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ADAPTIVE BOUNDARY AND POINT CONTROL OF LINEAR STOCHASTIC
DISTRIBUTED PARAMETER SYSTEMS*

T. E. DUNCAN ’r, B. MASLOWSKIt, AND B. PASIK-DUNCAN

Abstract. An adaptive control problem for the boundary or the point control of a linear stochastic distributed
parameter system is formulated and solved in this paper. The distributed parameter system is modeled by an evolution
equation with an infinitesimal generator for an analytic semigroup. Since there is boundary or point control, the linear
transformation for the control in the state equation is also an unbounded operator. The unknown parameters in the
model appear affinely in both the infinitesimal generator of the semigroup and the linear transformation of the control.
Strong consistency is verified for a family of least squares estimates of the unknown parameters. An It6 formula is
established for smooth functions of the solution of this linear stochastic distributed parameter system with boundary
or point control. The certainty equivalence adaptive control is shown to be self-tuning by using the continuity of the
solution of a stationary Riccati equation as a function of parameters in a uniform operator topology. For a quadratic
cost functional of the state and the control, the certainty equivalence control is shown to be self-optimizing; that is, the
family of average costs converges to the optimal ergodic cost. Some examples of stochastic parabolic problems with
boundary control and a structurally damped plate with random loading and point control are described that satisfy
the assumptions for the adaptive control problem solved in this paper.

Key words, stochastic adaptive control, linear stochastic distributed parameter systems, boundary control
problems, identification

AMS subject classifications. 93C40, 93C20, 93E 12, 60H 15

1. Introduction. An important family of controlled linear, distributed parameter con-
trol systems are those with boundary or point control. Perturbations or inaccuracies in the
mathematical model can often be effectively modeled by white noise. Since in many con-
trol situations there are unknown parameters in these linear, stochastic distributed parameter
systems, it is necessary to solve a stochastic adaptive control problem. We now give a brief
summary of each of the sections in this paper. In 2 the unknown linear stochastic distributed
parameter system is described by an evolution equation where the unknown parameters appear
in the infinitesimal generator of an analytic semigroup and the unbounded linear transforma-
tion for the boundary control. The noise process is a cylindrical, white noise. Some properties
of the optimal control for the infinite-time quadratic cost functional for the associated deter-
ministic system are reviewed, especially the stationary Riccati equation. These results are
given in [8], [11], [12], [18]. In 3 an It6 formula is obtained for smooth functions of the
solution of a linear or semilinear stochastic distributed parameter system with an analytic
semigroup. This result is verified using the Yosida approximation of the infinitesimal gen-
erator of the semigroup. While some other It6 formulas in infinite dimensions are available
(e.g., [6], [15]), none seems to be appropriate for our applications. In 4 a family of least
squares estimates are constructed from the observations of the unknown stochastic system.
This family of estimates is shown to be strongly consistent under verifiable conditions. A
stochastic differential equation is given for the family of estimates. This verification of the
strong consistency of a family of least squares estimates is a generalization of the results in
[9], [10]. In 5 the self-tuning and the self-optimizing properties of an adaptive control law
are investigated. If an adaptive control is self-tuning, then it is shown that the system satisfies
some stability properties and the adaptive control is self-optimizing. The certainty equiva-
lence adaptive control, that is, using the optimal stationary control with the estimates of the
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 649

parameters, is shown to be self-optimizing; that is, the optimal ergodic cost is achieved. In 6
some examples are given that satisfy the various assumptions used in this paper.

2. A boundary control model. The unknown linear stochastic distributed parameter
system with boundary or point control is formally described by the following stochastic dif-
ferential equation:

(2.1) dX(t; a) (A(a)X(t; a) + B(a)U(t))dt + ( dW(t),
x(o; Xo,

where X (t; a) H; H is a real, separable, infinite-dimensional Hilbert space; (W(t), t >_ O)
is a cylindrical Wiener process on H; (H), a (c,..., aq); and t >_ 0.

The probability space is denoted (gt, f,P), where P is a probability measure that
is induced from the cylindrical Wiener measure and is the P-completion of the Borel
a-algebra on f. Let (.Tt, t _> 0) be an increasing P-complete family of sub-a-algebras
of .T such that Xt is .Tt-measurable for t _> 0 and ((g, W(t)),.Tt,t _> 0) is a martingale
for each g H. A(a) is the infinitesimal generator of an analytic semigroup on H. For
some #/ _> 0, the operator -A(a) + flI is strictly positive, so that the fractional powers
(-A(a) +/31)7 and (-A(a)* + flI) and the spaces D() D((-A(a) + I)) and

DA.(a) 79((-A* (a) + /3I)) with the graph norm topology for 7 G I can be defined. It is

assumed that/3(a) /2(H, De-A(a)), whereH is a real, separable Hilbert space and (0,
(cf. assumption (A4) below). For the solution of (2.1) on [0, T], the control (U(t), t [0, T])
is an element of Mv (0, T, H, ), whereM (0, T, H, {u" [0, W] >< f -- H, ,u is (fit)-
nonanticipative and E foT lu(t)lp at < cx} and p > max(2, 1/.) is fixed.

A selection of the following assumptions are used subsequently.
(A 1) The family of unknown parameters are the elements of a compact set K].

(A2) For a /C, the operator b*(-A*(a) + flI)-/2+ is Hilbert-Schmidt for some
(0,
(A3) There are real numbers M > 0 and > 0 such that, for t > 0 and a K,

IS(t; a)lC(H) _< Me-t

and

IA(a)S(t; a)lc(.)<_ Mt-’ e-t,

where (S(t; a), t _> 0) is the analytic semigroup generated by A(a).
D6 and D.((A4) For all a,,a2 tC, D(A(a,)) D(a(a2)) O6A(a,) a(a2)

D. (2) for 6 .
(A5) For each a K and x H, there is a control U,x L2(+, H) such that

y(.) S(. ;cOx + foo S(. t; a)B(a)u,x(t) dte L2(+, H).

(A6) The operator A(a) has the form

q

A(a) Fo +

V(F;)where Fi is a linear, densely defined operator on H for 0, 1,..., q such that Fli=0
is dense in H.
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650 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

It is well known that the strong solution of (2.1) may not exist, so usually the mild solution
of (2.1) is used, that is,

(2.2) X(t; a) S(t; a)Xo + S(t r; a)B(a)U(r) dr + S(t r; a)(b dW(r),

where S(t; a) etA(s). The mild solution is equivalent to the following inner product
equation: For each y E D(A*(a)),

(/, X(t; a)) (/, X(0)) + (A*(a)l,X(s; a)) ds

+ (tP(a)y, V(s)) ds + (b* y, W(t)),

where (a)- B*(a) (DA.(),H,). The following lemma verifies that (X(t;
[0, T]) is a well-defined process in M(0, T, H).

LEMMA 2.1. Assume that (A2) is satisfied. For T > 0 and a 1C, the processes
(Z(t; a), t [0, T]) and (t; a), t [0, T]) given by the equations

(2.4) Z(t; a) S(t r; a)d9 dW(r),

(2.5) 2(t; a) S(t r; a)B(a)U(r) dr

for U Mv(O T, H are elements of Mv(O T, H), with versions that have continuous
sample paths.

Proof. Let Ins be the Hilbert-Schmidt norm on/2(H). If (en) is an orthonormal basis
of H, by (A2) we have that

IS(t; a)bl214s dt < I(-A(a) +/3I)-/2+6’Ie1z dt
t1_26

I(-A(a) + flI)-l/2+612I_IS t_2

where c is a constant. Thus (Z(t; a), t e [0, T]) is a well-defined H-valued process. To verify
the existence of a continuous modification of (Z(t; a), t [0, T]), the following processes
are introduced:

I7(t; a) W(t)[(-A(a) +/3I)-1/2+6d]
and

2(t; a) S(t r; a) dl;V(r; a) for t [0, T].

/-11/2--6There is a ’a -continuous modification of (2(t; a), t [0, T]) [7, Thm. 4]. Thus the
process

z(t; a) S(t r; a)(-A + I)/-edW(t; a)

has an H-continuous modification.
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 651

Since the inequality

c
IS(t r; )B(a)lc(/4,,) _<

(t r) 1-e

is satisfied for 0 < r < t < T, we can apply the H61der inequality with the exponents p
and q p/(p- 1) to the integral (2.5)to verify that (2(t; a), t E [0, T]) is a well-defined
H-valued process in Mv (0, T, H) with a continuous modification. []

If A(a) A*(a) and if (A(a) -/3I) -1 is compact, then assumption (A2) is equivalent
to the assumption that

for T > 0. For notational convenience, the dependence on a is suppressed. By the compact-
ness of the resolvent of A, there is a sequence (Ak), where Ak > A0 > 0 and A T x, and an
orthonormal basis of (e) ofH such that (A -/3I)e Aek for k E N and

k

If (t) e-tS(t), then

where 0 < b <_ bk <_ bk+l, bk -- b < oc. Since

our assertion follows.
Consider the quadratic cost functional

(2.6)
T

J(Xo, U,a,T) [(QX(s),X(s)) + (PU(s),U(s))]ds,

where T (0, oc], X(O) X0, Q (H), P C(H1) are selfadjoint operators satisfying

(2.7) (Qx, x) r, Ixl 2,
(2.8) (Py, y) > 21yl 2

for x H, y E H1 and constants r > 0 and r2 > 0. For the deterministic control problem
for (2.1) with 0 and the cost functional (2.6) with T +x assuming (A5), the optimal
cost is (V(a)Xo, Xo) [8], [12], [18], where V satisfies the formal stationary Riccati equation

(2.9) A*(a)V(a) + V(c)A(a) V(a)B(a)P-ltP(a)V(a) + Q -0
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652 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

and (a) B*(a).
Equation (2.9) can be modified to a meaningful inner product equation as

(2.10) (A(a)x, Vy) + (Vx, A(a)y) -(P-’{P(a)Vx, {P(a)Vy) + (Qx, y) -0

for x, y E D(A(a)). It has been shown [8], [12], [18] that, if (A5) is satisfied, then V is the
unique, nonnegative, selfadjoint solution of (2.10) and V (H, DA-.e). The solution of
(2.9) is understood to be the solution of (2.10).

For adaptive control, the control policies (U(t), t _> 0) that are considered are linear
feedback controls, that is,

(2.11) U(t) K(t)X(t),

where (K(t), t _> 0) is an (H, H)-valued process that is uniformly bounded almost surely
by a constant R > 0. Let A > 0 be fixed. It is assumed that the (H, H)-valued process
(K(t), t _> 0) has the.property that K(t) is adapted to cr(X(u), u <_ t A) for each t >_ A. It
is also assumed that (K(t), t [0, A]) is a deterministic, operator-valued function. For such
an admissible adaptive control, there is a unique solution of (2.1) with K(t) [(X(s), 0 <_
s <_ t A). If A 0, then (2.1) may not have a unique solution. Furthermore, the delay
A > 0 accounts for some time that is required to compute the adaptive feedback control law
from the observation of the solution of (2.1).

Two more assumptions, (A7) and (Ag), are now given that are used for the verification of
the strong consistency of a family of least squares estimates of the unknown parameter vector
a. Define 1K C (H, H) as- {K (H,H,) IKIc(H,H,) <

where R is given above.
Assume that B(a) is either independent of a /C or has the form

(2.12) B(a)-*(a),

where (a) /*A* (a) /2 (DA.’-e(), H, and the operator [3 (H,, DeA(,) is given.

(A7) There is a finite-dimensional projection/5 onH with range in f’lq__ 79(F) such that

iobb*i > 0, where ip" H -- P(H) is the projection map and t3(a) is either independent

of a or has the form (2.12). In the latter case, there is a finite-dimensional projection/6 on H
and a constant c > 0 such that

IP(I + K*/*)F*P[c(u) > c

is satisfied for all F {F,,..., Fq } and K .
It is easy to verify that, ifH is infinite-dimensional, if/ (H, H) is compact, and if

(F*)-’ (H) for 1,2,..., q, then (A7) is satisfied.
Let (U(t), t _> 0) be an admissible control, denoted generically as U(t) K(t)X(t),

where (X(t), t _> 0) is the (unique) mild solution of (2.1) using the above admissible control.
Let

(2.13) jr(t) -(aj(t))

and

(2.14) A(t) -(a(t)),
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 653

where

(2.15a) ai5(t (PFiX(s), PFsX(s)) ds

if B does not depend on a or

(2.15b) a5(t (P(F + FK(s))X(s),P(F + Fs[3K(s))X(s)} ds

if B(a) has the form (2.12) and

(2.16) 5j(t) ais(t)
a(t)

It is easy to verify that the integrations in (2.15a) and (2.15b) are well defined.
For the verification of the strong consistency of a family of least squares estimates of the

unknown parameter vector, the following assumption is used.
(AS) For each admissible adaptive control law, ((t), t _> 0) satisfies

lim inf]detA(t)l > 0 a.s.

3. An Itb formula. In this section, an It5 formula is verified for a smooth function of
the solution of (2.1). While some It5 formulas are available for evolution equations (e.g., [6],
[15]), apparently no result is available for an equation of the form (2.1).

Since the parameter vector c is fixed in this section, the dependence of (2.1) on a is sup-
pressed throughout this section. The It6 equation obtained here is verified by an approximation
of (2.1) using the resolvent. For , >/3, let R() be defined by

(3.1) R(A) R(, A),

where R(A,A) (I A)- is the resolvent of A. By assumptions (h2), R(,)l/2-6(I
is Hilbert-Schmidt and R(/)(I) is Hilbert-Schmidt, so there is an H-valued Wiener process
(W (t), t _> 0) defined by

(3.2) Wa(t) W(t)O*R*()),

whereW (1) has the nuclear covariance R(,k)(I,*R* (,). Consider the stochastic differential
equation

dX(t) AXe(t)dt + R()BU(t) dt + R() dW(t),(3.3) X (0) R(,k)X0,

where/k >/3. It is shown that (3.3) has a strong solution.
LEMMA 3.1. For/ 3> , the stochastic equation (3.3) has a unique strong solution on

[0, T], that is,

T

(3.4) [AX(t)] dt < a.s.

and

(3.5) X (t) R(A)Xo + AX (s) ds + R(A)BU(s) ds

+ R(A)W(t) a.s.
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654’ T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

(3.6)

and

(3.7)

We have

so that

Proof. To verify that the mild solution of (3.3) satisfies (3.5), it is necessary to show that

[ it IAS(t- s)R(,X)BU(s)I dsdt < oc a.s.
Jo Jo

T fot [AS(t- s)R(A)IC(H) dsdt < oc a.s.

oo

T] IAS(t s)(A)BV(s)l d dt

<_ T tq(l-e-------- dt Ig()l d

which verifies (3.6). Since IAS(t- s)R(,X)IC(H) is bounded for 0 <_ s < t < T,
(3.7) is satisfied. Use the Fubini theorem to compute f AXe(s)ds as in [6], [14] to

verify (3.5). []

Now it is shown that a sequence of processes can be obtained from solutions of (3.5) as-- oc, which converges to (2.2).
LEMMA 3.2. There is a sequence (/kn such that ,kn T +cx, and,for t E [0, T],

(3.8) limXx(t)--X(t) a.s.
Oo

and

(3.9) sup{IX,k (t)l’An > O, t [0, r]} < cx a.s.,

where (Xx (t), t [0, T]) satisfies (3.5) and (X(t), t [0, T]) satisfies (2.1).
Proof. The Yosida approximation implies that R(A)Xo - Xo as ,k oc for all X0 H

and [R(,)[Z:(H) < c for some c > 0. Since

K
(3.10) IS(t- s)(R(A) I)BU(s)I <_

(t- s)1-
Ig()l,

where K > 0 is independent of ) >/3, the H61der inequality implies that

T lip

(3.11) tE[0,T]SUp fo S(t-s)R(A)BU(s)ds CT Q"0 ,U(8)IPd8

for some CT > 0 and the dominated convergence theorem implies that

(3.12) lim S(t s)(R(A) I)BU(s) ds 0
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 655

for t (5 [0, T]. Let 1717) (t) W(t)b*(I- R2(A)) *, and, recalling (2.4), we have

(3.13)

2

E sup Z(t)- f__ S(t- r)R(A)dWx(r)
t[O,T] JO

=E sup S(t-r)dWx(r)
te[0,r]

By Theorem 2.1 of [16], the right-hand side of (3.13) tends to zero as A -- cx if the trace of
the covariance operator of (-A //3I)-(1/2)+W(1) tends to zero as A -- xz. If (e,) is an
orthonormal basis of H, then

(3.14)

This infinite series converges to zero as A c because

l(I- R2(A))(-A + I)-(’/)+eeoel 0

for n E N, and the series is dominated by

Z 2(c4 / 1)I(-A + I)-(’/2)+eagel- 2(c4 + I)I(-A +/3I)-(’/2)+els < "
Thus the right-hand side of (3.13) converges to zero, and there is a sequence (An) such that

sup
t[O,Tl

S(t r)R(An)dW (t) Z(t)
2

aoSo

as n --, oc. Therefore, for t E [0, T],

lirn Xa (t) X(t) a.s.

by (3.12) and (3.9) is satisfied because

sup s(t )n(a)v()d < cx a.s.

by (3.11). []

An It6 formula is now verified for smooth functions of a solution of (2.1).
LEMMA3.3. Let V CI’2([0, T] x H, II) be such that Vx(t, z) DA-.for all t (O, T)

and Vx(t, .) H -- DIA-. is continuous. Assume that the function (Ax, Vz(t, x)) for x
D(A) can be extended to a continuousfunction h [0, T] x H -- I, thefollowing limit exists:

lim Tr Vxz(t,z)R2(A)6pO*(I*(/)) 2 7r(t,x) < 09

and the map

(3.16) x Vr V(t,x)R()*(R*())
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656 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

is continuous on H uniformly with respect to A >_/3 and

[h(t,z)l + ITr Vxx(t,x)Re(A)*(R*(A))2[ + [W(t,z)l
(3.17) + [G(t,X)ID’A-: / IG(t,x)IC(H) / IVt(t, x)l _< k(1 / [xlp)

for (t, x) E (0, T) H, A >_ fl where k > 0 and p > O. Then

V(t,X(t))- V(-,X(T))

(3.18) h(s,X(s)) + V(s,X(s)) + (V(s), Vx(s,X(s)))

+ -Tr(s,X(s)) ds + (b*Vx(s,X(s)),dW(s)) a.s.,

where 0 <_ - <_ t <_ T, B* and (X(t), t E [0, T]) satisfies (2.1).
Proof. The verification of (3.18) is accomplished by using a sequence of processes that

satisfy (3.5). Since (X) (t), t [0, T]) is a strong solution of (3.5), the It6 formula [6] can be
applied to (Y(X(t)), t e [0, T]) to obtain

V(t, Xx(t)) V(-,Xa(-)) h(s, Xx(s)) + G(s, Xx(s))

+ <u(), n*()Vx(,xx()))
R* R2 R*O.9) + Vr ()G(,x()) ()* () d

+ (R*(A)V(s, Xx(s)),dW(s)) a.s.

It suffices to assume that (U(t), t [0, T]) is uniformly bounded, almost surely. Lemma 3.2
verifies that

(3.20) lim V(t,X(t))- V(t,X(t)) a.s.,
n---+oo

(3.21) lim V(s,X (s)) V(s, X(s)) a.s.,

(3.22) lim V(’r,X),,(’r))- V(-,X(-)) a.s.,
oo

(3.23) lim h(, X/ ()) h(, X()) a.s.

for 0 <_ 7- _< s _< t _< T, where An - oo. Let V andV be defined as

and

cv(,x) (u(), lV()Vx(,x))
/, x)(),,,/t+ Tr (A)Vxx(S, (A)

(8, X)

for (s,x) [0, T] x H. We have

(3.24) Icv(,X(s)) cv(,x())[
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 657

From (3.15), we have that

lim V(s,X(s)) V(s,X(s)) a.s.

Furthermore,

(3.26)

The right-hand side of (3.26) tends to zero as x y in H uniformly with respect to A >_/3 by
(3.15). Thus the second term on the right-hand side of (3.24) converges to zero almost surely.
Choosing a sequence (A,) such that A, oc, from Lemma 3.2 we obtain by (3.9), (3.17)
and the dominated convergence theorem

(3.27)
lirn [h(s, Xa.(s)) q-- Ys(8, XA(8)) +

[h(s,X(s)) + V(s,X(s))+ V(s,X(s))] ds a.s.

Furthermore,

(3.28)

12
le*(*(a))v(,x(,)) *y(,x())l 2 a,

_< 2 [le*(*(a))a(v(,x())- ,(,x())l

+ I[e*(*(a)) *lV(,, x(,))l 2] d,.

The right-hand side of (3.28) tends to zero as n -+ oc by Lemma 3.2 and (3.17). Thus there
is subsequence (A,j) such that

lim (R*(Anj)V,(s,Xn(s)) dWn,(s))- ((I)*V,(s X(s)) dW(s)) aoS.

Thus (3.20)-(3.23), (3.27) verifies (3.18). []

Now some of the hypotheses of Lemma 3.3 are replaced by ones that are more easily
verified while still obtaining the same conclusion.

PROPOSITION 3.4. Assume that (A2) is satisfied. Let V E Cl’2([0, T] x H) be such that
V,(t,x) D1A-. e, Vx(t,.) H D7 is continuous, (Ax, Vx(t,x)) for x D(A)can be
extended to a continuousfunction h [0, T] x H -- I and

(3.29) Ih(t,x)[ + Iv(t,x)l + IV(t,X)ID,A-: + IVx(t,X)lC(H + IVt(t,x)l < k(1 + Ixlp)

for (t, x) [0, T) x H and p > O, k > O. Assume that one of the following three conditions
is satisfied:

(i) q is Hilbert-Schmidt;
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658 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

(ii) Vzz(t,x) is nuclear, Vzz(t, ") is continuous in the norm l" [1 of nuclear operators
andlVxx(t,z)l, < k(1 + ]z[P)for(t,z) (0, T) H, where k > Oandp > 0;

(iii) Vzz(t, x) L:(Dt-(1/2) D(./2)-) for (t, x) [0, T] H, thefunction

L(.)- (_R*(fl))-(’/2)+Vxz(t, .)(R(/)) -(’/2)+ H Z:(H)

is continuous and IZ(x)lc ) <_ / is satisfiedfor t > 0 and x H.
Then (3.18) is satisfied, where, for (i) and (ii), 7r(t,x) Tr Vxz(t,x)cbcb* and, for (iii),

7r(t, x) Tr(R*(fl))-(/2)V(t,x)b*(R*())(/2)-.
Proof. By Lemma 2.3, it suffices to show that (i), (ii), or (iii) implies (3.15)-(3.17).

Assume that (i) is satisfied. Then

ITr[Vxx(S, x)n2(A)(bcb* (n(A)) Vxx(S, x)(bcb*]l
(3.30) ITr[(R*(A))2Vx(S,X)R2(A)OO V(s,x)’’*]l

< [(R*(A))2Vzx(S,x)R2(,X) Vxx(S,x))(b*ejl
J

where (ej) is an orthonormal basis in H that includes the eigenvectors of*. The series on
the right-hand side of (3.30) is dominated by

const Ib*ejl < ,
J

so the dominated convergence theorem implies that the series in (3.30) converges to zero as
,k -- x. This verifies (3.15). Since

ITr(Vxx(S,x)- V(s,y))Re(A)’*(R*(A))2I <_ clVxx(S,X)- Vzz(s,y)lz:(H)Tr

where c > 0 does not depend on ,X > fl, (3.16) is verified. Equation (3.17) follows from
(3.29).

Assume that (ii) is satisfied. Then

]Tr Vxx(S,x)R2(A)dp*(R*()) 2 Tr VzxCbdp*

--ITr[Re(A)O’b*(R*(A)) (b*]Vxx(S,x)t
< l(R2())O* (R*(,X))2 (b(b*)Vxx(S,X)jl

J

where (j) is an orthonormal basis in H including the eigenvectors of Vxz(S, x). Proceeding
as for (i), it follows that (3.15) is satisfied. Since

ITr(Vxx(S,x) Vxx(S, y))R2(A)’b’*(R*(A))eI

ITr V(s,x)2(A)*(R*(A))2!
<_ klRe(A)’*(R*(A))eI(H)(1 -4-IxlP),

so (3.16), (3.17) are satisfied.
Assume that (iii) is satisfied. Then

ITr Vxx(,x)R2()*(lV(,)) (, x)l
ITr[(R*(A))2L(x)R2(A)R(’/2)-5(/)(b*(R*(/))(’/)-

L(x)R(/2)-5(/)cb,*(R(/))(/2)-5]I.
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 659

Since the operator R(1/z)-6()cb*(R*()) (/2)-6 is nuclear by (A2), we can choose an
orthonormal basis in H that includes the eigenvectors of this operator and proceed as in (i) to
verify (3.15). Since

ITr V(, x)n(,)’’* (R* ()) Tr Vxx(, V)R(,),,*(* ())I

and

Ir Vx(,x)()*(*())l
I(R*(A))L(x)RZ(A)]C(H) IR(’/z)-(/)*(R*())(’/2)-[,

_< const(1 + IxlP),

these inequalities verify (3.16), (3.17). []

For use of this It6 formula in the adaptive control problem, it is useful to state explicitly
the case where v(x) (Vx, x), where V E E(H) is a selfadjoint operator.

COROLLARY 3.5. Let V .(H) be selfadjoint such that V .(H,DA-.) and
I(vz, Az)l _< klzl2for x I(A), where k > O. Assume that one ofthefollowing conditions
is satisfied:

(i) ff is Hilbert-Schmidt,
(ii) V is nuclear,

(iii) V (DI-(1/2),D(/.2)-6).
Then,for all 0 <_ 7- <_ t <_ T,

(3.31)

(vx(t),x(t)) (vx(-),x(-))

[h(X(s)) + 2(U(s), VX(s)) + II(V)] ds

where h is the continuous extension of 2(Vx, Az) on H, and, for (i) and (ii), II(V)
Tr Vcbb* and,for (iii), II(V) Tr(R* (/))e-(’/Z)v.cb* (R* ()) (/2)-.

4. Parameter identification. For the identification of the unknown parameters in the
linear stochastic distributed parameter system (2.1), a family of least squares estimates are
formed. In this section, it is assumed that/3 0, that is, -A(c) is strictly positive. Let P be
the projection given in (AT). The estimate of the unknown parameter vector at time t, &(t) is
the minimizer of the quadratic functional of c, L(t; c), given by

L(t; oz) (/5(A(oz) + B(c)K(s))X(s),dfgX(s))

+ [/5(A(o) + B(o)K(s))X(s)l 2 ds,

where U (s) K (s)X (s) is an admissible adaptive control.
THEOREM 4.1. Let (K(t), t _> 0) be an admissible feedback control law. Assume that

(A2), (A6)-(A8) are satisfied and co 1C. Then the family of least squares estimates

(&(t), t > 0), where &(t) is the minimizer of(4.1), is strongly consistent, that is,

(4.2) Pc0 (lim &(t) c0)

where co is the true parameter vector.
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660 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

Proof. If B does not depend on c E/C, then the proof of Theorem 4.1 follows from the
proof of Theorem in [10]. Therefore we may assume that B(c) has the form (2.12). Since
the strong law of large numbers for Brownian motion is used to verify strong consistency, it
is shown initially that

(4.3) lim I(g,X(s))l 2 ds +oc a.s.

for suitable g E H.
If (P,) is a sequence of increasing finite-dimensional projections with range in

Ni=0p D(F) that converges strongly to the identity I and F {Fi, Fq}, then

(4.4)
lirn <PF(I + K(s))PnX(s), PF(I + [3K(s))PnX(s)) ds

<PF(I + 3K(s))X(s),PF(I + K(s))X(s)> as

in L (P) almost surely because the sequence of integrals is monotone increasing.
Fix n N. For the process (PnX (t), t _> 0) with nonzero values in a finite-dimensional

space, the verification of (4.3) is accomplished by using some of the methods in [9] for finite-
dimensional systems. Since the expectation of the Lebesgue measure of the amount of time
that a scalar Brownian motion is strictly away from zero is infinite, the 0-1 law for Brownian
motion implies that, for almost all sample paths, the Lebesgue measure of the amount of time
that a sample path is strictly away from zero is infinite.

If g H and *g 0, then a well-known property of a scalar Brownian motion implies
that

(4.5) lim inf (O*e, W(t)) -oc a.s.

and

(4.6) limsup (*e, W(t)) +oc a.s.
t---*o

q )(F;) such that *g 0 and P,g =/= 0. Assume that p/5 _/5. LetFix n N and E fqi=0
(T,) be a sequence of stopping times such that {lim_(*g, W(T)) +oc}. Let A+
{limsup__,o f?n (M*(s)g,X(s))ds +oc}, where M*(s) (A* + K*(s)[3*A*)P.
For each co A+, there is a subsequence (T, (co)) such that

(4.7)

Since

as

it follows directly that, for almost all co A+,

lim sup (g, X(t, co)) 2
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 661

Let A_ {lim supn__. f?n(M*(s)g,X(s))ds -c}. For w E A_,

lirno M s w X s w ds cx

Since -W has the same probability law as W, we have that, for almost w E A_,

limsup (g,X(t,w)) 2 +cx.

Let A0 {limsupn_o f?n (M*(s)g,X(s))ds < cx}. It follows immediately that, for
almost all w E A0,

limsup (g,X(t,w)) 2 +o.

Combining the results of the above three cases, we have

lim sup <, X(t)) 2
a.So

Since the Lebesgue measure of the amount of time that ((g, PnX(t)), t _> 0) is strictly away
from zero is infinite for almost all sample paths, it follows that

lim I( X(s))l 2 ds aoS.

By (A7), it follows that there is a > 0 such that

(4.8) Tr[(/5(I + K* (s)/*)F*/5), (/5(i + K* (s)/*)F*/5)] > c,

for all s +, and F {F,..., Fq }, which implies that

lim ([9(I + K*(s)*)F*PX(s) P(I + K*(s)f3*)F*PX(s)) ds +oc as.

and, consequently,

lim (PF(I + [3K(s))X(s) ff)F(I + [3K(s))X(s)) ds +oc aoSo

To minimize (4.1) with respect to a, it is necessary and sufficient that DL(t; a) O.
Computing the family of partial derivatives and using (2.1), we obtain the family of linear
equations

(4.9) A(t)&(t) di(t)ao + b(t)

or

(4.10) A(t)(t) f(t)ao + b(t),

where jr(t) and Jr(t) are given by (2.13) and (2.14), respectively, and

b(t) (P(F + K(s))X(s), dP,W(s)),
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662 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

b(t) (b (t),..., bq(t))’,

(t),...,

Let (cn) be a sequence of positive, real numbers such that Cn + 0. Let An
{liminft_, Idet 4(t)l > cn > 0}. The sequence (An) is increasing. By (AS), we have
that P(An) T as n cx. Given e > 0, there is an N E I such that P(AN) > e.
There is a random time such that Idet i,(t,w)l > cn for w E AN and t >_ T(). Since
b(t) 0 almost surely as t by the strong law of large numbers for Brownian motion,
since ,* (t)(t) is uniformly bounded almost surely, and since e > 0 is arbitrary, it follows
that &(t) a0 almost surely as t . []

For the applications of identification and adaptive control, it is important to have recursive
estimators of the unknown parameters. Let (/(s)x, y) be the vector whose ith component is
(PFi(I +/K(s))x, y). Using (2.1), (4.9), we have

(4.11) c (t) A-’(t)

Since 4- (t) satisfies the differential equation

dA-’ (t) -A-’ (t) dA(t) A-’ (t),

the differential of (4.11) satisfies

(4.12) d&(t) A-’(t)(P(t)X(t), dPX(s) PA(&(t))(I + [3K(t))X(t) dt).

5. Optimality for an adaptive control. In this section, the certainty equivalence, optimal
ergodic control law is shown to be self-tuning and self-optimizing. The self-tuning property is
obtained by using the continuity of the solution of a stationary Riccati equation with respect to
parameters in the topology induced by a suitable operator norm. Since the unbounded operator
B(a) appears in the linear transformation of the control in (2.1), this operator topology is
more restrictive than for bounded linear transformations on the Hilbert space. This continuity
property is also used to show that the certainty equivalence control stabilizes the unknown
system in a suitable sense. The self-optimizing property is verified for this adaptive control.

The solution V of the stationary Riccati equation (2.9) satisfies the assumptions of Corol-
lary 3.5 if one of the following three conditions is satisfied: (i) (b is Hilbert-Schmidt, (ii) V is
nuclear, or (iii) A is strictly negative. By (A5), V E(H, D-) (see [12], [18]), and (2.10)
implies that

[(Ax, Vx) [(Rx, x) <_ klxl2

for some R (H). If A is strictly negative, then it easily follows that

V C(DI-(1/2),D(/.2)-6).
Moreover, if (A2) is satisfied with (I) I, then V is nuclear because, from Theorems
and 2 of [12], it follows that Pa (-A* +/3I)aV (H) for each a E (0, 1). Thus
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 663

V P2(-A +/3I) is nuclear because (-A +/3I) is nuclear for a 23 by (A2),
(AS).

If an adaptive control is self-tuning and some stability properties are satisfied for the
solution of (2.1), then this adaptive control is self-optimizing.

PROPOSITION 5.1. Assume that (A2), (A5) are satisfied, that the solution V of (2.10)
satisfies the assumptions of Corollary 3.5, and that

(5.1) lim -1 (VX(t), X(t)) 0 a.s.,

(5.2) lims,p - IX(s)lds < oc a.s.,

where (X(t),t > O) is the solution of (2.1) with oo K and the control U
r>0M (0, T,H ). Then

(5.3) lim inf
T-, - J(Xo, U, o, T) >_ II(V) a.s.,

where V is the solution of (2.10) with o. Furthermore, ifU is an admissible control
U(t) K(t)X(t) such that

(5.4) lim K(t) =/co a.s.

in the uniform ,(H, H1 topology where ko -P-IV, then

(5.5) lim
T- - J(Xo, U, ao, T) H(V) a.s.

Proof. For U Mv (0, T,H ), we have

IVX(t),X(t)) II/z,z} h(X(s)) + 2/U(s), VX(s)) ds
(5.6)

where h(z) is the continuous extension of2{Az, Vz), z D(A). Using the stationary Riccati
equation (2.10), we obtain

(vx(t), x(t)) (VXo, Xo)

[2(U(s), VX(s)) + (P-lVX(s), VX(s)) -(QX(s),X(s))] ds

By a similar method as in Proposition 2 of 10], we obtain from (5.2) that

(5.7) lim fot-.- (b*VX(sl,dW(s)) 0 a.s.

Thus

lim (1T--.oo
J(X0, U, co, T) - IP’/2U(s) + P-’,VX(s)I 2 ds II(V)
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664 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

and (5.3) is verified. If U(t) K(t)X(t) and if (5.4) is satisfied, then

lim fo
T- Ip’/2(U(s) + P-’VX(s))t 2 ds 0 a.s.

by (5.3). Thus (5.5) is verified. []

Now it is shown that the stability conditions (5.1), (5.2) are satisfied for an admissible,
self-tuning adaptive control.

PROPOSITION 5.2. Assume that (A2), (A5) are satisfied. Let the solution V of (2.10)
satisfy the assumptions of Corollary 3.5.If (X(t), t >_ O) is the solution of(2.1) with ao 1C
and an adaptive control law (K(t), t >_ O) that satisfies (5.4), then (5.1), (5.2) are satisfied.

Proof. Apply the It6 formula (3.31)of Corollary 3.5 to (VX(t),X(t)) again to obtain
(5.6). Let (P(t), t > 0) satisfy

P(t) h(X(s)) + 2(K(s)X(s), tPVX(s)}

+ (QX(),x()) d+2 (*VX(),dW())

and use the stationary Riccati equation (2.10) to obtain

P(t) 2(K(s)X(s), qVX(s)} + 2(p-l@vx(s), @VX(s))

](P-lffVX(8), tVX(s)} -(QX(s),X(s)} d8

+ 2 (b*VX(s), dW(s)).

By (2.7), (2.8) and the boundedness of (I,*V, there are constants c0, C1, C2, and e3 such that

Since K(s) -- ko almost surely as s -+ oc, limsupt (1 It)P1 (t) <_ 0 almost surely, and by
the strong law of large numbers for Brownian motion, we have lim supt__,o (1/t)P2(t) <_ 0
almost surely. Thus

II(V) _> lim sup (VX(t),X(t)) + - (QX(s),x(s)) ds

and (5.2) is verified.
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 665

To verify (5.1), again use the It6 formula (Corollary 3.5) for (VX(t),X(t)) as

(vx(t),x(t)) (vx(-),x(,-))

[2(()x(), vx()) 2(oX(), vx())

_< (-c + 1/(() 01)lx()l d + (t

where c > 0, c > 0 and r [0, t]. Thus

IVX(t),X(t)} IVX(r),X(r))
(5.8)

<_ c(VX(s),X(s))ds -t- c4(t -) + M(r,t)

for some c > 0, c4 > 0, and t >_ r > To, where To is a random time and where

Let (t)- {VX(t),X(t)) and let ((t),t > To)satisfy

(5.9) y(t) (To) c l(s) ds + c4(t To) + M(To, t)
To

for t _> To. Taking the difference of (5.8) and (5.9), it is clear that (t) _< (t) almost surely
for t >_ To. Solving the integral equation (5.9), we have

C4 c3(t--T0))(t) )(To)--’(-%) + --( -C3

3 e-c(t-s) /I(ro, s) ds + M(ro, t) a.s.

From (5.2), which has been verified above, and from the strong law of large numbers for
Brownian motion, we have that

lim
t t

y(t) 0 a.s

which verifies (5.1). []

To verify the self-tuning property for the certainty equivalence adaptive control, K(t)
-P-t(&(t A))V(&(t A)), where (&(t),t >_ 0) is a family of strongly consistent
estimators of the true parameter vector c0. It is important to show a suitable continuous
dependence of the solution V (c) of the stationary Riccati equation on c E/C. ForB bounded,
some results are given in [5], [10]. For B unbounded, as in (2.1), we can use a continuity
result from [17, Thms. 1.1 and 5.3], which is reformulated below. It is assumed that A(c) is
strictly negative for each c E/C. For notational convenience, let Ao A(co), whereo -/C
is the true parameter value.
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666 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

LEMMA 5.3. Assume that (A1), (A3), (A4) are satisfied and that

HI)(5.10) ---,olim I(c)- (C0)IZZ(DA --0,

(5.11) lim,, IS(t;) s(t; O)[E(DZ,,H 0

for each t O, where () B*(a). Then

(5 12) lim [W()- W(0)l
A(

H D- O.
0

Note that (A3) and (5.11) imply that

lim lA- () A-t (0)lc() 0,
0

and, from (A 1), (5.10) and (5.11), we have that

lim ]()S*(t;) (0)S*(t; O)I(H,H,) O.
0

Thus we can follow the proof of Theorem 5.3 in [17] to obtain (5.12).
The self-optimizing property is now verified for a self-tuning adaptive control.
TnZOM 5.4. Assume that (A1)-(A4), (A6)-(A8) are satisfied. Let (&(t), O) be

thefamily of least squares estimates, where (t) is the minimizer of(4.1). Let (if(t), t O)
be an admissible adaptive control law such that

(5.13) K(t) -P-’((t- A))V((t- A)),

where () B*(a) and V(a) is the solution of (2.10)for a . Then the family of
estimates ((t), t O) is strongly consistent,

(5.14) lim K(t) ko a.s.

in E(H, H) where ko -P-t(ao)V(a0), and

(5 15) lim (x0,,-0,y) Xr n(v(-0)) a.s.,

where U(t) K(t)X(t) and H(V)is given in Corolla 3.5.
The proof follows directly from Theorem 4.1, Lemma 5.3, and Propositions 5.1 and 5.2

with A A(a0). The solution V V(a0) of the Riccati equation satisfies the assumptions
of Corollary 3.5 because A(a0) is strictly negative.

6. Some examples.
Example 6.1. This is a family of examples from elliptic differential operators. Let G be

a bounded, open domain in with C-boundary 0G with G locally on one side of OG and
let L(x, D) be an elliptic differential operator of the fo

(6. z(,v)f ()f + [()vf + (a()f)] + ()f,

where the coefficients aj, hi, d, c are elements of C(G),

(6.e () 1,D
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 667

where (,..., n) E n, x E G, b > 0 is a constant, and {aij (x)} is symmetric.
Consider a stochastic parabolic control problem formally described by the equations

(6.3)
Oy

(t, x) L(x D)y(t, x) + 7(t, x)Ot

for (t, x) F+ G and

(6.4) (t x) + h(x)v(t x) x)

for (t,x) + OG and y(0, x) yo(x), where O/Ou i,j= aijujDi is the normal
derivative, , (,,... ,un) is the outward normal to OG, the process (r/(t,x); (t,x) G

+ G) formally denotes a space dependent white noise, u L2(0, T, L2(OG)) for any
T > O, h C(OG), and h _> 0.

To give a precise meaning to (6.3), (6.4), the semigroup approach is used. An intuitive
justification of the semigroup model (2.1) is given. Let H L2(G),H L2(OG) and
define Af- L(x,D)f. A" H -- H is densely defined, and 79(A)- {f e H2(G)
Of/Ou + hf 0 on OG}. It is well known that A generates an analytic semigroup, the linear
operator (A -/I) is strictly negative for some/ >_ 0.

To introduce the control operator, consider the elliptic problem

(6.5) (L(x, D) fl)z 0 on G,

Oz
(6.6) 0, + hz -g on OG.

For 9 L2(OG), there is a unique solution z H3/2(G) [191. Define/ (H, H3/2(G))
by the equation/9 -z. For e < 3/4, we have/ E E(H, DA) because D(/4)-
H(3/2)-27 for any sufficiently small 7 > 0 [-13]. Let y;(t, x) e-ty(t, x) and r/(t, x) dt
dW(t) for some I, E(H) and a cylindrical Wiener process (W(t), t >_ 0) in H. From

(6.5), (6.6), we have

(6.7) dyz (L(x, D) fl)yz dt + e-Zt dW(t),

(6.8) Ou

Formally performing the differentiation (O/Ot)f3u(t), we obtain

dczz(t) ((L(x, D) -/)yz(t) [3izz(t)) dt + e-Zt(b dW(t),

where o/ (t) y(t) [3u(t). For (6.7), the formula for the mild solution is

(6.9)
wz(t) Sz(t)(y(O) +/u(O)) + Sz(t r)rbe dW(r)

S(t r)[3izz(r)dr,
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668 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

where S(t) et(A-l) Formally integrating by parts the last integral in (6.9) yields

yz(t) wz(t) [3u(t) Sz(t)y(O) + (A- /31)S(t- r)[3uz(r) dr

+ e-ZSZ(t r)b dW(r).

Thus, cancelling e-at we have

y(t) S(t)y(O) + S(t r)Bu(r) dr + S(t- r)(b dW(r),

which is a mild solution of the form (2.3), where B * and E (D4:,H extends the
operator/* (A* -/3I).

The assumptions that are used in this paper are now verified for this example. Assump-
tion (A2) may not be satisfied so that it can be considered as a condition on the noise term

(specifically on ). If is Hilbert-Schmidt or if (b W(t) evolves in H, then (A2) is satisfied.
If n and b E E(H), then (A2) is satisfied. In this case,

0 0 (0 0 d(x)f+c(x)f)Af x a X -x f + b x -x f + -x
LetA (O/Ox)a(x)(O/Ox). By Corollary 2.5.11 of [20],

[(-A’ +//)’rx[2
_

const[(-A* + fl/)’x[ 2

for x I)((/31- A*)’r), where "7 (0, 1/2). It follows that (-A +/3I) -’r is Hilbert-Schmidt if
(-Al +/3I)-’ is Hilbert-Schmidt. Since Al A’ and (A -/3I)- is compact, we can use
the comments following Lemma 2.1 to conclude that (-A +/3I)-(/2)+ is Hilbert-Schmidt
if and only if

(6.10) t-2el(t)lsdt <

for T > O, where ((t), t _> O) is the semigroup generated by A -/3I. We have

I(t)ls- fa [G(t’ O’ r)[2 dr dO,

where G(t, O, r) is the Green function for the problem

Ow Ow
Or [a(x)w’]’ -/3, 0-- + hw O,

since

klIG(t, O, r)l _< - exp k2

for t > 0 and 0, r E G, where k and k2 are positive constants [1], [2]. Condition (6.10) is
satisfied for any 6 E (0, ). Thus (A2) is satisfied for any E E(H). Assumption (A5) can
be shown to be satisfied. For example, this is trivially satisfied if the operator A is strictly
negative. In the above example, if A(--- A(a0)) is strictly negative and (A2) is satisfied, then,
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ADAPTIVE CONTROL OF DISTRIBUTED PARAMETER SYSTEMS 669

for the control system (2.1) with c c0 and the cost functional (2.6) where Q E E(L2(G))
and P E(LZ(OG)) are uniformly positive, the self-optimizing property (5.5) of Proposition
5.1 is satisfied.

Now consider a parameter dependent version of (6.3), (6.4)

Oy
(6.11) 0--)- (t,x) aL(x,D)y(tx)+ (t,x), (t,x) e + G,

Oy
x), (t, x)

(6.12) Ou
v(0, v0(x),

where c /C [c,, O2] is scalar parameter for 0 < c < O2. Assume that the operator
A corresponding to L(z, D) is strictly negative and that (A2) is satisfied. Using the same
semigroup model as above, we have that

(6.13)

where S(t; c) etA,B [/*A*]* /:(D:e, H,) and/ /(Hl, Dt solves the elliptic
problem

L(x, D)([3g) 0 on G,
0

(By) -g on0G.
Ou

Assumptions (A1), (A3)-(A6), and (5.10) are now trivially satisfied because A(c) cA, c E
[c,c2],Cl > 0, and A is strictly negative. Condition (5.11) is satisfied because S(.)
C((0, oo), Dt-). Furthermore, we have that (A*)-’ E.(H),[3 (Hi,DA) and that the
embeddingD H is compact, so (A7) is satisfied. Since the parameter is scalar, (A8) is
trivially satisfied. Thus, by Theorem 4.1, the family of least squares estimates given in the
statement there is strongly consistent for c0 (Cl, O2). For any strongly consistent family of
estimators (&(t), t > 0), the cost functional (2.6) with a uniformly positive Q E (LZ(G))
and P .(LZ(OG)), system (2.1) with A(c0) ceoA, B as above,/3 0, the adaptive
control

U(t) -P-’(&(t- A))V(&(t- A))X(t)

has the self-optimizing property (5.15) by Theorem 5.4.
An elementary example of a boundary control problem with a vector parameter c is

described that satisfies (A8). It is a specialization of (6.5). Let H L2([0, 1], ), let F and

F2 be the linear operators

d2 d
FI dx2 F2 dx

and let A(a) be

A(c) OlFl %-
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670 T.E. DUNCAN, B. MASLOWSKI, AND B. PASIK-DUNCAN

where c (o1, (2), Oi E [i, bi] and ,i > 0, bi < cxz for 1,2. The domain of A(c) is
D(A(o)) {f H2(0, 1)" Of/Ou 0 on {0, 1}}. Let (k,,gn; n 0, 1,...) be the basis
of H, defined as

k,(x) x/ sin 2nTrx,

gn(X) COS 2nTrx.

Fix a positive integer N and let/5 be the projection determined by the family (kn, g,, n
1,2,..., N). Since the adaptive control law (BK(t), t >_ 0) is a family of compact operators,
it is the limit of a family of finite rank operators. Thus, to evaluate 4(t), it suffices to apply

F1 and F2 to the finite sum =(ajkj + bjgj). It is elementary to verify that

(Fikn, F2km) (Fign, F2grn) 0

for all m and n and that

<F,ln, F2gm> (F, gn, F2km> 0

for n - rn. Thus

F(ak + be), (ak + be)
j=l j=l

-ayby((Fkj,F2gj) +
j=l

a.So

Since we have

(Flk,j, F2ej) (2jTr) 3, (Flg, Fzkj) -(2jTr) 3,

by passage to the limit and integration, it follows that

al2(t) 0 a.s.

for t > 0, and the matrix 4(t) is diagonal. Thus, for t > 0, .(t) I almost surely and
det fi.(t) almost surely; so (A8) is trivially satisfied. This example can be generalized to

many space dimensions. For example, consider the dimension-2 case. Let H L2 ([0, 1] x
[0, 1],) and let F, F2, and F3 be the linear operators

02 02 0 0
Fl=x2+y2, F2-- Ox, F3- Oy.

Let A(c) be

A(a) OlF -- 02/2 -+- oz3F3,

where c (c,, c2, ct3), Cti [i, )i], i ) 0, and )i < oc for 1,2, 3. It easily follows
by computations that are similar to the above that the matrix .4(t) is diagonal, so that, for
t > 0, fi.(t) I almost surely and det fi.(t) almost surely. Thus (A8) is satisfied.
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Example 6.2. This example is a structurally damped plate with random loading and point
control: Consider the following model of a plate in the deflection w:

(6.14) wtt(t, x) -+- A2w(t, x) oAw(t, x) 5(x xo)u(t) + rl(t, x)
for (t, x) e+ G,

(6.15) w(O, .) wo, wt(O,-) w,,

(6.16) wl+o Awls+oa O,

where c > 0 is an unknown constant, r/(t, x) formally represents a space-dependent Gaussian
white noise on the open, bounded, smooth domain G c ]n for n < 3, and 5(x x0) is the
Dirac distribution at x0 E G. The cost functional is

(6.17)
T

J(wo, w, u, a, T) (Iw(t)l() + Iwt(t)12L() + lu(t)l 2) dt.

For a mathematical treatment of the deterministic problem (6.14)-(6.17) where r/= 0, refer
to [3], [4], 17] and references therein. Define the linear operatorAby the equationAh Ae h,
where D(A) {h E H4(G): bloc Ahloc 0}. Following [4], [17], (6.14)-(6.17) are
rewritten in the form (2.1), (2.6), where H H(/2) L2(G) (He(G) fq H(G))
Le(G),H ,

A(a)
o I]-A -aA/2

[ 1Bu-
5(x-zo)u

where (b, E(Le(G)) is a Hilbert-Schmidt operator and where (bb > O, Q I,P I,
and (W(t), t > 0) in (2.1) is a cylindrical Wiener process on H. It is known [4] that A(c)
generates a stable analytic semigroup, (S(t; c), t >_ 0), and that B E(H,D-a()) for

c (0, n/4), which is possible for n <_ 3 (cf. 17]). Suppose that the unknown parameter
c /C [a0, a], where 0 < a0 < a. Assumptions (A1), (A2), (A4)-(A6)are clearly
satisfied. Since B does not depend on c E /C, assumption (A7) is satisfied with a finite-
dimensional projection/5. H --/5(H) of the form

where/51 L2(G) H2(G) and/5 :/: 0. Assumption (A8)is trivially satisfied because
the parameter c is scalar. The assumptions of the uniform analyticity and the exponential
stability of the semigroup (S(t; c), t _> 0) and the continuous dependence of this semigroup
on c, (5.11), can be verified by the explicit spectral expansions of A(c) and (S(t; c), t > 0)
[4, Thm. A3]. Therefore, by Theorem 4.1, the family of least squares estimates given in the
statement there is strongly consistent for c0 (a0, a). For any strongly consistent family
of estimators (&(t), t _> 0), system (2.1) with A(c0), B, as above,/3 0, and the adaptive
control (U(t), t _> 0) given by

u(t) -v(a(t- x))v(c(t x))x(t)
has the self-optimizing property (5.15) by Theorem 5.4.
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