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Abstract— We develop adaptive controllers for parabolic PDEs
controlled from a boundary and containing unknown destabiliz-
ing parameters affecting the interior of the domain. These are
the first adaptive controllers for unstable PDEs without relative
degree limitations, open-loop stability assumptions, or domain-
wide actuation. It is the first necessary step towards developing
adaptive controllers for physical systems such as fluid, thermal,
and chemical dynamics, where actuation can be only applied
non-intrusively, the dynamics are unstable, and the parameters,
such as the Reynolds, Rayleigh, Prandtl, or Peclet numbers
are unknown because they vary with operating conditions. Our
method builds upon our explicitly parametrized control formulae
in [25] to avoid solving Riccati or Bezout equations at each time
step. Most of the designs we present are state feedback but we
present two benchmark designs with output feedback which have
infinite relative degree.

I. I NTRODUCTION

While for linear finite dimensional systems many adaptive
schemes have been proposed [8], adaptive control techniques
have been developed for only a few classes of PDEs restricted
by relative degree, stability, or domain-wide actuation assump-
tions. In this paper we develop the first adaptive controllers
for parabolic PDEs controlled from a boundary and containing
unknown destabilizing parameters affecting the interior of the
domain. Our control laws are given by explicit formulae and
open the door for the use of a wealth of certainty equivalence
and Lyapunov techniques developed for finite dimensional
systems. They initiate an effort towards developing adaptive
controllers for physical systems such as fluid, thermal, and
chemical dynamics, where actuation can be only applied non-
intrusively, the dynamics are unstable, and the parameters,
such as the Reynolds, Rayleigh, Prandtl, or Peclet numbers
are unknown because they vary with operating conditions.
Our method builds upon our explicitly parametrized control
formulae in [25] to avoid solving Riccati or Bezout equations
at each time step.

a) Literature Overview:Early works on adaptive control
of infinite-dimensional systems, surveyed by Logemann and
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Townley [21], were for plants stabilizable by non-identifier
based high gain feedback, under a relative degree one assump-
tion. Model reference (MRAC) type schemes were designed
by Hong and Bentsman [7], Bohm, Demetriou, Reich, and
Rosen [2], Solo and Bamieh [30], Orlov [22], and Bentsman
and Orlov [1]. While the strength of these results are the proofs
of identifiability of infinite dimensional parameter vectors,
their limitation is that they require control action throughout
the PDE domain. Other efforts such as Demetriou and Ito [5]
and Wen and Balas [32] have employed tools from positive
realness; they have also provided some cunning examples
that go beyond the relative degree one restriction. Adaptive
linear quadratic control with least-squares estimation was
pursued by Duncan, Maslowski, and Pasik-Duncan [6] for
linear stochastic evolution equations with unbounded input
operators and exponentially stable dynamics. Adaptive control
of nonlinear PDEs has also received some attention. Liu
and Krstic [18] and Kobayashi [11] considered a Burgers
equation with various parametric uncertainties; Kobayashi [13]
also considered the Kuramoto-Sivashinsky equation. Jovanovic
and Bamieh [9] designed adaptive controllers for nonlinear
systems on lattices, which include applications like infinite
vehicular platoons or infinite arrays of microcantilevers. An
experimentally validated adaptive boundary controller for a
flexible beam was presented by de Queiroz, Dawson, Agarwal,
and Zhang [4].

b) The Results of the Paper:For several unstable
parabolic PDE systems controlled from the boundary we
assume that physical parameters like reaction, diffusion, or
advection coefficients are unknown. No adaptive controllers
for such models have been proposed, even though they are
frequent in applications that incorporate thermal-fluid or chem-
ically reacting dynamics. An obstacle to the development of
adaptive controllers has been the lack of parametrized families
of nonadaptive controllers. This obstacle was removed by
Smyshlyaev and Krstic [25] who developed explicit formu-
lae for boundary control of a class of parabolic PDEs that
includes the problems considered here. Those formulae are
not only explicit functions of the spatial coordinates of the
PDE, but also depend explicitly on the physical parameters
of the plant. This feature is absent from standard methods
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like LQR extensions to PDEs because parametrized solutions
to Riccati equations cannot be obtained. While an adaptive
version of an LQR approach would require a solution to
a high-dimensional Riccati equation at each time step, our
approach only requires that new parameter updates be plugged
into the control formula.

For clarity, in this paper we present the results for scalar and
vector parameter problems. They can be extended to functional
parameters as in [1], [2], [7], [22], [30]. With the controllers
parametrized in the physical parameters, our schemes are of
indirect type.

Three basic approaches to the design of parameter identi-
fiers for adaptive control exist [16]: the Lyapunov approach,
the passivity-based approach (pursued in [1], [2], [7], [22]),
and the swapping approach. The Lyapunov approach, which
ensures the best transient performance properties is seldom
possible without changing the control law to compensate the
potentially destabilizing effect of adaptation, even in the linear
case. We exploit the structural opportunities within the class
of PDEs we are considering and develop Lyapunov adapta-
tion schemes. In companion papers [28], [29] we develop
estimation-based schemes (see Section X for some comments
on the contents of those papers).

Our Lyapunov design is inspired by an idea Praly [23]
developed for adaptive nonlinear control under growth con-
ditions. Since our PDE problems are linear, we have found
a way to significantly simplify this approach, however, we
retain its main feature—a logarithm weight on the plant state
in the Lyapunov function. This results in a normalization
of the update law by a norm on the plant state, which is
uncommon for Lyapunov designs. Except for some special
examples, projection is needed to keep the parameters within
an a priori set. Projection is not used as a robustification tool
but to prevent adaptation transients that would require overly
conservative restrictions on the size of the adaptation gain. The
projection set may be taken conservatively (large), however, in
order for stability to be guaranteed, the adaptation gain needs
to be taken inversely proportional to the size of the parameter
set. The bounds on the gain can be derived explicitly and are
a priori verifiable.

Most of the designs presented require full state feed-
back, however, two examples are given that use only output
feedback—scalar sensing at the boundary. These output feed-
back designs employ adaptive observers which we construct
as infinite-dimensional extensions of Kreisselmeier-type filters
used in [16].

Only 1D results are presented here. In [28] we show that
our tools extend readily to higher dimensions, in appropriate
geometries.

No simulation results are given in this paper. In [28]
we show simulation results in 2D and inIn [29] we show
simulation results for an output feedback design.

Our adaptive boundary control results can be developed both
for Dirichlet and Neumann actuation. Most of the controller
we present are for the notationally easier Dirichlet actuation
but in the introductory example in Section II we use Neumann
actuation.

To avoid tedium and keep the concepts clear we present

designs for the simplest classes of systems for which the
concepts are nontrivial. For example, it is shown separately
how to deal with parametric uncertainties in boundary condi-
tions or reaction terms involving boundary values. A skilled
designer can combine these tools with the method for reaction-
advection-diffusion systems to craft solutions to more general
problems.

c) Notation: The spatialL2(0, 1) norm is denoted by‖·‖.
The symbolsI1(·), I2(·), J1(·), etc., denote the corresponding
Bessel functions.

II. CONTROL DESIGN FOR ASYSTEM WITH AN UNKNOWN

REACTION COEFFICIENT

We start the paper with a design for a benchmark system
and present extensions in subsequent sections. The benchmark
system has a destabilizing reaction term and employs control
only at the boundary. The unknown reaction coefficient is
scalar, however, an extension to spatially-varying functional
coefficients is discussed in Remark 2. A problem with multiple
parameters is discussed in Section IX.

While most of the paper, and this section in particular, as-
sumes availability of full state feedback, Section VIII presents
designs that employ only boundary sensing.

Consider the following plant

ut(x, t) = uxx(x, t) + λu(x, t) , (1)

u(0, t) = 0 , (2)

whereλ is an unknown constant parameter that can have any
real value. We use a Neumann boundary controller designed
in [25] in the form1

ux(1) = − λ̂

2
u(1)− λ̂

∫ 1

0

ξ

I2

(√
λ̂(1− ξ2)

)
1− ξ2

u(ξ)dξ , (3)

which employs the measurements ofu(x) for x ∈ [0, 1] and
an estimatêλ of λ. Consider an invertible change of variable

w(x) = u(x)−
∫ x

0

k(x, ξ, λ̂)u(ξ) dξ , (4)

where

k(x, ξ, λ̂) = −λ̂ξ

I1

(√
λ̂(x2 − ξ2)

)
√

λ̂(x2 − ξ2)
. (5)

Lemma A.2 in the Appendix establishes that (4) maps (1)–(3)
into

wt = wxx + ˙̂
λ

∫ x

0

ξ

2
w(ξ) dξ + λ̃w , (6)

w(0) = 0 , (7)

wx(1) = 0 , (8)

whereλ̃ = λ− λ̂ is the parameter estimation error.
We will show that the update law

˙̂
λ = γ

‖w‖2

1 + ‖w‖2
, 0 < γ < 1 (9)

1In the sequel, to reduce notational overload, the dependence on time will
be suppressed whenever possible.
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achieves regulation ofu(x, t) to zero for all x ∈ [0, 1], for
arbitrarily large initial datau(x, 0) and for an arbitrarily poor
initial estimateλ̂(0).

Theorem 1:Suppose that the system (1)–(3), (9) has a well
defined classical solution for allt ≥ 0. Then, for any initial
condition u0 ∈ H1 and anyλ̂(0) ∈ R, the solutionsu(x, t)
and λ̂(t) are uniformly bounded andlimt→∞ u(x, t) = 0 for
all x ∈ [0, 1]. Moreover, the following performance bounds
hold in the closed-loop nonlinear system:

u(x, t)2 ≤ 32
(
1 + 3λ2 + λ̃(0)2 + γ log

(
1 + ‖w(0)‖2

))
×
[
‖wx(0)‖2 + 3

√
γ
(
1 + ‖w(0)‖2

)
e

1
γ λ̃(0)2

×
(

log
(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)3/2

]
(10)

for all x ∈ [0, 1], t ≥ 0, and∫ ∞

0

u(x, t)2dt ≤

48
(
1 + 3λ2 + λ̃(0)2 + γ log

(
1 + ‖w(0)‖2

))
×
(
1 + ‖w(0)‖2

)
e

1
γ λ̃(0)2

×
(

log
(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)

(11)

for all x ∈ [0, 1].
Remark 1:While the bound (10) obviously quantifies the

“peak transient” performance, the bound (11) quantifies the
rate of convergence to zero.

Remark 2: In this paper we consider only parameters with-
out spatial variation. In a future paper [27] we will present
an extension to spatially-varying problems [1], [2], [7], [22],
[30]. For example, in the case of the benchmark plant (1) but
with constantλ replaced byλ(x), we will design the adaptive
controller

ux(1) = k̂(1, 1)u(0) +
∫ 1

0

k̂x(1, ξ)u(ξ)dξ (12)

λ̂t(t, x) = γ
u(t, x)

(
w(t, x)−

∫ 1

x
k̂(ξ, x)w(t, ξ)dξ

)
1 + ‖w(t)‖2

(13)

whereλ̂(t, x) is the online functional estimate ofλ(x), w(x) =
u(x)−

∫ 1

0
k̂(x, ξ)u(ξ)dξ, and the kernel̂k(x, ξ) = k̂n(x, ξ) is

obtained recursively from

k̂0(x, ξ) = −1
2

∫ x+ξ
2

x−ξ
2

λ̂ (ζ) dζ (14)

k̂i+1(x, ξ) = k̂i(x, ξ)

+
∫ x+ξ

2

x−ξ
2

∫ x−ξ
2

0

λ̂ (ζ − σ) k̂i (ζ + σ, ζ − σ)

×dσdζ (15)

for each new update of̂λ(t, x). Stability is guaranteed for
sufficiently small γ and sufficiently highn. The recursion
(15) was proved convergent in [17]. Several methods for
its symbolic or numerical computation were proposed and

illustrated in [25], noting that the computational effort is at
least an order of magnitude lower than solving a Riccati
equation.

Remark 3:The non-negative form of the adaptive law (9)
is coincidental for this particular benchmark plant and it is
further discussed in Section V.

Remark 4: It is also important to note that the update law
(9) contains normalization. Normalization is uncommon in
Lyapunov designs and is the result of including the logarithm
in the Lyapunov function [23]. Normalization is necessary
because the control law (3) is of certainty equivalence type—
unlike the Lyapunov adaptive controllers in [16] which employ
non-normalized adaptation and strengthened nonlinear con-
trollers that compensate for time-varying effects of adaptation.
An additional measure of preventing overly fast adaptation in
(9) is the restriction on the adaptation gain (γ < 1).

III. PROOF OFTHEOREM 1

Consider a Lyapunov function candidate

V =
1
2

log
(
1 + ‖w‖2

)
+

1
2γ

λ̃2 . (16)

The time derivative along the solutions of (6)–(9) can be shown
to be

V̇ = − ‖wx‖2

1 + ‖w‖2
+

˙̂
λ

2

∫ 1

0
w(x)

(∫ x

0
ξw(ξ)dξ

)
dx

1 + ‖w‖2
(17)

(the calculation involves one step of integration by parts).
Using Lemma A.1 and Poincare’s inequality, one gets∣∣∣∣∫ 1

0

w(x)
(∫ x

0

ξw(ξ)dξ

)
dx

∣∣∣∣ ≤ 2√
3
‖wx‖2 . (18)

Substituting this inequality and (9) into (17), we get

V̇ ≤ −
(

1− γ√
3

)
‖wx‖2

1 + ‖w‖2
. (19)

This implies thatV (t) remains bounded for all time whenever
0 < γ ≤

√
3. From the definition ofV it follows that ‖w‖

andλ̂ remain bounded for all time. However, we need to show
that w(x, t) is bounded for all time and for allx. To do this,
consider

1
2

d

dt
‖wx‖2 =

∫ 1

0

wxwxt dx = −
∫ 1

0

wxxwt dx

= −
∫ 1

0

w2
xx dx− λ̃

∫ 1

0

wxxwdx

−
˙̂
λ

2

∫ 1

0

wxx

∫ x

0

ξw(ξ) dξ

= −‖wxx‖2 + λ̃

∫ 1

0

w2
xdx

+
˙̂
λ

2

∫ 1

0

xwwxdx

= −‖wxx‖2 + λ̃‖wx‖2

+
˙̂
λ

4
(
w(1)2 − ‖w‖2

)
. (20)
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Integration by parts was used several times to obtain the above
equalities. Using Agmon’s inequality (noting thatw(0) =
0), then Young’s inequality, and finally Poincare’s inequality
(noting thatwx(1) = 0), one gets that

w(1)2 − ‖w‖2 ≤ ‖wx‖2 ≤ 4‖wxx‖2 . (21)

Substituting (21) into (20), it follows that

1
2

d

dt
‖wx‖2 ≤ −(1− γ)‖wxx‖2 + λ̃‖wx‖2

≤ λ̃‖wx‖2 . (22)

Integrating the last inequality, we obtain

‖wx(t)‖2 ≤ ‖wx(0)‖2

+2 sup
0≤τ≤t

|λ̃(τ)|
∫ t

0

‖wx(τ)‖2dτ . (23)

To obtain this bound, on one hand we have from (16) and (19)
that

λ̃(t)2 ≤ λ̃(0)2 + γ log
(
1 + ‖w(0)‖2

)
. (24)

On the other hand,∫ t

0

‖wx(τ)‖2dτ

≤ sup
0≤τ≤t

(
1 + ‖w(τ)‖2

) ∫ t

0

‖wx(τ)‖2

1 + ‖w(τ)‖2
dτ . (25)

From (16) and (19) it follows that

1 + ‖w(τ)‖2 ≤
(
1 + ‖w(0)‖2

)
e

1
γ λ̃(0)2 . (26)

Integrating (19) we get∫ t

0

‖wx(τ)‖2

1 + ‖w(τ)‖2
dτ

≤ 1

2
(
1− γ√

3

) (log
(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)

. (27)

Substituting (26) and (27) into (25), and then, along with (24),
into (23), we get

‖wx(t)‖2 ≤ ‖wx(0)‖2

+
√

γ

1− γ√
3

(
1 + ‖w(0)‖2

)
e

1
γ λ̃(0)2

×
(

log
(
1 + ‖w(0)‖2

)
+

1
γ

λ̃(0)2
)3/2

. (28)

By combining Agmon’s and Poincare’s inequalities (and using
the fact thatw(0) = 0), we getmaxx∈[0,1] |w(x)|2 ≤ 4‖wx‖2,
thusw(x, t) is uniformly bounded.

Next, we prove regulation ofw(x, t) to zero. Using (6)–(8)
and Lemma A.1 we obtain

1
2

∣∣∣∣ d

dt
‖w‖2

∣∣∣∣ ≤ ‖wx‖2 +
(
|λ̃|+ γ

4
√

3

)
‖w‖2 . (29)

Since‖w‖ and‖wx‖ have been proven bounded, it follows that
d
dt‖w‖

2 is bounded, and thus‖w(t)‖ is uniformly continuous.
By combining (25)–(27) with Poincare’s inequality we also
get that‖w(t)‖2 is integrable in time over the infinite time

interval. By Barbalat’s lemma it follows that‖w(t)‖ → 0 as
t →∞.

To show regulation also in the maximum norm, we note
that, from Agmon’s inequality,|w(x, t)|2 ≤ 2‖w(t)‖‖wx(t)‖.
Since‖wx‖ is bounded and‖w(t)‖ has been shown convergent
to zero, the regulation in maximum norm follows.

Having proved the boundedness and regulation ofw, we
now set out to establish the same foru. We start by noting
that [25]

u(x) = w(x) +
∫ x

0

l(x, ξ, λ̂)w(ξ)dξ , (30)

where

l(x, ξ, λ̂) = −λ̂ξ

J1

(√
λ̂(x2 − ξ2)

)
√

λ̂(x2 − ξ2)
. (31)

It is straightforward to show that

‖ux‖2 ≤ 2
(
1 + λ̂2 + 4M

)
‖wx‖2 , (32)

where

M =
∫ 1

0

(∫ 1

0

∣∣∣lx(x, ξ, λ̂)
∣∣∣ dξ

)2

dx (33)

and

lx(x, ξ, λ̂) = λ̂xξ

J2

(√
λ̂(x2 − ξ2)

)
x2 − ξ2

. (34)

By mimicking the calculation in [25, Equation (101)], we get∫ 1

0

∣∣∣lx(x, ξ, λ̂)
∣∣∣ dξ ≤ |λ̂|x + 1, which implies

M ≤
∫ 1

0

(
|λ̂|x + 1

)2

dx =
1
3
λ̂2 + |λ̂|+ 1 ≤ λ̂2 + 3

2
. (35)

Thus, it follows that

‖ux‖2 ≤ 2
(
4 + 3λ̂2

)
‖wx‖2

≤ 8
(
1 + 3λ2 + λ̃2

)
‖wx‖2 . (36)

Noting thatu(x, t)2 ≤ 4‖ux‖2 for all (x, t) ∈ [0, 1]× [0,∞),
by combining (36), (24), and (28), and using the fact that

1
1− γ√

3
< 3 for γ < 1, we get (10), which proves uniform

boundedness ofu.
To prove regulation ofu(x, t) to zero for allx ∈ [0, 1], we

start by noting that

‖u‖2 ≤ 2(1 + L)‖w‖2 (37)

where
L = max

0≤ξ≤x≤1
l(x, ξ, λ̂)2 (38)

is finite whenever̂λ is finite (which we have proved using
Lyapunov analysis). Since‖w‖ is regulated to zero, so is‖u‖.
By Agmon’s inequalityu(x, t)2 ≤ 2‖u‖‖ux‖, where‖ux‖ is
bounded by (36), (24), and (28). This completes the proof of
regulation ofu.

The bound (11) is obtained in a similar manner to (10), by
combining (36) with (24)–(27).
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IV. W ELL POSEDNESS

Since the purpose of our paper is stabilization, we focus
our effort on proving boundedness and regulation. As evident
from Section III, this is not a routine task due to the nonlinear
character of the closed-loop system

wt = wxx +
γ

2
‖w‖2

1 + ‖w‖2

∫ x

0

ξw(ξ) dξ + λ̃w (39)

w(0) = wx(1) = 0 , (40)

˙̃
λ = −γ

‖w‖2

1 + ‖w‖2
. (41)

The analysis of existence and uniqueness of solutions is even
more involved. One of the steps in provingglobal existence
and uniqueness ofclassicalsolutions is to prove boundedness
of wt(t, x) and wxx(t, x), which proceeds as follows. It is
first observed from the first line of (22) that‖wxx‖ is square
integrable over infinite time. The same property holds for
‖wt‖. It is then shown that

1
2

d

dt
‖wt‖2 + ‖wtx‖2 =

λ̃‖wt‖2 +
¨̂
λ

2

∫ 1

0

wt(x)
∫ x

0

ξw(ξ)dξdx

+ ˙̂
λ

∫ 1

0

wt(x)
(∫ x

0

ξ

2
wt(ξ)dξ − w(x)

)
dx (42)

and

1
2

d

dt
‖wtx‖2 + ‖wtxx‖2 =

λ̃‖wtx‖2 +
¨̂
λ

2

∫ 1

0

xwtx(x)w(x)dx

+ ˙̂
λ

∫ 1

0

wtx(x)
(x

2
wt(x)− wx(x)

)
dx , (43)

where
¨̂
λ =

γ

(1 + ‖w‖2)2
d

dt
‖w‖2 (44)

is bounded because of (29). From the boundedness of
‖w‖, ‖wx‖, ˙̂

λ,
¨̂
λ and the square integrability in time of

‖w‖, ‖wt‖, by integrating (42) it follows that‖wt‖ is bounded
and ‖wtx‖ is square integrable. Then, by integrating (43)
and using the square integrability of‖wx‖ and the other
functions mentioned above, it follows that‖wtx‖ is bounded
and ‖wtxx‖ is square integrable. By Agmon’s inequality,
we get thatwt(t, x) is uniformly bounded for all values
of its arguments, and the same holds forwxx(t, x). Those
properties are also valid in the original variableu(t, x) using
the smoothly invertible variable change (4)–(5).

Existence and uniqueness of appropriately definedweak
solutions can be studied in the same way as in [18, Section 4].
One writes the system in the form of two integral equations,
using the “heat equation” Green function for the PDE forw,
and then applies the Banach fixed point theorem. The main
difference in using that idea here would be that the Green
function used in [18] was for Neumann boundary conditions
at both ends, whereas in our case one boundary condition is

Dirichlet and the other is Neumann, which would necessitate
a slightly different Green function.

We shall not belabor on well posedness issues in the rest of
the paper both in the interest of space and due to the parabolic
character of the system which ensures it. As in Theorem 1, in
the rest of the paper we shall simply assume well posedness.

V. PARAMETRIC ROBUSTNESS

Let us suppose that the adaptation is turned off, i.e.,γ = 0,

i.e., ˙̂
λ ≡ 0. Then the closed loop system is

wt = wxx +
(
λ− λ̂

)
w , (45)

w(0) = 0 , (46)

wx(1) = 0 , (47)

where λ̂ is a constant parameter estimate. By studying the
eigenvalue problem of this system, it can be shown that
parameter estimateŝλ which are greater thanλ − π2

4 are
exponentially stabilizing, whereas those smaller thanλ − π2

4
are destabilizing. This means that, if an upper bound onλ
is known—let us denote this bound bȳλ—then (3) is a
stabilizing linear controller whenever̂λ is replaced bȳλ (or
any constant value higher than̄λ).

This robustness property explains why˙̂λ in the adaptation
law (9) is nonnegative: overestimatinĝλ cannot be harmful
within the controller structure (3).2 A caveat however is that,
in the presence of measurement noise, the parameter estimate
will drift. In the update law (9) the estimate has nowhere to
drift but up3 (which is consistent with the structure of the
control law but still undesirable). In practical implementation
one would add leakage, deadzone, or projection [8] to reduce
or completely stop the drift.

The linear/frozen-parameter robustness is an unusual feature
of the control formula (3). It is different than the “infinite gain
margin” property of inverse optimal controllers, which allow
an arbitrary increase of a scalar gain in front of the optimal
control law. Infinite gain margin allows only an unplanned
increase in the “control authority” but does not guarantee
robustness to changes in the physical parameters of the system.
The robustness exhibited with (3) is with respect to the
physical parameterλ.

Due to the ability of the controller (3) to remain stabilizing
when λ is overestimated, it might be tempting to view the
backstepping design as being “high-gain.” This would not
be appropriate because (3) resorts to high gain only whenλ
generates a high number of unstable eigenvalues in the plant.

The form of high gain that controller (3) is capable of
employing should not be confused with adaptive high gain
controllers surveyed in [21] where a multiplicative gain is
tuned for a controller of the form

ux(1) = G{Cu} (48)

2While the update law (9) can take the estimateλ̂ only “up,” the growth of
the estimate stops as‖w(t)‖ goes to zero. SinceV (t) is nonincreasing and
bounded from below (by zero), it has a limit. Henceλ̃(t)2 has a limit. So
doesλ̂(t) and it is higher thanλ − π2

4
. The size ofλ̂(∞) depends on the

size of the initial conditionu0.
3This issue is no less critical with update laws that are sign-indefinite,

however, with (9) it is obvious.
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where G is the gain andC is an output operator such that
ux(1) 7→ Cu is relative degree one. For the present system an
operatorC independent of the unknownλ cannot be found,
therefore, tuning of a multiplicative gainG could not be
successful.

VI. A N ALTERNATIVE APPROACH

The use of a logarithm in the Lyapunov function (16) was
inspired by Praly’s Lyapunov adaptation designs in [23]. We
do not exactly follow that method in this paper because our
PDE plants are linear. It is however of interest to see what an
exact application of that method results in, as it has potential
beyond our class of problems.

Let us start by denoting

A =

∫ 1

0
w(x)

(∫ x

0
ξw(ξ)dξ

)
dx

1 + ‖w‖2
(49)

B = 2
A

1 + ‖w‖2
(50)

H = −A2 +
1

1 + ‖w‖2

∫ 1

0

((∫ x

0

ξw(ξ)dξ

)2

+w(x)

(∫ x

0

ξ

(∫ ξ

0

w(η)dη

)
dξ

))
dx . (51)

This method employs two estimates working in tandem,λ̂ and
θ̂. A long Lyapunov based derivation, briefly justified after the
statement of the theorem below, yields

˙̂
λ = γ

βγ

βγ(1− γH)− 1

×
( 3

2‖w‖
2 + 2A‖wx‖2

1 + ‖w‖2

−
((

1 +
1
γ2

)
− 1

βγ2

)
βγB

(
λ̂− θ̂ − γA

)
−σ
(
λ̂− θ̂ − γA

))
(52)

˙̂
θ = γ

(
2‖w‖2

1 + ‖w‖2
− βγB

(
λ̂− θ̂ − γA

))
. (53)

We have written the two update laws in a way to highlight
as much as possible the parts that are similar about them.
Three gains are employed, which need to satisfy the following
conditions:

γ < 3 (54)

β >
1

γ(1− γ
3 )

(55)

σ > 0 . (56)

The conditions (54) and (55) are related to the fact that|H| ≤
1
3 .4 These conditions ensure that the denominator in the first
line of (52) remains positive.

Besides its complexity, a disadvantage of the update law
(52) is that it employs‖wx‖, i.e., it requires the measurement
of the spatial derivativeux(x, t).

4A fairly obvious bound is|H| ≤ 3 but a careful calculation in the vein
of Lemma A.1 can establish a tighter bound|H| ≤ 1

3
.

Theorem 2:Suppose that the system (1)–(3), (52), (53) has
a well defined classical solution for allt ≥ 0. Then, for any
initial condition u0 ∈ L2 and anyλ̂(0), θ̂(0) ∈ R, the spatial
L2 norm ‖u(t)‖ remains bounded and the spatialH1 norm
‖ux(t)‖ is square integrable over an infinite time interval.
Moreover, the estimateŝλ(t), θ̂(t) are uniformly bounded.

The proof of this result employs a Lyapunov function

V =
βγ2

2
βγ + 1
βγ − 1

+ log
(
1 + ‖w‖2

)
− 1

2γ

(
λ̂− θ̂

)2

+
1
2γ

(
λ− θ̂

)2

+
β

2

(
λ̂− θ̂ − γA

)2

. (57)

It is possible to prove that

V ≥ log
(
1 + ‖w‖2

)
+

1
2γ

((
λ̂− θ̂

)2

+
βγ − 1

2

(
λ− θ̂

)2
)

, (58)

i.e., V is positive definite around the equilibriumw(x) ≡
0, λ̂ = θ̂ = λ. Then, avery long calculation yields

V̇ = −2
‖wx‖2

1 + ‖w‖2
. (59)

The properties stated in Theorem 2 readily follow from this
equation.

VII. OTHER BENCHMARK PROBLEMS

In this section we will show that our method extends beyond
the basic reaction-diffusion class of parabolic PDEs. We
will consider two benchmark problems–one with a boundary
value appearing on the right-hand-side of the PDE model
and another with a parametric uncertainty in an uncontrolled
boundary condition. Both benchmark problems are unstable in
the absence of feedback.

These benchmarks will expose one limitation of the ‘log-
Lyapunov paradigm:’ in general it requires not only a restric-
tion on the value of the adaptation gainγ but also the use of
parameter projection. A smallγ is the main tool for preventing
destabilizing transients. Projection is only used to make the
restriction onγ a priori verifiable.

The projection operator that would be used in implementa-
tion is defined as

Proj[θ,θ̄]{τ} = τ

 0, θ̂ = θ andτ < 0
0, θ̂ = θ̄ andτ > 0
1, else

(60)

where θ̂ is the parameter estimate (θ is used as a generic
symbol for an unknown parameter, which will in subsequent
presentation be replaced by specific parameters labeled by
g, q, ε, b, λ), the interval

[
θ, θ̄
]

is the interval within whichθ̂
is being kept by projection, andτ denotes the nominal update
law.

Unfortunately, the projection operator (60) is discontinuous.
This presents a problem at two levels: (1) in the analysis it
is not possible to obtain classical solutions but only Filippov
solutions; (2) in implementation the presence of noise may
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induce frequent switching of the update law. This issue is
not as serious as controller switching in sliding mode control
because the projection operator does not drive an actuator.

Since the projection drives only the update law˙̂θ there would
be no discontinuities in̂θ(t) and therefore no jumps in the
control action. However, obtaining classical solutions and not
having to deal with Filippov solutions is a good enough reason
to consider a continuous version of the projection operator
where, instead of a hard switch, a boundary layer of width
δ > 0 is introduced:

Projδ[θ,θ̄]{τ} = τ


θ̂−θ+δ

δ , θ − δ ≤ θ̂ < θ andτ < 0
θ̄+δ−θ̂

δ , θ̄ < θ̂ ≤ θ̄ + δ andτ > 0
1, else

(61)
where the update lawτ is scaled linearly withθ in the
boundary layer. With the help of [16, Lemma E.1] we get:

Lemma 3:The following properties of the projection oper-
ator (61) are guaranteed

1) The operator is a locally Lipschitz function of̂θ, τ on[
θ − δ, θ̄ + δ

]
× R.

2)
(

Projδ[θ,θ̄]{τ}
)2

≤ τ2.

3) For θ̂(0) ∈
[
θ − δ, θ̄ + δ

]
, the solution of ˙̂

θ =
Projδ[θ,θ̄]{τ} remains in

[
θ − δ, θ̄ + δ

]
.

4) −θ̃Projδ[θ,θ̄]{τ} ≤ −θ̃τ for all θ̂ ∈
[
θ − δ, θ̄ + δ

]
, θ ∈[

θ, θ̄
]
.

All of the properties in Lemma 3 except Lipschitzness also
hold for the discontinuous projection (60), withδ = 0. The
discontinuous projection would be preferable in applications
for its simplicity which does not come at the expense of control
switching, and because it is a standard feature in the integrator
block in Simulink. For these reasons and to avoid clutter in
our further presentation, we employ (60) where projection is
needed.

Now we return to our presentation of the benchmark prob-
lems.

A. Example 1

Consider the plant

ut = uxx + gu(0, t) (62)

ux(0) = 0 , (63)

whereg is a constant, unknown parameter andu(0, t) is the
boundary value ofu(x, t) at x = 0. This system is inspired by
a model of a thermal instability in solid propellant rockets [3].
We will control this system via Dirichlet actuation,u(1, t). In
the absence of control,u(1, t) ≡ 0, the system is unstable if
and only ifg > 2. We assume that this is indeed the case,g >
2. Let us further assume that an upper boundḡ on g is known
to us. It is important to note that such an assumption was not
made onλ in Section II. We will design an adaptive controller
in this section whose update law incorporates the standard
projection operator [16] to keep the parameter estimateĝ in
the interval[2, ḡ], while driving u(x, t) to zero.

A stabilizing control formula was designed in [25] as

u(1) = −
∫ 1

0

√
ĝ sinh

(√
ĝ(1− ξ)

)
u(ξ)dξ . (64)

Consider the variable change

w(x) = u(x) +
∫ x

0

√
ĝ sinh

(√
ĝ(x− ξ)

)
u(ξ)dξ . (65)

It can be shown that

wt = wxx + ˙̂g
∫ x

0

w(ξ)
sinh

(√
ĝ(x− ξ)

)
√

ĝ
dξ

+g̃w(0) cosh
(√

ĝx
)

(66)

wx(0) = 0 (67)

w(1) = 0 , (68)

whereg̃ = g − ĝ. Consider the Lyapunov function candidate

V =
1
2

log
(
1 + ‖w‖2

)
+

1
2γ

g̃2 . (69)

Taking its time derivative we arrive at the update law

˙̂g =
γ

1 + ‖w‖2
Proj[2,ḡ]

{
w(0)

∫ 1

0

w(x) cosh
(√

ĝx
)

dx

}
.

(70)
The derivative of the Lyapunov function is

V̇ = − ‖wx‖2

1 + ‖w‖2
+ ˙̂g

∫ 1

0
w(x)

∫ x

0
w(ξ)

sinh(√ĝ(x−ξ))√
ĝ

dξdx

1 + ‖w‖2
.

(71)
It can be shown that

V̇ ≤ −
(
1− 2γe2

√
ḡ
) ‖wx‖2

1 + ‖w‖2
. (72)

Stability is thus achieved whenever

γ <
1
2
e−2

√
ḡ . (73)

This condition highlights the key differences between the
design for the PDE in Section II and for the PDE (62):

1) The adaptation gain, which was limited by 1 in Section
II, needs to decrease asg increases in (62).

2) The knowledge of the parameter’s upper bound is needed
for the plant (62). Projection is used to keep the param-
eter within the a priori bound, such that the condition
(73) is sufficient to achieve stability. It should also be
noted that stability can be achieved without projection,
by selectingγ to satisfy

γ <
1
2
e−2

“√
2ḡ+ĝ(0)+(γ log(1+‖w0‖2))1/4

”
, (74)

wherew0(x) is determined using the initial stateu0(x)
and the initial parameter estimatêg(0). While it may
be unusual to choose the adaptation gain based on
the initial stateu0, it is acceptable as a theoretical
result and consistent with the Lyapunov function (69),
yielding estimates on‖u(t)‖ and g̃(t) that depend on
‖u0‖ andg̃(0). However, in application one would prefer
projection due to its added assurance against parameter
drift.
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Other than the use of projection, the rest of the results of
this section are qualitatively the same as those in Section II.
One can prove boundedness in the maximum norm in a similar
manner as in Section III. A lengthy calculation yields

1
2

d

dt
‖wx‖2 =

−‖wxx‖2 − wx(1)
[
g̃ cosh

(√
ĝ
)

w(0)

+ ˙̂g
∫ 1

0

w(x)
sinh

(√
ĝ(1− x)

)
√

ĝ
dx

]

− ˙̂g
√

ĝ

∫ 1

0

w(x)
∫ x

0

sinh
(√

ĝ(x− ξ)
)

w(ξ)dξdx

−g̃ĝw(0)
∫ 1

0

w(x) cosh
(√

ĝx
)

dx , (75)

which can be majorized by

1
2

d

dt
‖wx‖2 ≤ 8

(
γ2 + g̃2

)
e4
√

ĝ‖wx‖2 . (76)

Integrating (72) and (76) one gets boundedness of‖wx‖.
Regulation is shown similar as in Section III. The results in
the u(x, t) variable follow from the inverse transformation

u(x) = w(x) + ĝ

∫ x

0

(x− ξ)w(ξ)dξ . (77)

Theorem 4:Suppose that the system (62)–(64), (70) has a
well defined classical solution for allt ≥ 0. Then, for any
initial condition u0 ∈ H1 and anyĝ(0) ∈ [2, ḡ], the solutions
u(x, t) andĝ(t) are uniformly bounded andlimt→∞ u(x, t) =
0 for all x ∈ [0, 1].

B. Example 2

Consider the plant

ut = uxx (78)

ux(0) = −qu(0, t) , (79)

where q is a constant, unknown parameter. This system is
also inspired by the solid propellant rocket instability [3]. We
will control this system via Dirichlet actuation,u(1, t). In the
absence of control,u(1, t) ≡ 0, the system is unstable if and
only if q > 1. We assume thatq > 1 and also that an upper
bound q̄ on q is known to us. We will design an adaptive
controller with projection [16] to keep the parameter estimate
q̂ in the interval[1, q̄], while achieving stability.

A stabilizing control formula for this system is

u(1) = −
∫ 1

0

q̂eq̂(1−ξ)u(ξ)dξ . (80)

The idea for this choice is due to Andrey Smyshlyaev [29].
Consider the variable change

w(x) = u(x) +
∫ x

0

q̂eq̂(x−ξ)u(ξ)dξ . (81)

It can be shown that

wt = wxx + ˙̂q
∫ x

0

w(ξ)eq̂(x−ξ)dξ (82)

wx(0) = −q̃w(0) (83)

w(1) = 0 , (84)

where q̃ = q − q̂. Consider the Lyapunov function candidate

V =
1
2

log
(
1 + ‖w‖2

)
+

1
2γ

q̃2 . (85)

Taking its time derivative we arrive at the update law

˙̂q =
γ

1 + ‖w‖2
Proj[1,q̄]

{
w(0)2

}
. (86)

The derivative of the Lyapunov function is

V̇ = − ‖wx‖2

1 + ‖w‖2
+ ˙̂q

∫ 1

0
w(x)

∫ x

0
w(ξ)eq̂(x−ξ)dξdx

1 + ‖w‖2
. (87)

With a lengthy, careful calculation, applying twice the Cauchy-
Schwartz inequality, one can show that∣∣∣∣∫ 1

0

w(x)
∫ x

0

w(ξ)eq̂(x−ξ)dξdx

∣∣∣∣
≤

√
e2q̂ − 1− 2q̂

2q̂
‖w‖2

≤ eq̂

√
2
‖w‖2 . (88)

Using projection and Agmon’s inequality, it then follows that

V̇ ≤ −
(
1−

√
2γeq̄

) ‖wx‖2

1 + ‖w‖2
. (89)

Stability is thus achieved whenever

γ <

√
2

2
e−q̄ . (90)

Again, projection and slow adaptation are needed to mitigate
the effect of ˙̂q in the Lyapunov analysis.

We have thus provedL2 stability in thew variable. Square
integrability of ‖wx(t)‖ in time also readily follows from the
Lyapunov analysis. From (89) it follows thaṫV is bounded
from above. This property is not sufficient to conclude uniform
continuity of ‖w(t)‖ and ensure the applicability of the
classical Barbalat lemma, however, it is sufficient to meet
the conditions of the less restrictive Lemma 3.1 in [18],
which implies that‖w(t)‖ → 0 as t → ∞. All of the
above boundedness and regulation properties for thew variable
are also valid in the originalu variable due to the inverse
transformation

u(x) = w(x) + q̂

∫ x

0

w(ξ)dξ . (91)

Unfortunately, boundedness ofu(x) and its convergence to
zero with time (uniformly inx) are difficult to prove because
of the presence of the time-varying parameter errorq̃ in (83).
This difficulty is consistent with similar observations made
in [1]. Boundedness and regulation despite uncertainty in the
boundary condition was achieved in [18] but this was done
using a particular “nonlinear damping” feedback, which is not
possible here because we do not allow actuation atx = 0.

Theorem 5:Suppose that the system (78)–(80), (86) has a
well defined classical solution for allt ≥ 0. Then, for any
initial condition u0 ∈ L2 and anyq̂(0) ∈ [1, q̄], the spatialL2

norm‖u(t)‖ and the estimatêq(t) remain uniformly bounded,
‖u(t)‖ converges to zero ast → ∞, and u(t, x) is square
integrable int for all x ∈ [0, 1].
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Let us now consider the “frozen adaptation” version of (82)–
(84), with ˙̂q = 0 and with a constant parameter errorq̃. This
system is exponentially stable if and only if the estimate is
q̂ > q − 1. The same parametric robustness observations as
those made in Section V hold for the plant-controller pair
(78)–(80). Likewise, those observations justify the use of the
estimator of the type (86) where the product of the “estimation
error and regressor” is always nonnegative.

VIII. O UTPUT-FEEDBACK DESIGNS

A. Example 1

As in Section VII-A, we consider the plant

ut = uxx + gu(0, t) (92)

ux(0) = 0 . (93)

Suppose that onlyu(0, t), the boundary value ofu(x, t) atx =
0, is available for measurement, whereasu(1, t) is available
for actuation. The transfer function from the inputu(1, t) to
the outputu(0, t) has infinitely many poles and no zeros (the
relative degree is infinite).

Instead of the unmeasurable stateu(x), we will employ an
adaptive observer which consists of the input filter

ηt = ηxx (94)

ηx(0) = 0 (95)

η(1) = u(1) , (96)

the output filter

vt = vxx + u(0) (97)

vx(0) = 0 (98)

v(1) = 0 , (99)

and an estimate ofu(x) given by

ĝv(x) + η(x) . (100)

Our adaptive controller employs the control law

u(1) = −
∫ 1

0

√
ĝ sinh

(√
ĝ(1− ξ)

)
(ĝv(ξ) + η(ξ)) dξ ,

(101)
and the update law

˙̂g =
γ

1 + ‖w‖2 + a‖v‖2
Proj[2,ḡ] {v(0)

×
∫ 1

0

(
av(x) + ĝ cosh

(√
ĝx
)

w(x)
)

dx

}
(102)

wherea and γ are positive, sufficiently small normalization
and adaptation gains. The variable change(η, v) 7→ w(x) is
defined as

w(x) = ĝv(x) + η(x) +
∫ x

0

√
ĝ sinh

(√
ĝ(x− ξ)

)
× (ĝv(ξ) + η(ξ)) dξ . (103)

Theorem 6:Suppose that the system (92)–(101), (102),
(94)–(96), (97)–(99) has a well defined classical solution for
all t ≥ 0. Then, there existsa∗ > 0, such that for all
a ∈ (0, a∗) there existsγ∗(a) > 0 [where both a∗ and

γ∗(a) can be a priori estimated by the designer], such that
for all γ ∈ (0, γ∗) the following holds: For any initial
conditionu0, η0, v0 ∈ H1 and anyĝ(0) ∈ [2, ḡ], the solutions
u(x, t), η(x, t), v(x, t) and ĝ(t) are uniformly bounded and
limt→∞ u(x, t) = limt→∞ η(x, t) = limt→∞ v(x, t) = 0 for
all x ∈ [0, 1].

Proof: We start with a target system derived in [29],

wt = wxx + ˙̂gQ

+g̃ cosh
(√

ĝx
)

(e(0) + w(0)) (104)

wx(0) = 0 (105)

w(1) = 0 , (106)

where g̃ = g − ĝ is the parameter estimation error, signalQ
is defined by

Q(x) = v(x)−
∫ x

0

(ĝv(ξ) + w(ξ))
sinh

(√
ĝ(x− ξ)

)
√

ĝ
dξ ,

(107)
ande(x, t) is an observer error defined as

e = u− gv − η , (108)

and governed by

et = exx (109)

ex(0) = 0 (110)

e(1) = 0 . (111)

Consider the Lyapunov function candidate

V =
1
2

log
(
1 + ‖w‖2 + a‖v‖2

)
+

b

2
‖e‖2 +

1
2γ

g̃2 , (112)

wherea ∈ (0, 1) andb are positive constants yet to be defined.
We note that

1
2

d

dt
‖e‖2 = −‖ex‖2 (113)

and, with (108), (103), and (97)–(99), that

1
2

d

dt
‖v‖2 = −‖vx‖2 + (w(0) + e(0) + g̃v(0))

∫ 1

0

v(ξ)dξ .

(114)
With (112), (113), (114), and (104)–(106), we get

V̇ =
1

1 + ‖w‖2 + a‖v‖2
{
−‖wx‖2 − a‖vx‖2

+aw(0)
∫ 1

0

v(x)dx

+e(0)
∫ 1

0

(
av(x) + ĝ cosh

(√
ĝx
)

w(x)
)

dx

+ġ

∫ 1

0

w(x)Q(x)dx

}
− b‖ex‖2 , (115)

which can be majorized by

V̇ ≤ 1
1 + ‖w‖2 + a‖v‖2

{
−(1− 8a)‖wx‖2 −

a

2
‖vx‖2

−b‖ex‖2 + ae(0)
∫ 1

0

v(x)dx

+e(0)
∫ 1

0

ĝ cosh
(√

ĝx
)

w(x)dx

+ġ

∫ 1

0

w(x)Q(x)dx

}
. (116)
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By applying Young’s inequality to the two cross-terms with
e(0), we get

V̇ ≤ 1
1 + ‖w‖2 + a‖v‖2

{
−
(

1− 8a− 2
µ1

)
‖wx‖2

−
(

a

2
− 2

µ2

)
‖vx‖2

−
(
b− 2µ2a

2 − 2µ1ḡ
2e2

√
ḡ
)
‖ex‖2

+ġ

∫ 1

0

w(x)Q(x)dx

}
, (117)

whereµ1 andµ2 are positive constants that we can arbitrarily
choose in our analysis. It can be shown that∣∣∣∣∫ 1

0

w(x)Q(x)dx

∣∣∣∣ ≤ 2e2
√

ḡ
(
‖w‖2 + ‖v‖2

)
, (118)

which can then be used to prove that∣∣∣∣ ˙̂g ∫ 1

0

w(x)Q(x)dx

∣∣∣∣
≤ 2

γ

a
e2
√

ḡ|v(0)|
(
a‖v‖+ e2

√
ḡ‖w‖

)
. (119)

With further calculations involving Young’s, Poincare’s, and
Agmon’s inequalities, and using that fact thata, γ ∈ (0, 1),
one arrives at a conservative bound∣∣∣∣ ˙̂g ∫ 1

0

w(x)Q(x)dx

∣∣∣∣
≤ 80

γ

a2
e8
√

ḡ‖vx‖2 +
1
4
‖wx‖2 . (120)

Substituting this bound into (117), we get

V̇ ≤ 1
1 + ‖w‖2 + a‖v‖2

{
−
(

3
4
− 8a− 2

µ1

)
‖wx‖2

−
(

a

2
− 2

µ2
− 80

γ

a2
e8
√

ḡ

)
‖vx‖2

−
(
b− 2µ2a

2 − 2µ1ḡ
2e2

√
ḡ
)
‖ex‖2

}
. (121)

Selecting now

a∗ =
1
16

(122)

γ∗ =
a3

320
e−8

√
ḡ (123)

µ1 = 16 (124)

µ2 =
16
a

(125)

b = 64
(
a + ḡ2e2

√
ḡ
)

, (126)

for a ∈ (0, a∗] andγ ∈ (0, γ∗] we obtain

V̇ ≤ −1
8
‖wx‖2 + a‖vx‖2 + 4b‖ex‖2

1 + ‖w‖2 + a‖v‖2
. (127)

From (127) one can conclude the boundedness of‖w‖, ‖v‖
and the integrability in time of‖wx‖2, ‖vx‖2. From this, one
can conclude that‖Q‖ is bounded and, with Agmon’s inequal-
ity, that ˙̂g is square integrable over infinite time, which im-
plies that ˙̂g‖Q‖ is square integrable. Agmon’s inequality also
guarantees that̃g cosh

(√
ĝx
)
(e(0) + w(0)), which appears in

(104), is square integrable. These properties can be used to
show that‖wx‖ is bounded. A similar argument, showing that
u(0) = w(0) + e(0) + g̃v(0) is square integrable over infinite
time, can be used to conclude that‖vx‖ is bounded. One can
show next that ˙̂gQ + g̃ cosh

(√
ĝx
)
(e(0) + w(0)) and u(0)

are bounded and use that to prove that the time derivatives
of ‖w‖2, ‖v‖2 are bounded. By Barbalat’s lemma this implies
the regulation of‖w‖, ‖v‖, and, by Agmon’s inequality, the
regulation of w(x), v(x) for all x ∈ [0, 1]. To obtain the
corresponding boundedness and regulation results foru, we
first use the inverse transformation

η(x) = w(x)− ĝv(x) + ĝ

∫ x

0

(x− ξ)w(ξ)dξ , (128)

which establishes the boundedness and regulation ofη, and
then invoke (108).

It is clear that the conservative values ofa∗ and γ∗ are
for the purposes of the proof only. In an implementation one
would be safe to choose higher values ofa andγ.

B. Example 2

As in Section VII-B, we consider the plant

ut = uxx (129)

ux(0) = −qu(0, t) , (130)

where onlyu(0, t), the boundary value ofu(x, t) at x = 0,
is available for measurement. The transfer function from the
input u(1, t) to the outputu(0, t) has infinitely many poles
and no zeros (the relative degree is infinite).

Our output feedback adaptive controller uses the same input
filter (94)–(96), but with an output filter

vt = vxx (131)

vx(0) = −u(0) (132)

v(1) = 0 , (133)

a control law

u(1) = −
∫ 1

0

q̂eq̂(1−ξ) (q̂v(ξ) + η(ξ)) dξ , (134)

and an update law

˙̂q =
γ

1 + ‖w‖2 + a‖v‖2
Proj[1,q̄] {v(0)

×
(

av(0) + q̂

(
w(0) + q̂

∫ 1

0

eq̂xw(x)dx

))}
.(135)

The variable change(η, v) 7→ w(x) is defined as

w(x) = q̂v(x) + η(x) +
∫ x

0

q̂eq̂(x−ξ) (q̂v(ξ) + η(ξ)) dξ .

(136)
Theorem 7:Suppose that the system (129)–(134), (135),

(94)–(96), has a well defined classical solution for allt ≥ 0.
Then, there existsa∗ > 0, such that for alla ∈ (0, a∗) there
existsγ∗(a) > 0 [where botha∗ and γ∗(a) can be a priori
estimated by the designer], such that for allγ ∈ (0, γ∗) the
following holds: For any initial conditionu0, η0, v0 ∈ L2 and
any q̂(0) ∈ [1, q̄], the spatialL2 norms‖u(t)‖, ‖η‖, ‖v‖ and
the estimatêq(t) remain uniformly bounded,‖u(t)‖, ‖η‖, ‖v‖
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converge to zero ast → ∞, and u(t, x), η(t, x), v(t, x) are
square integrable int for all x ∈ [0, 1].

To prove this result we start with a target system derived
in [29],

wt = wxx

+ ˙̂q
{

v +
∫ x

0

eq̂(x−ξ) (q̂v(ξ) + w(ξ)) dξ

}
+q̂2eq̂x (e(0) + q̃v(0)) (137)

wx(0) = −q̂ (e(0) + q̃v(0)) (138)

w(1) = 0 , (139)

and then proceed with the Lyapunov function (112), withq̃
instead ofg̃, going through inequalities as in Section VIII-
A. The regulation is deduced as in Section VII-B, using the
upperboundedness oḟV (t), the square integrability in time of
‖wx‖, ‖vx‖, and‖ex‖ [all those properties are obtained from
an inequality similar to (127)], and Lemma 3.1 in [18]. The
inverse transformation needed for deducing the properties of
η andu from the properties ofw, v, e is

η(x) = w(x)− q̂v(x) + q̂

∫ x

0

w(ξ)dξ . (140)

IX. D ESIGN FORSYSTEMS WITH UNKNOWN DIFFUSION

AND ADVECTION COEFFICIENTS

For the sake of clarity we started in Section II with a
reaction-diffusion system with only an unknown reaction co-
efficient. In this section we show how one can also incorporate
adaptation for unknown diffusion and advection coefficients.
Consider the system

ut = εuxx + bux + λu (141)

u(0) = 0 , (142)

whereε, b, λ are unknown constants.
The control law for this system is [25]

u(1) = −
∫ 1

0

λ̂ + c

ε̂
ξe−

b̂
2ε̂ (1−ξ)

×
I1

(√
λ̂+c

ε̂ (1− ξ2)
)

√
λ̂+c

ε̂ (1− ξ2)
u(ξ)dξ , (143)

whereε̂, b̂, λ̂ are the estimates ofε, b, λ andc ≥ 0 is a design
gain. Using the transformation

w(x) = u(x)−
∫ x

0

k(x, ξ)u(ξ) dξ (144)

k(x, ξ) = − λ̂ + c

ε̂
ξe−

b̂
2ε̂ (x−ξ)

I1

(√
λ̂+c

ε̂ (x2 − ξ2)
)

√
λ̂+c

ε̂ (x2 − ξ2)
,(145)

and its inverse

u(x) = w(x) +
∫ x

0

l(x, ξ)w(ξ) dξ (146)

l(x, ξ) = − λ̂ + c

ε̂
ξe−

b̂
2ε̂ (x−ξ)

J1

(√
λ̂+c

ε̂ (x2 − ξ2)
)

√
λ̂+c

ε̂ (x2 − ξ2)
,(147)

we get

wt = εwxx + bwx − cw

+ ˙̂ε
∫ x

0

ϕ0(x, ξ)w(ξ) dξ

+˙̂
b

∫ x

0

ϕ1(x, ξ)w(ξ) dξ

+ ˙̂
λ

∫ x

0

ϕ2(x, ξ)w(ξ) dξ

−ε̃

(
λ̂ + c

ε̂
w +

b̂

ε̂

∫ x

0

ϕ3(x, ξ)w(ξ) dξ

)

+b̃

∫ x

0

ϕ3(x, ξ)w(ξ) dξ + λ̃w (148)

w(0) = 0 , (149)

w(1) = 0 , (150)

where

ϕ0(x, ξ) = − λ̂ + c

ε̂
ϕ2(x, ξ)− b̂

ε̂
ϕ1(x, ξ) (151)

ϕ1(x, ξ) =
x− ξ

2ε̂
k(x, ξ)

+
1
2ε̂

∫ x

ξ

(x− σ)k(x, σ)l(σ, ξ) dσ (152)

ϕ2(x, ξ) =
ξ

2ε̂
e−

b̂
2ε̂ (x−ξ) (153)

ϕ3(x, ξ) = divk(x, ξ) +
∫ x

ξ

(divk(x, σ))l(σ, ξ) dσ (154)

and

divk(x, ξ) =
1
ξ
k(x, ξ) +

λ̂ + c

ε̂
e−

b̂
2ε̂ (x−ξ) ξ

x + ξ

×I2

√ λ̂ + c

ε̂
(x2 − ξ2)

 (155)

Based on (148) and the Lyapunov function

V =
1
2

(
log(1 + ‖w‖2) +

ε̃2 + b̃2 + λ̃2

γ

)
(156)

we choose the update laws

˙̂
λ = γ

‖w‖2

1 + ‖w‖2
(157)

˙̂
b = γ

∫ 1

0
w(x)

∫ x

0
ϕ3(x, ξ)w(ξ) dξdx

1 + ‖w‖2
(158)

˙̂ε = −γ

(
λ̂ + c

)
‖w‖2 + b̂

∫ 1

0
w(x)

∫ x

0
ϕ3(x, ξ)w(ξ) dξdx

ε̂ (1 + ‖w‖2)
(159)

where projection is used (though we don’t explicitly include
it in the definition of the update laws) to keep the parameter
estimates within a priori bounds[λ, λ̄], [b, b̄], and[ε, ε̄], where
ε > 0. As in the previous problems,γ is limited by an upper
bound which can be a priori computed.

Theorem 8:Suppose that the system (141)–(143), (157)–
(159) has a well defined classical solution for allt ≥ 0. Then,
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there existsγ∗ > 0 such that, for allγ ∈ (0, γ∗), for any
initial condition u0 ∈ H1 and anyλ̂(0) ∈ [λ, λ̄], b̂(0) ∈ [b, b̄],
and ε̂(0) ∈ [ε, ε̄], the solutionsu(x, t) and λ̂(t), b̂(t), ε̂(t) are
uniformly bounded andlimt→∞ u(x, t) = 0 for all x ∈ [0, 1].

Proof: It can be shown that

V̇ =
1

1 + ‖w‖2
(
−ε‖wx‖2 − c‖w‖2

+ ˙̂εF0 + ˙̂
bF1 + ˙̂

λF2

)
, (160)

where

Fi(x) =
∫ 1

0

w(x)
∫ x

0

ϕi(x, ξ)w(ξ) dξdx (161)

for i = 0, 1, 2, 3. By applying the Cauchy-Schwartz inequality
twice to (161), we get

|Fi| ≤ ‖w‖2
(∫ 1

0

∫ x

0

ϕi(x, ξ)2dξdx

)1/2

. (162)

Because the functionsϕi(x, ξ) are continuous inx, ξ, ε̂, b̂, λ̂
over the domain of their definition given byT × [ε, ε̄]× [b, b̄]×
[λ, λ̄], whereε > 0 and T = {x, ξ ∈ R|0 ≤ ξ ≤ x ≤ 1}, it
can be shown that there exist continuous, nonnegative-valued,
nondecreasing functionsMi : R5

+ → R+ such that∫ 1

0

w(x)
∫ x

0

ϕi(x, ξ)w(ξ) dξdx ≤ Mi

(
1
ε̄
, |b| ,

∣∣b̄∣∣ , |λ| , ∣∣λ̄∣∣) .

(163)
The simplest one among these functions is

M2 =
1

4
√

3ε
e

1
ε max{|b|,|b̄|} . (164)

From (160)–(163), it follows that

V̇ ≤ 1
1 + ‖w‖2

[
−ε‖wx‖2 − c‖w‖2 +

γ‖w‖4

1 + ‖w‖2

×

(∣∣λ̄∣∣+ c

ε
M0 +

∣∣b̄∣∣
ε

M3M0 + M3M1 + M2

)]
(165)

where we emphasize the emergence of the fourth power of
‖w‖ in the last term of the first line of (165). By applying
Poincare’s inequality we obtain

V̇ ≤ −ε (1− γ/γ∗) ‖wx‖2 + c‖w‖2

1 + ‖w‖2
, (166)

where

γ∗ =
ε

4

(∣∣λ̄∣∣+ c

ε
M0 +

∣∣b̄∣∣
ε

M3M0 + M3M1 + M2

)−1

.

(167)
This establishes the boundedness of‖w‖ for γ < γ∗.

To prove the boundedness of‖wx‖2, we show that

1
2

d

dt
‖wx‖2 = −ε‖wxx‖2 −

εc + ελ̃ + λε̃

ε̂
‖wx‖2

−
∫ 1

0

wxx(x)G(x)dx , (168)

where

G(x) = bwx

+ ˙̂ε
∫ x

0

ϕ0(x, ξ)w(ξ) dξ

+˙̂
b

∫ x

0

ϕ1(x, ξ)w(ξ) dξ

+ ˙̂
λ

∫ x

0

ϕ2(x, ξ)w(ξ) dξ

+
εb̂− ε̂b

ε̂

∫ x

0

ϕ3(x, ξ)w(ξ) dξ . (169)

Next we note that ∣∣∣ ˙̂λ∣∣∣ ≤ γ (170)∣∣∣ ˙̂b∣∣∣ ≤ γM3 (171)∣∣∣ ˙̂ε∣∣∣ ≤ γM4 (172)∣∣∣∣∣εb̂− ε̂b

ε̂

∣∣∣∣∣ ≤ M5 , (173)

where

M4 =
max

{
|λ| ,

∣∣λ̄∣∣}+ c + M3 max
{
|b| ,

∣∣b̄∣∣}
ε

(174)

M5 = 2
ε̄

ε
max

{
|b| ,

∣∣b̄∣∣} . (175)

With Young’s inequality we get

−
∫ 1

0

wxx(x)G(x)dx ≤ ε‖wxx‖2 +
1
4ε
‖G‖2 . (176)

Let us denote

Hi(x) =
∫ x

0

ϕi(x, ξ)w(ξ) dξ (177)

for i = 0, 1, 2, 3, for which, with the Cauchy-Schwartz
inequality, we get

‖Hi‖ ≤ Mi‖w‖ . (178)

Then, from (169)–(178), with the triangle inequality and
Poincare’s inequality we obtain

‖G‖2 ≤ 8
[
b + γ

(
M4M

2
0 + M3M

2
1 + M2

2

)
+M5M

2
3

]
‖wx‖2 . (179)

Substituting (179) into (176) and then into (168), we get

1
2

d

dt
‖wx‖2 ≤ N‖wx‖2 , (180)

where

N(t) =
2
ε

[
b + γ

(
M4M

2
0 + M3M

2
1 + M2

2

)
+ M5M

2
3

]
−εc + ελ̃ + λε̃

ε̂
(181)

is bounded. With‖w‖ bounded, from (166) we get that‖wx‖2
is integrable over infinite time. By integrating (180), it follows
that ‖wx‖ is bounded. By Agmon’s inequality,w(x, t) is also
bounded for allt ≥ 0 and for allx ∈ [0, 1].
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To show regulation, we calculate

1
2

d

dt
‖w‖2 = −ε‖wx‖2 − c‖w‖2 + ˙̂εF0 + ˙̂

bF1 + ˙̂
λF2

−ε̃

(
λ̂ + c

ε̂
‖w‖2 +

b̂

ε̂
F3

)
+ b̃F3 + λ̃‖w‖2 .

(182)

All of the terms on the right hand side of this inequality have
been proved to be bounded. Therefored

dt‖w‖
2 is bounded.

Since‖w‖2 is also integrable over infinite time, by Barbalat’s
lemma ‖w(t)‖ → 0 as t → ∞. Regulation in maximum
norm follows from Agmon’s inequality and the boundedness
of ‖wx‖.

To infer the results for the original variableu(x, t) from
those forw(x, t), we recall the inverse transformation (146)–
(147), which is a bounded operator in bothL2 andH1.

While the Lyapunov design requires the use of projection
and a low adaptation gain, one of its remarkable properties is
that, even though the plant has parametric uncertainties multi-
plying ux anduxx, the adaptive scheme does not require the
measurement of neitherux nor uxx. The update laws (157)–
(159) employ only the measurement ofu. This is in contrast
with adaptive controllers in [1], [2], [7], [30] for reaction-
advection-diffusion systems which require the measurement
of uxx to estimate the unknown diffusion coefficientε.

The update laws employϕ3(x, ξ) which is given in quadra-
tures. The integral in (154) would be calculated numerically,
just like the other integrals appearing in the update laws and
depending on the measured stateu(x, t).

Remark 5: It should be pointed out that in the Lyapunov
approach the diffusion coefficientε need not be estimated
directly. This is analogous to the finite dimensional adaptive
control [16] where the “high frequency gain” need not be
estimated directly in the Lyapunov approach, whereas in the
passive or swapping approaches it needs to be estimated. The
estimation ofε is avoided by denoting the unknown parameters
α = (λ + c)/ε and β = b/ε and by replacing the adaptive
controller (143) by

u(1) = −
∫ 1

0

α̂ξe−
β̂
2 (1−ξ)

I1

(√
α̂(1− ξ2)

)
√

α̂(1− ξ2)
u(ξ)dξ , (183)

by replacing the update laws (157)–(159) by

˙̂α = γ
‖w‖2

1 + ‖w‖2
(184)

˙̂
β = γ

∫ 1

0
w(x)

∫ x

0
ϕ3(x, ξ)w(ξ) dξdx

1 + ‖w‖2
(185)

(equipped with appropriate projection), and by usingw and
ϕ3 as defined in (144) and (154), respectively, withk(x, ξ),

l(x, ξ), and divk(x, ξ) redefined as

k(x, ξ) = −α̂ξe−
β̂
2 (x−ξ)

I1

(√
α̂(x2 − ξ2)

)
√

α̂(x2 − ξ2)
, (186)

l(x, ξ) = −α̂ξe−
β̂
2 (x−ξ)

J1

(√
α̂(x2 − ξ2)

)
√

α̂(x2 − ξ2)
(187)

divk(x, ξ) =
1
ξ
k(x, ξ)

+α̂e−
β̂
2 (x−ξ) ξ

x + ξ
I2

(√
α̂(x2 − ξ2)

)
.(188)

X. CONCLUSIONS ANDFUTURE WORK

The need for projection and a bound on the adaptation
gain are the key limitations of the Lyapunov approach. In a
companion paper on “estimation-based” approaches to adap-
tive control of PDEs [28] we present methods which do
not require projection and which work without limits on the
adaptation gain. These methods employ ‘passivity/observer-
based’ and ‘swapping-based’ identifiers presented for finite-
dimensional systems in [16]. However, in the case of uncertain
diffusion and advection coefficients, these schemes require the
measurement ofux(x, t) (and in some cases ofuxx(x, t)), like
the schemes in [1], [2], [7], [30]. The Lyapunov schemes in
Section IX require only the measurement ofu(x, t).

While, for the sake of clarity, we chose to present our design
tools through benchmark problems, it is possible to develop
an adaptive controller for the class of systems

ut = εuxx + bux + λu + gu(0) (189)

ux(0) = −qu(0) , (190)

where ε, b, λ, g, q are unknown. It is also possible to do so
when these coefficients are spatially varying, as explained in
Remark 2.

At present we have not worked out how to extend the
result of Section IX to the output-feedback case. Even though
boundary observers for this class of systems were developed
in [26] for the case whereε, b, λ are known, the design of
adaptive observers will be more complex than for the systems
in Section VIII. In [29] we present the estimation-based
versions of the Lyapunov output-feedback designs presented
here.

It is possible to extend the results of this paper to special
geometries in arbitrary dimension. For example, in 3D it
is possible to extend them to domains in the shape of a
rectangular parallelepiped withuxx in (189) replaced by∆u
andbux replaced byb1ux + b2uy + b3uz. It is shown in [28]
how to deal with higher dimensions, thus we do not pursue
them here.

APPENDIX

Lemma A.1:∣∣∣∣∫ 1

0

w(x)
(∫ x

0

ξw(ξ)dξ

)
dx

∣∣∣∣ ≤ 1
2
√

3
‖w‖2 . (A.1)
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Proof: Using the Cauchy-Schwartz inequality twice we
obtain the following sequence of inequalities:∣∣∣∣∫ 1

0

w(x)
(∫ x

0

ξw(ξ)dξ

)
dx

∣∣∣∣
≤
∫ 1

0

|w(x)|
(∫ x

0

ξ|w(ξ)|dξ

)
dx

≤
∫ 1

0

|w(x)|
(∫ x

0

ξ2dξ

)1/2(∫ x

0

w(ξ)2dξ

)1/2

dx

≤ ‖w‖
∫ 1

0

|w(x)| 1√
3
x3/2dx

≤ ‖w‖√
3
‖w‖

(∫ 1

0

x3dx

)1/2

≤ 1
2
√

3
‖w‖2 . (A.2)

Lemma A.2:The transformation (4)–(5) maps the system
(1)–(3) into (6)–(8).

Proof: Boundary conditions (7) and (8) are obviously
satisfied. Substituting (4) into (1) we get

wt(x, t) = wxx(x, t)− ˙̂
λ

∫ x

0

kλ̂(x, y, λ̂)u(y, t) dy

+λ̃w , (A.3)

To replaceu with w we use an inverse transformation (30)
with a kernel (31). We have∫ x

0

kλ̂(x, ξ, λ̂)u(ξ, t) dξ

=
∫ x

0

kλ̂(x, ξ, λ̂)

×

(
w(ξ, t) +

∫ ξ

0

l(ξ, η, λ̂)w(η, t) dη

)
dξ

=
∫ x

0

(
kλ̂(x, ξ, λ̂) +

∫ x

ξ

kλ̂(x, η, λ̂)l(η, ξ, λ̂) dη

)
×w(ξ, t) dξ . (A.4)

The inner integral is computed as follows∫ x

ξ

kλ̂(x, η, λ̂)l(η, ξ, λ̂) dη

=

x∫
ξ

λ̂ηξ

2
I0

(√
λ̂(x2 − η2)

) J1

(√
λ̂(η2 − ξ2)

)
√

λ̂(η2 − ξ2)
dη

=
ξ

2

√
λ̂(x2−ξ2)∫

0

I0

(√
λ̂(x2 − ξ2)− s2

)
J1(s) ds

=
ξ

2

(
I0

(√
λ̂(x2 − ξ2)

)
− 1
)

. (A.5)

Here the last integral was computed with a help of [24]. Finally

we get ∫ x

0

kλ̂(x, ξ, λ̂)u(ξ, t) dξ

=
∫ x

0

{
−ξ

2
I0

(√
λ̂(x2 − ξ2)

)
+

ξ

2

(
I0

(√
λ̂(x2 − ξ2)

)
− 1
)}

w(ξ, t) dξ

= −
∫ x

0

ξ

2
w(ξ, t) dξ . (A.6)
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