AKS network,
and probably smaller than the algorithm in [C86] (a precise estimate of the latter is not
yet available). Indeed, even for time T = O(log® N), adaptive bitonic sorting performs only
about twice as many operations as the fastest sequential sorting algorithms.

Our algorithms can obviously be implemented, with the same performance, on other
shared-memory models with less restrictive memory access mechanisms. For results on the
complexity of merging and sorting on some of these models see, for example, [BH85], [HH81],
[Kr83], [SV81], [VT5].

In the bitonic merging network, both the number of comparisons and the number of
exchanges are O(N log N). Adaptive bitonic merging achieves a reduction of both numbers
to O(N), based on two properties established in the paper. First, there exists a subset of less
than 2N of the comparisons performed by the network sufficient to determine the result of
all the others. Second, there is a regularity in the pattern of exchanges that can be exploited
by using a data structure, which we call the bitonic tree, whereby many element exchanges
can be accomplished by a small number of subtree (i.e., pointers) exchanges. The properties
of bitonic sequences exploited by our algorithm are discussed in Section 2. The adaptive
bitonic-merging algorithm is developed in Section 3, where a sequential model is adopted for
simplicity.

Parallel versions of merging and sorting are described in Section 4. Here the main difficulty
consists in avoiding a loss in time performance with respect to the network algorithm. In fact,
in the PRAC implementation, adaptive bitonic merging emulates the &** stage of comparisons
of the merging network in time O(log N — k), for k = 0,1,...,log N — 1. If the stages are
executed in sequence, the resulting time is O(log? N). However, a careful analysis of data-
dependencies shows that O(log N) time can be achieved by a suitable overlapping of the
stages.

The adaptive algorithms of Sections 3 and 4, as well as the network algorithms of [Ba68],



assume that the length of the input sequence N is a power of two. The obvious strategy of
padding the input sequence so that its length becomes a power of two leads to an increase of
the complexity by a constant factor. In Section 5 we show how this increase can be avoided
by developing a variant of the algorithm that works for arbitrary N.

Besides attaining an optimal rate of growth, the performance of the algorithms presented
here exhibits also very small constant factors. The sorting algorithms perform less than
2N log N comparisons, independently of the number of processors. The overhead incurred
in distributing the algorithm among P processors is proportional to Plog N, contributing a
lower order term to the total number of operations. Thus, adaptive bitonic sorting appears
to be attractive for practical implementation. Some indication of the practical behaviour is

given in Section 6.

2 Properties of Bitonic Sequences

Let z = (zo,...,zx—1) be a sequence of N (hereafter N is assumed even) elements from a

totally ordered set. We introduce the following operators on z:

A
Sjz = (zj mod Ny Z(541) mod Ny -y T(j4N—1) mod N (1)
A . .
Lz = (min{zo, zn/2}, ..., min{zn/o_1, TN-1}), (2)
A
Uz = (ma‘x{an ZN/2}’ rey max{zN/Z—la IN-—I})' (3)

A sequence z is bitonsc if, for some j, the sequence S;z = (yo, ..., yn-1) consists of a
non-decreasing portion followed by a non-increasing one. Bitonic merging is based on the
fact that, if z is bitonic,

sort(z) = (sort(Lz), sort(Uz)). (4)

This relation, due to [Ba68], leads to a recursive algorithm whose complexity is determined
by that of computing Lz and Uz. Theorem 1 below states four properties of L and U on
bitonic operands. Property P1 is a lemma for the others. Properties P2 and P3, obtained
by Batcher, imply Equation 4 above. Relation P4 is crucial here since it provides the basis

for a method to compute Lz and Uz that is more efficient than the direct application of



definitions 2 and 3 above, which are used in the bitonic algorithm in [Ba68].
Theorem 1. If z is a bitonic sequence (of even length) then the following properties hold:

P1. There is a shifted version Syz = (20, ..., 2v—1) of z such that
Lz = S(—qmodN/Z)(ZO7 ) zN/2—l)v (5)

Uz = S(—gmod N/2)(2N/2s -1 ZN—1)- (6)

P2. Each element of Uz is no smaller than each element of Lz.

P3. Sequences Lz and Uz are bitonic.

P4. Let g be as in P1 and let ¢t = ¢gmod N/2. Let z = (', 2", 2", 2"") with z' and 2" of
length ¢, and 2" and z"" of length N/2 —¢t. If g < N/2 (¢ = g), then

(Lz,Uz) = (2", 2" ', z"). (7)
Ifg> N/2 (t=gq— N/2), then
(Lﬁa UE) = (Elv _I_”", !ma _Z__”). (8)

Before proving Theorem 1, we show two relations among the operators L, U, and ;.

Lemma 1. For any z and j,

Lz = S(_.j mod N/2) L Sz, (9)

Uz = S(—; mod N/2) U SJ_I_ (10)

Proof: We prove only (9), the argument for (10) being similar. For j = N/2, Equation (9)
becomes Lz = L Syy,z, which can be trivially verified. Thus, index j in (9) can always be
taken modulo N/2 and it is sufficient to consider j < N/2. In this case we have —j mod N/2 =
N/2-j, and

L Sjz = (min{zj, zj+N/2}v ) mi"{IN/z-n zn-1}, min{zo, J7N/2}y coymin{zj_y, J?,'-H-N/z})~

or, in compact form, L S;z = S; Lz, from which Equation (9) follows by applying S_; moed n/2
to both sides. O
Proof of Theorem 1: Let the median of a sequence z = (zo,...,2nx-1) be defined as

the minimum value m such that less than N/2 elements of z are greater than m. Let z



be bitonic, and let y = S;z = (yo, ...y YN—1) consist of a non-decreasing sequence followed
by a non-increasing sequence. In general, y is the concatenation of five (possibly empty)
subsequences respectively containing N, elements smaller than m, IV, elements equal to m,
Ns elements larger than m, N, elements equal to m, and N; elements smaller than m.

Obviously, Ny +...4+ N5 = N. Also, by the definition of m, N3 < N/2 and N2+ Ns+ N4 >
N/2. By simple arithmetic, Ny < N/2 — N5 and there exists a k, with Ny <k < N{2 - N5,
such that the sequence (yg, Yk+1, - Yr+ny2—1) contains all the elements larger than m and
none of those smaller than m.

We now consider the sequence z = Sgyn/oy = Sgz, where ¢ = (j + k + N/2) mod N.
If we write z = (2',2"), with 2’ and 2" sequences of N/2 elements, it is easy to see that
2" = (Uky - Ykt Nj2-1)-

Thus all the elements of z" are no smaller than the elements of z', which implies that
(Lz,Uz) = z. Lemma 1 applied to the latter relation yields Lz = S(gmod N2z and Uz =
S(—qmod Ny2)2"s Which are equivalent to (5) and (6) and establish P1.

Property P2 follows from (5), (6), and the fact that maz{zo, ..., 2n/2—1} < min{zn/2, ..., 2v-1}-

Sequences z' and 2" are bitonic since they are subsequences of z, which is bitonic. Then
from (5) and (6), Lz and Uz are shifts of bitonic sequences, and P3 is proved.

If g < N/2 and z = (2',2",2",2""), as defined in P4, then Sz = (2",2", 2", 2').
From (6) and (7), cyclically shifting each half of S;z ¢ positions to the right, we obtain
Lz = (2",2") and Uz = (2, 2""). This proves (7). A similar argument yields (8), completing
the proof of P4. DO

3 Adaptive Bitonic Merging with O(N) Compafisons

In this section we present a linear-time version of bitonic merging. For simplicity, we describe
the algorithm in a sequential setting and we assume that N, the sum of the lengths of the
sequences being merged, is a power of two. Parallelism and arbitrary input size are discussed

in subsequent sections.



3.1 Analysis of Comparisons

Let z be the bitonic sequence obtained by concatenating, in opposite order, two sorted se-
quences to be merged. The classical bitonic merging consists of the following steps:

1. Compute Lz and Uz by N/2 (parallel) comparisons (according to definitions (2) and (3)).
2. Recursively sort Lz and Uz, in parallel.

The comparisons performed by the above algorithm are data-independent and hence can
be hardwired in a network of comparator-exchangers, the bitonic merger. In the terminology
of [Kn73], the bitonic merger has N (a power of two) lines numbered 0, 1,..., N —1 and log N
stages each of N/2 comparator-exchangers. In the k*h stage (k = 0,1,...,log N — 1) lines i
and j are connected by a comparator-exchanger if and only if the binary spellings of ¢ and j
differ exactly in the (log N — k)'* rightmost bit. Comparators output the smaller of the two
inputs on the line with lower number.

Since, as well known, N comparisons are sufficient to merge two sequences, the set C' of
the (N log N)/2 comparisons executed by the bitonic merger obviously contains some redun-
dancy. Less obviously, this redundancy can be almost eliminated by executing only a suitable
subset of C, as shown in the next theorem. As it will become clear from the proof, this subset
is a function of the input sequence z.

Theorem 2. Let C be the set of the (N log N')/2 comparisons executed by Batcher’s merging
network. Then, there is a subset G’ C C of size |G'| = 2N — log N — 2 such that the results
of the comparisons in C are uniquely determined by the results of the comparisons in C', as
long as the input elements are assumed distinct3.

Proof: Due to property P4 established in Theorem 1, there is a decomposition (z', 2", 2", 2""')
of z such that (Lz,Uz) is obtained either by exchanging z’' and z" (7) or by exchanging z"
and z" (8). Due to P2, if 2y/2_y < 2n-1 then (7) holds, else (2n/2—y > zv—1) (8) holds.

When (7) holds, 2" contains z; if and only if z; < zn/24;. Thus the leftmost element of z"
can be found by a binary search driven by comparisons of pairs of the form (z;, zx/24:). Index
i is first set to N/4 — 1, and then decremented if #; < zxy24; and incremented otherwise.

The increment is initialized to N/8, and halved at each step. The search terminates after

3If they are not, the comparison function can be easily modified to enforce a total ordering on the input

elements.



Bitonic tree for the sequence z = (0,2, 3,5, 7,10,11,13,15,14,12,9,8, 6,4, 1), and the decom-
position (z', 2", 2", ™) for the computation of (Lz,Uz) = (z',2", 2", 2"). Solid nodes are

the ones examined by the binary search.

Figure 1: Bitonic tree

log N — 1 steps, when the increment is zero. Therefore 2", and thus (Lz,Uz), is determined
by log N of the N/2 comparisons implicit in definitions (2) and (3). The case when (8) holds
is completely symmetric.

Let C' be the set of comparisons resulting from recursively applying the above method to
Lz and Uz. Considering that at the k** level of recursion (k = 0, 1,...,log N — 1) there are
2% sequences each requiring k comparisons, we can evaluate the cardinality of C' as

logN—l’
o= Y 2*log(N/2¥)=2N-logN -2. O (11)
k=0

i

M(N)

3.2 The Data Structure

Although Theorem 2 gives a way to obtain all the information needed to merge two sequences
with a linear number of comparisons, the problem remains of how to efficiently achieve the
data rearrangement that in Batcher’s network requires (N log N') exchanges in the worst
case. We solve this problem with the adoption of a suitable data structure, which we call
bitonic tree.

A bitonic tree (see Figure 1) is a binary tree where each node contains an element from a



totally ordered set, and the sequence of elements encountered in the inorder traversal of the
tree is bitonic. The bitonic tree is a simple generalization of the binary search-tree. In fact,
an inorder traversal of the latter yields a monotonic (sorted) sequence.

Given a bitonic sequence of length N (a power of two), we adopt a representation in which

the first N —1 elements are stored in a fully balanced bitonic tree of log N levels, and the last

! ; IIII)

element is kept in a spare node. In this representation, the decomposition £ = (', 2", 2", x
considered in Theorem 1 corresponds to a decomposition of the bitonic tree into four forests
(see Figure 1). The roots of the trees in these forests form two parallel paths in the main
subtrees of the bitonic tree. The exchange of z' and z" [z" and z""] required by (7) [(8)] to
compute (Lz,Uz) can be accomplished with O(log V') exchanges of values and pointers in
the bitonic tree.

The relation between the bitonic tree and the bitonic network can be viewed as a one-to-
one correspondence between nodes and lines, the i** line being associated with the i** node
encountered in the inorder traversal of the tree. However, a node and the corresponding line

are guaranteed to hold the same value only at the beginning of merging and immediately after

the completion of the computation of the sequences (Lz,Uz) at each level of the recursion.

8.3 The Algorithm

Based on the preceding observations we give below a procedure bimerge(root, spare, dir) that
sorts z by transforming the bitonic tree into a binary search tree. Parameters root and spare
are pointers to the root of the tree and to the spare node, respectively. Parameter dir is
boolean and represents the direction in which the sequence is to be sorted (dir = false for
ascending, dir = true for descending).

Each node of the tree has three fields, value, left, and right, respectively storing an element
of the sequence (or a pointer to it) and pointers to the left and right subtrees. The procedure
bimerge given in Figure 2 is written in pseudo-Pascal. The identifiers not explicitly defined
are self-explanatory.

We now briefly comment on procedure bimerge. At the beginning, the root contains
TN/2-1 and the spare node contains zy_;. After statement 1, rightexchange is false when

(7) holds (i.e., ' and z" are exchanged), and true when (8) holds (i.e., " and 2" are



rocedure bimerge (root, spare, dir);
egin

1. rightexchange : = (root ] value > spare 1 value) XOR dir;
2. if rightexchanfgte then swap-value(root, spare);
3. pl:=root T left; pr:=root?1right;
4. while (pl # nil) do begin
5. elementexchange : = (pl 1 value > pr 1 value) XOR dir;
6. if rightexchange then /* X" and X" exchange */
7. i? elementexchange then begin /* swap values and right subtrees;
search path goes left */

8. swap-value(pl, pr);
9. swap-right(pl, pr);
10. pl:=pl1left; pr:= prtleft

end
11. else begin /* search path goesright */
12. pl : =pl 1 right; pr:= prTright

end
13. else /* X" and X" exchange */
14. if elementexchange then begin /* swap values and left subtrees;

search path goes right */

15. swap-value(pl, pr);
16. swap-left(pl, pr);
17. pl: = pl 1 right; pr:= pr1right

end
18. else begin /* search path goes left */
19. pl :d=p|’r|eft; pr:= pr1left

en

end; /* while */
20.if (root T left #+ nil) then begin
21. bimerge(root 1 left, root, dir);
22. bimerge(root * right, spare, dir)
end
end; /* bimerge*/

Figure 2: Procedure Bimerge



exchanged). In the latter case, zy/;_; and zy-; are exchanged (by statement 2). After

statement 3, pl and pr point to the nodes that contain zx/,_; and z3x/4_; respectively.

The binary search for the boundary between z' and z” (as well as between z” and z"") is
performed by the while-loop (statements 4+19). At the end of the loop, an inorder traversal
of the tree would yield (Lz, Uz). Sequences Lz and Uz are recursively sorted by the recursive
calls in statements 21 and 22. We observe that Lz and Uz are represented, like z, by a bitonic
tree and a spare node: Lz by the left subtree and the root, Uz by the right subtree and the
original spare node. In general, the recursive calls of depth k (the first call being of depth 0)
operate on sequences of length N/ 2. These sequences are represented by a subtree with root
at level k (the root of the entire tree being at level 0) and a spare node. The spare node
belongs to some level less than k or is the spare node of the original tree. More precisely,
the i*® subtree at level k, from left to right, is paired with the {** node encountered in the
inorder traversal of the first k levels of the tree.

A simple analysis of bimerge shows that the total number of operations is of the same
order as the number of comparisons. Thus, the algorithm runs in linear time.

In the above discussion, specifically Theorem 2, the elements of sequence z were assumed
to be distinct. In the presence of equal elements ties in comparisons must be broken according

to a suitable criterion for the algorithm to work properly. For example, ties can be broken

on the basis of the elements’ original position in the tree.

4 Parallel Algorithms

In this section we present a parallel version of adaptive bitonic merging and a parallel sorting
algorithm based on it. As a model of computation, we choose the PRAC (Parallel Random
Access Computer) of [LPV81]. The PRAC is a shared-memory multi-processor machine. Any
processor can access any common-memory location in constant time. However, simultaneous
access (either read or write) of the same location is illegal and leads to termination error.

For more details on the PRAC see [LPV81].

10



4.1 Merging

We call stage(k) of the merge (k = 0,1,...,Jog N — 1) the set of recursive calls of bimerge of
depth k. There are 2% such calls, each processing a different subsequence of N /2" elements.
As already observed, this subsequence occupies a subtree with root at level k¥ and a spare
node in some level less than k. All the calls in stage(k) can be executed in parallel.

We call phase(0) of bimerge the execution of statements 1, 2, and 3. We call phase(i)
the execution of the i** iteration of the while-loop. For a call in stage(k), ¢ ranges from 1
to log N — k — 1. A phase includes one comparison and a handful of tests and assignment
statements. It can be executed in O(1) time.

Since calls of depth k consist of log N — k phases, stage(k) takes log N —k parallel phases.
The total time for executing stage(0),...,stage(log N — 1) in sequence is O(Z}f__ﬁév" (log N —
k)) = O(log? N). We note a loss in performance with respect to the O(log N) time of
Batcher’s network. The loss is due to the difference in the computation of (L z, U z). For
z of length N the N/2 comparisons of Batcher’s network are data-independent and take
only one time step, while the log N comparisons of our binary-search method are inherently
sequential and take log N steps.

Little can be done to speed up the execution of a single stage without increasing the
number of comparisons. However, a careful analysis of the data dependencies between com-
parisons of the various stages reveals that the execution of different stages can be partially
overlapped, with considerable savings in running time.

We observe that, in stage(k), phase(0) operates on levels 0, 1, ..., k of the bitonic tree, and
phase(i) operates on level k+i (¢ = 1,...,log N — k — 1). Thus, phase(0) of stage(k) can
begin as soon as stage(0), ..., stage(k — 1) have processed the first k levels of the tree. This
condition is satisfied if a new stage is scheduled to begin every other phase step. The entire
sequence of log N stages is completed in 2log N — 1 phase steps, that is in O(log N) time.
An example of the schedule of the phases of different stages is given in Figure 3, for N = 16.

In the above schedule, the maximum number of calls simultaneously active is N/2, and
hence N/2 processors are sufficient. We now consider a slightly different schedule that leads to

a reduction of the number of processors without substantial degradation in time performance.

11



PHASE STAGE (0) STAGE (1) STAGE (2) STAGE (3)
STEP

phase gi:ls phase ltésgh phase Itgsgls phase }g\e/gls

0 0 0 - - - - - -

1 1 1 - - - - - -

2 2 2 0 0,1 - - - -

3 3 3 1 2 - - - -

4 - - 2 3 0 0,1,2 - -

5 - - - - 1 3 - -
6 - - - - S 0 [01,2
3

Figure 3: Schedule for the overlapped execution of the stages of bimerge for N = 16.

Let us assume a number of processors P = 2?, and consider the following strategy.

1. Stage(0), ..., stage(p—1) are scheduled to begin one every other step. The total number
of calls in these stages is P — 1 so that a different processor is available for each call.
Stage(0) takes log N phase steps after which a new stage terminates at each phase step.

Thus, the‘first p stages take £; = log N + p — 1 phase steps.

2. For the remaining stages, one processor is assigned to each of the P subtrees corre-

sponding to subsequences of length N/P. This will take ¢, = N/P —~ 1 phase steps.

The total number of phase steps ist =¢; + ¢, =logN +p—- 2+ N/P.

If we choose P = N/2|-1°KI°ENJ ~ N/log N, we obtain £ = 2 log N + 2118108 N] _ o0 log N —
2 < 3log N. In conclusion, T = O(t) = O(log N), with P = O(N/log N) processors. The
product TP is optimal, since N operations are necessary to merge. A similar result is obtained
for1<P< N/2U°g logN] a5 summarized in the following theorem.
Theorem 3. Adaptive bitonic merge can be executed on a PRAC of P processors in time
T = O(N/P), for 1 < P < N/2lloglogN],

It is of interest to estimate the overhead incurred to distribute the algorithm among

P processors. In the parallel version of bimerge, the parameters root, spare and dir are

12



rocedure bisort(root, spare, dir);
egin
1. If (root T left # nil) then
test-and-swap(root,spare,dir) /* down to leaves - test and swap as needed */
2. else begin

3. bisort(root T left, root, dir);

4. bisort(root% right, spare, ~dir);
5. bimerge(root, spare, dir)

6. end

end;

Figure 4: Procedure Bisort.

computed by a processor different from the one that actually executes the call. Thus, the
processor that computes the parameters must write them in the shared memory from which
the processor assigned to the call will read them. A simple analysis shows that the total
number of memory accesses for inter-processor communication is O(P), so that the overhead

contributes a lower order term to the total number of operations of the merging algorithm.

4.2 Sorting

Essentially using the classical sort-by-merge scheme (see Figure 4), and standard manipula-
tions, Theorem 2 and 3 lead to the following results.
Theorem 4. Let S be the set of the NV log N{log N +1)/2 comparisons executed by Batcher’s

sorting network. Then, there exists a subset S’ C S of size
S(N)é|S'|=2NlogN—4N+logN+4 _ (12)

such that the results of the comparisons in S are uniquely determined by the results of the
comparisons in S'.
Theorem 5. Adaptive Bitonic sorting can be implemented on a PRAC of P processors in
time T = O((N log N)/P), for 1 < P < N/2lloglogN],

We observe that |S'| is within a factor of two of {log N!], which is a lower bound on the
number of comparisons needed to sort N elements [Kn73]. It is remarkable that sorting can be
done in O(log? N) time with so little redundance. An analysis similar to the one developed for

merging, shows that the total number of memory accesses for inter-processor communication

13



is O(PlogN), contributing a lower order term to the total number of operations of our

algorithm.

5 Input Sequence of Arbitrary Length

In the previous sections, it has been assumed that N, the number of elements to be sorted,
is a power of two. The algorithms so derived can be used for any input sequence after
adding enough dummy elements to it so that the length becomes a power of two. However,
this strategy leads to a constant factor increase in time complexity, which is undesirable in
practical applications.

In this section we modify our algorithm to handle arbitrary values of N, with a negligible
increase in complexity with respect to the case where N is a power of two. The basic idea
consists in simulating the actions that the power-of-two version of the algorithm would per-
form on the input sequence padded with dummies, while avoiding representing and processing

most of the dummies.

5.1 Padding the Input Sequence

Letn = [log N7, that is, let 2" be the minimum power of two non-smaller than N. Given a se-
quence z = (zog, ..., Ty—1) to be sorted, we augment it to obtain a sequence z = (d, ..., d, o, ..., TN _1)
of length 2" by inserting, at the beginning of z, D 2 2" — N dummy elements of value d < z;,
for all z;’s.

If z is stored in a tree according to the inorder traversal, the dummy elements occupy a
left subforest of the tree. More precisely, let D = Y_"=) D; 2¢, with D; € {0,1}. Let x be the
path in the tree that starts at the root and whose i*h edge goes left when D,,_; = 0, and goes
right when D,,_; = 1, for t = 1,2,...,n. Then, the D dummy elements occupy the nodes of
7 that are followed by a right edge and the left subtrees of such nodes. In other words, for
each D; = 1, there is a dummy subtree of depth ¢, whose root is at level n — ¢ and is the left
son of a node on =, also containing a dummy.

We now analyze the behaviour of our algorithm on a padded sequence z, focusing in

particular on the dummy subtrees.
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For a given call to procedure bimerge, consider the “parallel” paths p’ and p" traced in
the bitonic tree by the search for the boundary between z' and z" (see Section 3.1). A given
subtree T' can be modified by the call only if it is traversed by any of the two paths.

If ¢’ and p" originate at the root v’ of T" or at a descendent of it, then only elements inside
T' will be rearranged. In particular, if 7' was originally a tree of dummies, it will remain
such.

If p' and p" originate at an ancestor of v/, then only one path, say p/, can traverse T,
and v’ is the first node of T’ to be visited. During the traversal, v’ will be compared with
some node v" | root of a subtree T". Paths p’ and p” continue in T’ and T”, respectively. If
T' is a tree of dummies, its elements form a consecutive run in the sorted output. Thus, the
comparison of any node of p' with the corresponding node of p" gives the same result as the
comparisons of v' and v". Therefore, subtrees T' and T" will either be exchanged completely,

or left in their positions.

5.2 Pruning the Tree

The above discussion shows that dummy subtrees are left intact throughout the algorithm,
and that they can be processed by examining only their root. This suggests a modification to
the bitonic tree whereby a dummy subtree is represented by a single node (its root) with left
and right pointers set to nil. We refer to the resulting data structure as the pruned bitonic

tree.

The procedures bisort and bimerge have to be modified to work correctly on the pruned

version of the tree. The necessary changes are simple, and are outlined below:

1. The call bisort(root, spare,dir) is not executed whenever root is a node with dummy

value and nil pointers.

2. The call bimerge(root, spare, dir) is not executed whenever root is a node with dummy

value and n:l pointers.

3. Whenever a node v/, with dummy value and nil pointers is compared with another
node v", and v' and v" are exchanged, their left and right pointers are also exchanged.

In any case, the current call to bimerge is terminated after the comparison.
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5.3 Analysis

Let us consider a dummy subtree of depth ¢ (i < n — 2). The savings in comparisons coming

from each of the modifications to the algorithm described above are as follows:

1. (5(2*) — 1) for replacing a call to bisort with a single comparison between the root of

the subtree and a spare node.

2. (M(2') — 1)(n — i) for replacing each of the (n — ¢) calls to bimerge with a single

comparison between root and spare node.

3. (i — 1)v; for not traversing the (i — 1) levels below the root v' for each of the v; times
in which the dummy subtree should be traversed by a path originating above v'. In
general, v; is a function of the input sequence, but always satisfies the simple bound
vi < (n—i)(n—i+1)/2, the latter being the number of calls to bimerge with an ancestor

of v' as the root.

We can now estimate the total number of comparisons performed by the pruned-tree sorting
algorithm as
n—2
S(N) = §(2") — savings = S(2") = 3_ diS(2) — 1+ (M(2°) = 1)(m — i) + (i — 1)v;]
=0
and thus
S(N) < 2NJlog N] — 4N + lower order terms. (13)

To obtain the last expression we have: (i) neglected the (negative) contribution of the
term (i — 1)v;, (i) used expressions (11) and (12) for M(2*) and S(2), respectively, and
(iii) applied some simple algebraic manipulation. The sublinear terms turn out to be of
O(log® N). Comparing (13) with (12) we see that the complexity of the sorting algorithm
for arbitrary N differs from the complexity for N a power of two only in sublinear terms.
Summarizing the above discussion, we have:

Theorem 8. The pruned-tree version of adaptive bitonic sorting executes a number of

comparisons

S(N) = 2N[log N] — 4N + O(log® N). (14)
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6 Conclusions

We have presented a parallel sorting algorithm with optimal TP = O(N log N') complexity
for ((log? N) < T < O(N log N). To explore the practical potential of our algorithm we must
examine the constant factors. The small comparison count (< 2N log N) is encouraging, but
we need to consider the total number of operations. To this end, we observe that, when
running on P processors, adaptive bitonic sorting executes all the operations that it would
execute on one processor plus a small number (O(Plog N)) of memory references due to
interprocessor communication. Therefore, an accurate estimate of the operation count can
be obtained by considering the performance of uni-processor implementations.

We have coded the sequential pruned-tree version of our sorting algorithm, in C under
Berkeley Unix 4.2 on a VAX 780, and a Gould 9080. The only optimization we have performed
is the straightforward removal of recursion. As a term of comparison, we have chosen “quicker-
sort”, the Unix system sort, which is a carefully tuned version of quicksort. On sequences of
length up to 2!° the running time of our algorithm has consistently been below 2.5 times the
running time of quicker-sort. This performance is remarkable for an algorithm that, with a
small synchronization overhead, can run in O(log? N) parallel time.

The combination of relative simplicity, optimal operation count, and small overhead makes

adaptive bitonic sorting appealing for practical implementation.
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