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Abstract—We develop adaptive controllers for parabolic PDEs Townley [21], were for plants stabilizable by non-identifier
controlled from a boundary and containing unknown destabiliz- pased high gain feedback, under a relative degree one assump-
ing parameters affecting the interior of the domain. These are tion. Model reference (MRAC) type schemes were designed

the first adaptive controllers for unstable PDEs without relative . .
degree limitations, open-loop stability assumptions, or domain- by Hong and Bentsman [7], Bohm, Demetriou, Reich, and

wide actuation. It is the first necessary step towards developing R0sen [2], Solo and Bamieh [30], Orlov [22], and Bentsman
adaptive controllers for physical systems such as fluid, thermal, and Orlov [1]. While the strength of these results are the proofs
and chemical dynamics, where actuation can be only applied of identifiability of infinite dimensional parameter vectors,
non-intrusively, the dynamics are unstable, and the parameters, e Jimitation is that they require control action throughout

such as the Reynolds, Rayleigh, Prandtl, or Peclet numbers . .
are unknown because they vary with operating conditions. Our the PDE domain. Other efforts such as Demetriou and Ito [5]

method builds upon our explicitly parametrized control formulae  and Wen and Balas [32] have employed tools from positive
in [25] to avoid solving Riccati or Bezout equations at each time realness; they have also provided some cunning examples

step. Most of the designs we present are state feedback but wethat go beyond the relative degree one restriction. Adaptive
present two benchmark designs with output feedback which have |inear quadratic control with least-squares estimation was
infinite relative degree. pursued by Duncan, Maslowski, and Pasik-Duncan [6] for
linear stochastic evolution equations with unbounded input
operators and exponentially stable dynamics. Adaptive control
of nonlinear PDEs has also received some attention. Liu
While for linear finite dimensional systems many adaptiveng Krstic [18] and Kobayashi [11] considered a Burgers
schemes have been proposed [8], adaptive control technigdg§ation with various parametric uncertainties; Kobayashi [13]
have been developed for only a few classes of PDEs restrictg@go considered the Kuramoto-Sivashinsky equation. Jovanovic
by relative degree, stability, or domain-wide actuation assumghd Bamieh [9] designed adaptive controllers for nonlinear
tions. In this paper we develop the first adaptive controllesystems on lattices, which include applications like infinite
for parabolic PDEs controlled from a boundary and containiRghijcular platoons or infinite arrays of microcantilevers. An
unknown destabilizing parameters affecting the interior of th§perimentally validated adaptive boundary controller for a
domain. Our control laws are given by eXpIiCit formulae anﬂexib|e beam was presented by de QueirOZ, Dawson, AgarwaL
open the door for the use of a wealth of certainty equivaleng@d zhang [4].
and Lyapunov techniques developed for finite dimensional b) The Results of the PaperFor several unstable

systems. They initiqte an effort towards devc_aloping adaptiY)%lrabolic PDE systems controlled from the boundary we
controllers for physical systems such as fluid, thermal, andsme that physical parameters like reaction, diffusion, or
chemical dynamics, where actuation can be only applied Al ection coefficients are unknown. No adaptive controllers
intrusively, the dynamics are_unstable, and the parametgts such models have been proposed, even though they are
such as the Reynolds, Rayleigh, Prandtl, or Peclet numbgss, ent in applications that incorporate thermal-fluid or chem-
are unknown because they vary with operating conditiongg|\y reacting dynamics. An obstacle to the development of
Our method builds upon our explicitly parametrized controlyantive controllers has been the lack of parametrized families
formulae_m [25] to avoid solving Riccati or Bezout equationg nonadaptive controllers. This obstacle was removed by
at each time step. _ _ Smyshlyaev and Krstic [25] who developed explicit formu-

~ @) Literature Overview:Early works on adaptive control |5 ‘for boundary control of a class of parabolic PDEs that
of infinite-dimensional systems, surveyed by Logemann afgtiydes the problems considered here. Those formulae are

o _ not only explicit functions of the spatial coordinates of the
The author is with the Department of Mechanical and Aerospace En

neering. University of California, San Diego, La Jolla. A 92003.0411, USKDE, but also depend explicitly on the physical parameters
(krstic@ucsd.edu ) of the plant. This feature is absent from standard methods
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like LQR extensions to PDEs because parametrized solutiatesigns for the simplest classes of systems for which the
to Riccati equations cannot be obtained. While an adaptigencepts are nontrivial. For example, it is shown separately
version of an LQR approach would require a solution tbow to deal with parametric uncertainties in boundary condi-
a high-dimensional Riccati equation at each time step, oiwns or reaction terms involving boundary values. A skilled
approach only requires that new parameter updates be plugdedigner can combine these tools with the method for reaction-
into the control formula. advection-diffusion systems to craft solutions to more general
For clarity, in this paper we present the results for scalar apdoblems.
vector parameter problems. They can be extended to functional c¢) Notation: The spatial.,(0, 1) norm is denoted by-||.
parameters as in [1], [2], [7], [22], [30]. With the controllersThe symbolsl; (-), I>(-), Ji(+), etc., denote the corresponding
parametrized in the physical parameters, our schemes aréBegsel functions.
indirect type.
Three basic approaches to the design of parameter iderti- CONTROL DESIGN FOR ASYSTEM WITH AN UNKNOWN
fiers for adaptive control exist [16]: the Lyapunov approach, REACTION COEFFICIENT
the passivity-based approach (pursued in [1], [2], [7], [22]), We start the paper with a design for a benchmark system
and the swapping approach. The Lyapunov approach, whighd present extensions in subsequent sections. The benchmark
ensures the best transient performance properties is seldgystem has a destabilizing reaction term and employs control
possible without changing the control law to compensate tbely at the boundary. The unknown reaction coefficient is
potentially destabilizing effect of adaptation, even in the linegtalar, however, an extension to spatially-varying functional
case. We exploit the structural opportunities within the clagsefficients is discussed in Remark 2. A problem with multiple
of PDEs we are considering and develop Lyapunov adapfgarameters is discussed in Section IX.
tion schemes. In companion papers [28], [29] we developWhile most of the paper, and this section in particular, as-
estimation-based schemes (see Section X for some commenisies availability of full state feedback, Section VIII presents
on the contents of those papers). designs that employ only boundary sensing.
Our Lyapunov design is inspired by an idea Praly [23] Consider the following plant
developed for adaptive nonlinear control under growth con-
ditions. Since our PDE problems are linear, we have found ur(@,t) = taw(2,1) + Az, t), (1)
a way to significantly simplify this approach, however, we u(0,1) 0, (2)

retain its main feature—a logarithm weight on the plant stajghere ) is an unknown constant parameter that can have any
in the Lyapunov function. This results in a normalizationey) yajue. We use a Neumann boundary controller designed
of the update law by a norm on the plant state, which g [25] in the fornt

uncommon for Lyapunov designs. Except for some special

examples, projection is needed to keep the parameters within . 1 L <, /5\(1 - 52)>

an a priori set. Projection is not used as a robustification tool, (1) = —éu(l) _ 5\/ ¢ w(€)ds, (3)

but to prevent adaptation transients that would require overly 2 0 1-¢2

conservative restrictions on the size of the adaptation gain. TWaich employs the measurementsgfr) for = € [0,1] and
projection set may be taken conservatively (large), however,dn estimate\ of A. Consider an invertible change of variable
order for stability to be guaranteed, the adaptation gain needs

to be taken inversely proportional to the size of the parameter w(z) = u(x) — / k(z, &, Nu(€) de, (4)
set. The bounds on the gain can be derived explicitly and are 0
a priori verifiable. where
Most of the designs presented require full state feed- I ( 5\(1_2 B 52)>
back, however, two examples are given that use only output - ot
feedback—scalar sensing at the boundary. These output feed- k(z,&4) = —A¢ <2 o : )
back designs employ adaptive observers which we construct V Aa? —€2)
as infinite-dimensional extensions of Kreisselmeier-type filtetgmma A.2 in the Appendix establishes that (4) maps (1)—(3)
used in [16]. into
Only 1D results are presented here. In [28] we show that L[t e .
our tools extend readily to higher dimensions, in appropriate Wy = Weg + )\/0 §w(§) d¢+Aw, (6)
geometries. .
No simulation results are given in this paper. In [28] w©) =0, ()
we show simulation results in 2D and inln [29] we show we(1) =0, (8)
simulation results for an output feedback design. where A = A\ — \ is the parameter estimation error.
Our adaptive boundary control results can be developed bothwe will show that the update law
for Dirichlet and Neumann actuation. Most of the controller . 9
we present are for the notationally easier Dirichlet actuation \ = 7%, 0<y<1 9)
but in the introductory example in Section 1l we use Neumann L+ [l
actuation. 1In the sequel, to reduce notational overload, the dependence on time will

To avoid tedium and keep the concepts clear we presentsuppressed whenever possible.



achieves regulation of.(x,t) to zero for allz € [0,1], for illustrated in [25], noting that the computational effort is at
arbitrarily large initial data.(z,0) and for an arbitrarily poor least an order of magnitude lower than solving a Riccati
initial estimate)(0). equation.

Theorem 1:Suppose that the system (1)—(3), (9) has a well Remark 3: The non-negative form of the adaptive law (9)
defined classical solution for atl > 0. Then, for any initial is coincidental for this particular benchmark plant and it is
conditionuy, € H; and anyA(0) € R, the solutionsu(z,t) further discussed in Section V.

and A(¢) are uniformly bounded antim;_, . u(z,t) = 0 for Remark 4:1t is also important to note that the update law
all z € [0,1]. Moreover, the following performance boundg9) contains normalization. Normalization is uncommon in
hold in the closed-loop nonlinear system: Lyapunov designs and is the result of including the logarithm

) o o ) in the Lyapunov function [23]. Normalization is necessary
u(z,t)” < 32 (1 +3A +A(0)* + ylog (1 + [w(0)] )) because the control law (3) is of certainty equivalence type—

2 13(0) unlike the Lyapunov adaptive controllers in [16] which employ
x {lwa(O)” + 37 (1 + [w(0)][?) e7*© non-normalized adaptation and strengthened nonlinear con-

) . 3/2 trollers that compensate for time-varying effects of adaptation.

x (10% (1 + [lw(0)]] ) + ;/\(0) ) (10)  An additional measure of preventing overly fast adaptation in

(9) is the restriction on the adaptation gain< 1).
for all z € [0,1], t > 0, and

/°° (2, 1)2dt < I1l. PROOF OFTHEOREM1
0 Consider a Lyapunov function candidate
48 (14322 + A(0)2 + ~vlog (1 + [w(0)|? 1-
( <>on g (1+w(0)]?)) v = Liog (14 ulf) + L7 )
X (L4 [[w(0)]?) e !
) < The time derivative along the solutions of (6)—(9) can be shown
« (tog (14 1w + 2307 ) A1) 1o be
for all z € [0, 1]. v l|lwe||? 42 A fo z) ([ €w(€)de) dx 17)
Remark 1:While the bound (10) obviously quantifies the IEENTE 1+ [|w||?

:gfealgft:;?s:g;npce;fgr;]:?oce’ the bound (11) quantifies ﬂefﬁe calculation involves one step of integration by parts).
Remark 2:In this paper we consider only parameters Wlthl:Jsmg Lemma A.1 and Poincare's inequality, one gets

out spatial variation. In a future paper [27] we will present r 2 9

an extension to spatially-varying problems [1], [2], [7], [22], z) / w(§)dg | dz| < 7”%’” - (18)

[30]. For example, in the case of the benchmark plant (1) but hi i q

with constant\ replaced byA(x), we will design the adaptive Substltutmg this inequality and (9) into (17), we get

controller Ve (1 B 7) l|lwe || (19)

L < —_

2
w(l) = 0)+ / LOouedk 12 V3 Ll
This implies thatl/(¢) remains bounded for all time whenever
A u(t, ) ( f k(€ x)w(t g)dg) 0 < v < V3. From the definition ofi it follows that ||w||
At x) = v 5 Tw@] and )\ remain bounded for all time. However, we need to show
(13) thatw(z, t) is bounded for all time and for alt. To do this,
consider
whereA(t x) |s the online functional estimate ofz), w(z) = 1d , 1 1
— [ k( €)d¢, and the kernek(z, &) = ky(z,€) is Sglvwall” = /0 Wy do = — /O Wawy d
obtalned recurswely from 1 1
1 2 = —/ wix dz—j\/ WapWdX
@8 = —3 [ A©w 1) oL
k(0.8 = k(@9 2 [ e |, cvterae
w0 [T Aok o0 = el 5 [ udr
= Jo .
xdod( (15) A

for each new update oh(¢,z). Stability is guaranteed for - )
sufficiently small~y and sufficiently highn. The recursion = —flwaall” + Allws ||
(15) was proved convergent in [17]. Several methods for A )
its symbolic or numerical computation were proposed and +7 (w(1)® = [lw]?) - (20)



Integration by parts was used several times to obtain the abavierval. By Barbalat's lemma it follows thdtw(t)|| — 0 as

equalities. Using Agmon’s inequality (noting that(0) = ¢ — oo.
0), then Young’s inequality, and finally Poincare’s inequality To show regulation also in the maximum norm, we note
(noting thatw,(1) = 0), one gets that that, from Agmon’s inequalityjw(z,t)|?> < 2||w(t)]|||wz (t)]|-
5 9 9 ) Since||w, || is bounded andw(t)|| has been shown convergent
w(1)” = [Jw]|” < flwg |7 < 4fwge|” 1) 1o zero, the regulation in maximum norm follows.
Substituting (21) into (20), it follows that Having proved the boundedness and regulationvpfwe
14 now set out to establish the same far We start by noting
sgplwal® < == llwea]® + Aflwe* that [25]
< M. @2) u(e) = w@) + [ e Nu©d,  ©0)
0
Integrating the last inequality, we obtain where
2 2 -
oI < [lwa(0)] o ( o e2>)
+2 sup A(7)] / lwa()2dr. (23) (5, 6,3) = —Ae— - . (31)
0<7<t Mz? — €2)
;oa:)btam this bound, on one hand we have from (16) and (1I?)|s straightforward to show that
A®)? S A0) +7log (1+[wO)) . (24) s |? < 2 (1+&2 +4M) [l |2, (32)
On the other hand, where )
t
0
¢ 2 and
< s (4 u@lP) [l @)
0<7<t 0 A A Jo ( ( 52))
From (16) and (19) it follows that lo(x, &, N) = A€ PR . (34)
72 _
1+ [lw(m)]? < (1 + [lw(0)][?) 72O, (26) By mimicking the calculation in [25, Equation (101)], we get
Integrating (19) we get (€, )\)‘ dé¢ < |Alz + 1, which implies
t 2
[[wa ()l Y 2 Loy | 2 A2+3
— 7 d < _ = 2 <
/0 1+ |[w(7)]2 T M < /o (|)\\m+ 1) dx 3)\ + Al +1 . (35)
< 1 <log (1+ ||w(0>||2) + 15\(0)2> . (27) Thus, it follows that
2(1- 2% v R
(1-%) Jual® < 2 (44 332) flw |2

Substituting (26) and (27) into (25), and then, along with (24), ~
into (23), we get < 8 (1 +30% + )\2) lJwz 12 (36)
lwe ()2 < [lwe(0)]? Noting thatu(z,t)? < 4ju, || for all (x,t) € [0,1] x [0, 00),
B N 15 by combining (36), (24), and (28), and using the fact that
+ (1 + [lw(0) ]| ) (©° 1_% < 3 for v < 1, we get (10), which proves uniform

1- 2%
V3 3/2 boﬁdedness af.
1- .
% (1og (1 + [|w(0 ) + X (0)? . (28) To prove _regulatlon ofi(x,t) to zero for allz € [0, 1], we
start by noting that

By combining Agmon’s and Poincare’s inequalities (and using Jul|> < 2(1 + L) ||Jw]|? (37)
the fact thatw(0) = 0), we getmax,¢(o 1] |w(z)[* < 4w, %,
thusw(z, t) is uniformly bounded. where X

Next, we prove regulation af(z, t) to zero. Using (6)—(8) L= max_ I(z,£\)? (38)

- 0<g<a<l
and Lemma A.1 we obtain

is finite whenever) is finite (which we have proved using
< Jws||? + <|5\ + 7) [|w||? . (29) Lyapunov analysis). Sincgw| is regulated to zero, so gl
43 By Agmon’s inequalityu(x,t)? < 2||ul||ju. ||, where||lu.| is
SinceHwH and||ww\| have been proven bounded, it follows thabounded by (36), (24), and (28). This completes the proof of
%Hw”2 is bounded, and thugw(t)|| is uniformly continuous. regulation ofu.
By combining (25)—(27) with Poincare’s inequality we also The bound (11) is obtained in a similar manner to (10), by
get that|jw(t)||? is integrable in time over the infinite time combining (36) with (24)—(27).




IV. WELL POSEDNESS Dirichlet and the other is Neumann, which would necessitate

Since the purpose of our paper is stabilization, we focfilsSllghtly different Green funciion.

We shall not belabor on well posedness issues in the rest of
our effort on proving boundedness and regulation. As eV|de

e paper both in the interest of space and due to the parabolic
from Section lll, this is not a routine task due to the nonllnear

character of the closed-loop system character of the system which ensures it. As in Theorem 1, in
the rest of the paper we shall simply assume well posedness.

2
¥ w
Wy = Wer 57 J”r ||| E / Ew(§)dé+ A w  (39) V. PARAMETRIC ROBUSTNESS

w(0) = wy(1)=0, (40) Let us suppose that the adaptation is turned off, i.e< 0,

. ]2 i.e., A = 0. Then the closed loop system is

A= Y (41) .

L [l w = wt (A=A)w, (45)
The analysis of existence and uniqueness of solutions is even w(0) = 0, (46)

more involved. One of the steps in proviigdpbal existence .
we(l) = 0, (47)

and uniqueness aflassicalsolutions is to prove boundedness

of w;(t,z) and w,. (¢, z), which proceeds as follows. It is where \ is a constant parameter estimate. By studying the

first observed from the first line of (22) thétv,, || is square eigenvalue problem of this system, it can be sf;own that

integrable over infinite time. The same property holds fgrarameter estimates which are greater than — T are

[lwe]. It is then shown that exponentially stabilizing, whereas those smaller than ="
1d are destabilizing. This means that, if an upper boundion
2dtHth2+ |wez]|? = is known—let us denote this bound by—then (3) is a

“ . stabilizing linear controller whenever is replaced by\ (or
Al + é/ wt(x)/ cw(€)dedz any constant value higher thav.
2 Jo 0 This robustness property explains Whyln the adaptation

oot v law (9) is nonnegative: overestlmatm)g cannot be harmful
+)‘/0 we(@) (/0 §wt(£)d§ N w<x)> - (42) \ithin the controller structure (3 A caveat however is that,
in the presence of measurement noise, the parameter estimate
will drift. In the update law (9) the estimate has nowhere to
drift but up® (which is consistent with the structure of the
control law but still undesirable). In practical implementation
>\ 1 one would add leakage, deadzone, or projection [8] to reduce
Awes |2 + 5/ Wiy (z)w(z)de or completely stop the drift.
o 0 The linear/frozen-parameter robustness is an unusual feature
+;\/ Wiy (2) (fwt(x) _ wx(x)) dz, (43) of the control formula (3). It is different than the “infinite gain
0 2 margin” property of inverse optimal controllers, which allow
where an arbitrary increase of a scalar gain in front of the optimal
3’\: H E (44) pontrol Iayv. Infinite gain margiq allows only an unplanned
1+ H |2 )2 dt increase in the “control authority” but does not guarantee
robustness to changes in the physical parameters of the system.

is bounded because of (29). From the boundedness @y opustness exhibited with (3) is with respect to the

[wl, |wa]l, A, A and the square integrability in time ofphysical parametek.

[wll, lwe]], by integrating (42) it follows thafw || is bounded  Due to the ability of the controller (3) to remain stabilizing
and [jw | is square integrable. Then, by integrating (43lhen A is overestimated, it might be tempting to view the
and using the square integrability dfw.|| and the other packstepping design as being “high-gain.” This would not
functions mentioned above, it follows thgtv,. || is bounded pe appropriate because (3) resorts to high gain only when
and [lw.| is square integrable. By Agmon's inequalitygenerates a high number of unstable eigenvalues in the plant.
we get thatw(t,x) is uniformly bounded for all values The form of high gain that controller (3) is capable of
of its arguments, and the same holds for.(¢,z). Those employing should not be confused with adaptive high gain

properties are also valid in the original variahl¢, z) using controllers surveyed in [21] where a multiplicative gain is
the smoothly invertible variable change (4)—(5). tuned for a controller of the form

Existence and uniqueness of appropriately defimexhk
solutions can be studied in the same way as in [18, Section 4]. (1) = G{Cu} (48)
One writes the system in the form of two integral equations,2yyile the update law (9) can take the estimétenly “up,” the growth of
using the “heat equation” Green function for the PDE digr the estimate stops diu(t)|| goes to zero. Sinc¥ (t) is nonincreasing and
and then applles the Banach fixed pomt theorem. The mémmded from below (by zero), it hgs a limit. Henk(at) has a limit. So
difference in using that idea here would be that the Gre@ﬂeS)‘(t ) and it is higher than\ — 7. The size of\(c) depends on the

ze of the initial conditionug.

function used in [18] was for Neumann boundary Cond't'or]S3Th|s issue is no less critical with update laws that are sign-indefinite,

at both ends, whereas in our case one boundary conditiorhdgever, with (9) it is obvious.

and

1d

2 dt”meQ + ||wtzw||2



where GG is the gain andC is an output operator such that Theorem 2:Suppose that the system (1)—(3), (52), (53) has
u, (1) — Cu is relative degree one. For the present system arwell defined classical solution for all> 0. Then, for any
operatorC' independent of the unknowh cannot be found, initial condition uy € L, and anyA(0),6(0) € R, the spatial
therefore, tuning of a multiplicative gaid could not be Ly norm |lu(¢)|| remains bounded and the spatfd} norm

successful. lus(¢)|| is square integrable over an infinite time interval.
Moreover, the estimateX(t), 6(¢) are uniformly bounded.
V1. AN ALTERNATIVE APPROACH The proof of this result employs a Lyapunov function
The use of a logarithm in the Lyapunov function (16) was v - 677267 +1 los (1 9
inspired by Praly’s Lyapunov adaptation designs in [23]. We 2 pBy—1 Og( + el )
do not exactly follow that method in this paper because our 1 /¢ 2 1 ~\ 2
PDE plants are linear. It is however of interest to see what an T2y (/\ - 9) + 2y (/\ - 9)
exact application of that method results in, as it has potential B /e - 2
beyond our class of problems. +3 (/\ —0— ’YA) - (57)

Let us start by denoting

fol w(x) ( [y Ew(€)de) dx

It is possible to prove that

A = 5 @9 V. > log(1+|lw|?)
1+ ]l 1 (/e ~2 By—1 N2
A — [ (A—¥6 A—0 58
B A 0 ry (-0 P (0-0)) . e
L+ [Jwlf?

1 1 z 2 i.e., V' is positive definite around the equilibriuma(z) =
H = —A*+ W/ <(/ gw(g)dg) 0,A =6 = \. Then, averylong calculation yields

w 0 0

2
. ¢ V:-zﬂ%ﬂﬁ. (59)
+w(z) / ¢ / w(n)dy | d¢ | | de.  (51) 1+ Jwl]
0 0 The properties stated in Theorem 2 readily follow from this

This method employs two estimates working in tandérand equation.
#. A long Lyapunov based derivation, briefly justified after the

statement of the theorem below, yields VIl. OTHER BENCHMARK PROBLEMS
: By In this section we will show that our method extends beyond
= Y50 —~H) -1 the basic reaction-diffusion class of parabolic PDEs. We
py(1 —~H) ) . ,
8 |w||2 + 24 ws 2 will consider two benchmark problems—one with a boundary
(2 5 i value appearing on the right-hand-side of the PDE model
L+ ||| and another with a parametric uncertainty in an uncontrolled
— ((1 + 12) - 12> 3vB (5\ _h_ 7A) boundary condition. Both benchmark problems are unstable in
B the absence of feedback.
o (5\ b 714)) (52)  These benchmarks will expose one limitation of the ‘log-
) Lyapunov paradigm:’ in general it requires not only a restric-
5 20wl s B (A nA 53y tion on the value of the adaptation gajnbut also the use of
5 — B g : (53) o : ) :
1+ ||wl] parameter projection. A smajlis the main tool for preventing

We have written the two update laws in a way to high|igrgestabilizing transients. Projection is only used to make the
as much as possible the parts that are similar about thdstriction ony a priori verifiable. o
Three gains are employed, which need to satisfy the following The Projection operator that would be used in implementa-

conditions: tion is defined as
0, §=fandr <0
< 3 54 . Lz
! &9 Projy {7} =74 0, #=0andr >0 (60)
B> - (55) 4 1, else
Y(1—=3) ) )
o > 0. (56) where 0§ is the parameter estimat® {s used as a generic

The conditions (54) and (55) are related to the fact tgt< symbol for an unknown parameter, which will in subsequent

14 These conditions ensure that the denominator in the fi%rtesentat|on be. replaced by_ spec!ﬂc pararr!etfers labe!ed by
3 ) > 9.4,€,b, ), the interval [0, 0] is the interval within whichd
line of (52) remains positive.

Besides its complexity, a disadvantage of the update I'%vbelng kept by projection, and denotes the nominal update

(52) is that it employsd|w,||, i.e., it requires the measuremen

of the spatial derivativex, (z, t). Unfortunately, the projection operator (60) is discontinuous.

This presents a problem at two levels: (1) in the analysis it
4A fairly obvious bound is|H| < 3 but a careful calculation in the vein IS nO.t pOSSIble. tO. obtain clas§|cal solutions but only Flllppov
of Lemma A.1 can establish a tighter bouffd| < 1. solutions; (2) in implementation the presence of noise may



induce frequent switching of the update law. This issue is A stabilizing control formula was designed in [25] as
not as serious as controller switching in sliding mode control 1

because the projection operator does not drive an actuator.  u(1) = —/ V/§sinh \/5(1 —g)) uw(&)d¢.  (64)
Since the projection drives only the update léwthere would

be no discontinuities if(¢) and therefore no jumps in the Consider the variable change

control action. However, obtaining classical solutions and not

having to deal with Filippov solutions is a good enough reason (%) = u( / v/ sinh \/ 5)) u(§)d¢ . (65)
to consider a continuous version of the projection operatgr

where, instead of a hard switch, a boundary layer of wid hcan be shown that

§ > 0 is introduced: v = w +§/“’w(§)sinh (Va(a — 5))015
t - TT =
0 g-o<h<fandr <0 N 0 § ve
Proﬁ {T} =7q &= g<h<fh+5andr >0 +gw(0) cosh (\/§m> (66)
1, else w,(0) = 0 (67)
(61) w(l) = 0, (68)

where the update law is scaled linearly withd in the . X _ _ _
boundary layer. With the help of [16, Lemma E.1] we get: Whereg = g — g. Consider the Lyapunov function candidate

Lemma 3: The following properties of the projection oper- 1 9 1 4
ator (61) are guaranteed V=3 log (1+ [lw]®) + 279 (69)

1) The operator 'S a IocaIIy Lipschitz function 6f7 on  Taking its time derivative we arrive at the update law

(60— 6,0+ 6] x X
2 Y : =
(Prof {7}) ; g = WPrOJ[Qﬂ {w(O)/O w(x) cosh (\/Ex) dx} .
3) For A(0) € [0 5, §+6] the solution of § = The derivative of the L function i (70)
Proﬁ {T} remains in[8 — 5,0 + 5]. e derivative of the Lyapunov function is
4 9Prof {1} < —drforalie [o-60+5.0e o2 S wa) fw Mdfdw
0.3]. M T 1+le|2
All of the properties in Lemma 3 except Lipschitzness also (71)

hold for the discontinuous projection (60), with= 0. The It can be shown that
discontinuous projection would be preferable in applications . - wel|?
for its simplicity which does not come at the expense of control V- (1 N 2762\@) 1”4_|1|l|)||2 ’ (72)
switching, and because it is a standard feature in the mtegraé?ab"ny is thus achieved whenever
block in Simulink. For these reasons and to avoid clutter in
our further presentation, we employ (60) where projection is N < }e—wf;_ (73)
needed. 2
Now we return to our presentation of the benchmark profihis condition highlights the key differences between the
lems. design for the PDE in Section Il and for the PDE (62):
1) The adaptation gain, which was limited by 1 in Section
Il, needs to decrease gsincreases in (62).

A. Bxample 1 2) The knowledge of the parameter’s upper bound is needed
Consider the plant for the plant (62). Projection is used to keep the param-
eter within the a priori bound, such that the condition
u = Uge + gu(0,1) (62) (73) is sufficient to achieve stability. It should also be
u.(0) = 0, (63) noted that stability can be achieved without projection,

. ) by selectinm to satisfy
whereg is a constant, unknown parameter and, t) is the

boundary value ofi(z, t) atz = 0. This system is inspired by y < 1 —2(V251300)+ (v 1os(1+lwo 1)) /) . (74)

a model of a thermal instability in solid propellant rockets [3]. 2

We will control this system via Dirichlet actuation(1,¢). In wherewy(z) is determined using the initial statg(x)

the absence of controly(1,¢) = 0, the system is unstable if and the initial parameter estimagg0). While it may

and only ifg > 2. We assume that this is indeed the case, be unusual to choose the adaptation gain based on
2. Let us further assume that an upper bograh ¢ is known the initial statewg, it is acceptable as a theoretical
to us. It is important to note that such an assumption was not result and consistent with the Lyapunov function (69),
made on\ in Section Il. We will design an adaptive controller yielding estimates onju(t)|| and g(¢) that depend on

in this section whose update law incorporates the standard ||uo|| andg(0). However, in application one would prefer
projection operator [16] to keep the parameter estinjate projection due to its added assurance against parameter

the interval[2, g], while driving u(z, ) to zero. drift.



Other than the use of projection, the rest of the results where§ = ¢ — ¢. Consider the Lyapunov function candidate
this section are qualitatively the same as those in Section ILI.

1 1.
One can prove boundedness in the maximum norm in a similar V=3log (14 [lw]?) + %(12 : (85)
manner as in Section lll. A lengthy calculation yields . o )
1 d Taking its time derivative we arrive at the update law
5 lws|® = ; v - 2
= Proj, - . 86

a2 — wa(1) [g cosh (\/g}) w(0)

1 sin g(1—x
+§/O w(x) h(\/\g/(gl ))dz]

The derivative of the Lyapunov function is

lwal? sy wl@) fy wl€etOdéda
T+ Juwl? "1 1+ [[w]? '

V:

(87)

1 x
_é\/g/ w(z) / sinh (@(m — 5)) w(€)déda With a lengthy, careful calculation, applying twice the Cauchy-
0 ) 0 Schwartz inequality, one can show that
~ ~ 1 T
_ggw(O)/O w(zx) cosh (\/Zyx) dz, (75) / w(x)/ w(€)e1=E) dedy
. I 0 0
hich -
which can ;Jedmajorlzed by 7 ——— QQH ’
= - ||Ww
sgpllvel® <8 (7 +3%) eV, *. (76) - 24

q
Integrating (72) and (76) one gets boundedness|wof||. < \eTIIwHQ- (88)
Regulation is shown similar as in Section Ill. The results in 2

the u(z, t) variable follow from the inverse transformation Using projection and Agmon’s inequality, it then follows that

T . B Wy 2
u(r) = w(z) + Q/O (x — Ew(&)dE. @7 V<- (1 - \/ﬁ’yeq) 1|+||1|1|)||2 . (89)
Theorem 4:Suppose that the system (62)-(64), (70) hasStability is thus achieved whenever
well defined classical solution for all > 0. Then, for any NG
initial condition ug € H; and anyg(0) € [2, g, the solutions y< e, (90)
u(zx,t) andg(t) are uniformly bounded aniim;_ . u(z,t) = ] o 2 . .
0 for all = € [0,1]. Again, projection and slow adaptation are needed to mitigate
the effect ofg in the Lyapunov analysis.

B. Example 2 We have thus proved,, stability in thew variable. Square

integrability of ||w,.(¢)|| in time also readily follows from the
Lyapunov analysis. From (89) it follows thaf is bounded
Ut = Ugy (78) from above This property is not sufficient to conclude uniform
u(0) = —qu(0,t), (79) contir_luity of |lw(t)|| and ensure the_ e_lpplica_b?lity of the
] ] classical Barbalat lemma, however, it is sufficient to meet
where ¢ is a constant, unknown parameter. This system jge conditions of the less restrictive Lemma 3.1 in [18],
also inspired by the solid propellant rocket instability [3]. Wghich implies that||w(t)] — 0 ast¢ — oc. All of the
will control this system via Dirichlet actuatiom,1,¢). In the  g16ve boundedness and regulation properties fowthariable

absence of controk(1,t) = 0, the system is unstable if and,re gis0 valid in the original: variable due to the inverse
only if ¢ > 1. We assume thaj > 1 and also that an upper ansformation

bound g on ¢ is known to us. We will design an adaptive

Consider the plant

controller with projection [16] to keep the parameter estimate u(z) = w(x) +(j/ w(§)d§ . (91)
¢ in the interval[l, g, while achieving stability. 0
A stabilizing control formula for this system is Unfortunately, boundedness af(x) and its convergence to
1 zero with time (uniformly inz) are difficult to prove because
u(l) = —/ Ged1 =)y (¢)de . (80) of the presence of the time-varying parameter efror (83).
0 This difficulty is consistent with similar observations made
The idea for this choice is due to Andrey Smyshlyaev [29] [1]. Boundedness and regulation despite uncertainty in the
Consider the variable change boundary condition was achieved in [18] but this was done
_ - (o) using a particular “nonlinear damping” feedback, which is not
w(z) = u(x) +/O qe u(€)de - (81) possible here because we do not allow actuation at0.

Theorem 5:Suppose that the system (78)—(80), (86) has a

It can be shown that . . .
well defined classical solution for all > 0. Then, for any

W = Wes +(j/ w(€)ed =8 d¢ (82) initial conditionug € Lo and anyg(0) € [1, g], the spatialL,
~ 0 norm ||u(t)|| and the estimaté(¢) remain uniformly bounded,
w.(0) = —quw(0) (83) |ju(t)| converges to zero as — oo, and u(t,z) is square

g
~

f
~—

|

0, (84) integrable int for all = € [0, 1].



Let us now consider the “frozen adaptation” version of (82)+*(a) can be a priori estimated by the designer], such that
(84), with ¢ = 0 and with a constant parameter eréprThis for all v € (0,+*) the following holds: For any initial
system is exponentially stable if and only if the estimate monditionug, n9,vo € H; and anyg(0) € [2, g], the solutions
G > q — 1. The same parametric robustness observations«&s;,t), n(z,t),v(z,t) and g(¢t) are uniformly bounded and
those made in Section V hold for the plant-controller paiim;_, ., u(z,t) = hmHoo n(z,t) = limy_,oo v(z,t) = 0 for
(78)—(80). Likewise, those observations justify the use of tradl « € [0, 1].
estimator of the type (86) where the product of the “estimation Proof: We start with a target system derived in [29],
error and regressor” is always nonnegative.

Wy = Wgg + QQ
VIII. OUTPUT-FEEDBACK DESIGNS +g cosh (\/gx) (e(0) +w(0))  (104)
A. Example 1 wy(0) = 0 (105)
As in Section VII-A, we consider the plant w(l) = 0, (106)
_ whereg = g — ¢ is the parameter estimation error, sigdal
up = tUse + gu(0,t) (2? is defined by
uz(0) = 0. = . ~
N O e et [ ) ut) M=)
Suppose that only (0, ¢), the boundary value ai(z,t) atz = o g Nz ’
0, is available for measurement, wheregd,t) is available (107)
for actuation. The transfer function from the inputl,¢) to ande(z,t) is an observer error defined as
the outputu(0, ¢) has infinitely many poles and no zeros (the e=u—gv—n, (108)
relative degree is infinite).
Instead of the unmeasurable state:), we will employ an and governed by
adaptive observer which consists of the input filter e = €y (109)
N = Nz (94) e:(0) = 0 (110)
ne(0) = 0 (95) e(l) = 0. (111)
n(1) = wu(l), (96) Consider the Lyapunov function candidate
. 1
the output filter v = 2 log (14wl + allel?) + 1 el + 5o, (112)
vy = vz +u(0) (97)  wherea € (0,1) andb are positive constants yet to be defined.
v(0) = 0 (98) We note that 14
(1) = 0, (99) 3 gllell® = —lleal? (113)
and an estimate of(z) given by and, with (108), (103), and (97)—-(99), that
1
gole) + (). 100) 2L =l + (w(0) + €(0) +g0(0)) [ v(E)ie.
0
Our adaptive controller employs the control law (114)
X With (112), (113), (114), and (104)—(106), we get
7/ \/L(TJSinh (\/5(1*5)) (gv(€)+7](£)) dgv V _ 1 { |w H2 a||v H2
0 L+ [Jw]|* + allv][? ‘ ‘
(101)
and the update law +aw(0)/ o(z)dz
i = - Proj, 5 {v(0) ’

L+ [lw][? + afjo][?

/1< v(x) + § h(\f ) )d } (102) +e(0)/0 (va(w)-i-gcosh (\/533) w(x)) dx
x g cos " "

1
43 [ vl h - e, (115)
wherea and~ are positive, sufficiently small normalization 0
and adaptation gains. The variable charigev) — w(z) is Wwhich can be majorized by

defined as . 1 a
VoS rrerraep L0 Sl - Sle?
w(z) = go(z / \/gsmh \[ 5)) )
(gv(i) (5))d€- (103) lell” +ac(0) | v(z)dz
1
Theorem 6:Suppose that the system (92)-(101), (102), +6(0)/ §cosh <\/§x)w e
(94)—(96), (97)—(99) has a well defined classical solution for 0

all ¢ > 0. Then, there existas* > 0, such that for all e ) 116
a € (0,a*) there existsy*(a) > 0 [where botha* and *9 ) w(z)Q(z)dx . (116)
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By applying Young’s inequality to the two cross-terms witt{104), is square integrable. These properties can be used to

e(0), we get

1 2

a4 (17802 ) oal?
L+ [lw]]* + allv]| p

a 2
(52 ) oel?
M2

— (b= 2020% = 2011577 e

+g[fu«chwdx},

Vv <

(117)

whereu, anduy are positive constants that we can arbitrarily

choose in our analysis. It can be shown that
[ v
which can then be used to prove that

i [ waws

<22V (0)] (aljell + e w])) . (129)

<23V (Jwl? + o]?) . (118)

show that|w, || is bounded. A similar argument, showing that
u(0) = w(0) + e(0) + gv(0) is square integrable over infinite
time, can be used to conclude thiat. || is bounded. One can
show next thatgQ + gcosh (v/gz) (e(0) + w(0)) and u(0)

are bounded and use that to prove that the time derivatives
of ||wl||?, ||v]|? are bounded. By Barbalat's lemma this implies
the regulation of||w||, ||v||, and, by Agmon’s inequality, the
regulation of w(x),v(x) for all + € [0,1]. To obtain the
corresponding boundedness and regulation results: fave

first use the inverse transformation

T

mm:wmm—@wm+g/<x—@w@ma

0
which establishes the boundedness and regulation, @nd
then invoke (108). ]

It is clear that the conservative values @f and ~* are
for the purposes of the proof only. In an implementation one
would be safe to choose higher valuesaofnd .

(128)

B. Example 2
As in Section VII-B, we consider the plant

With further calculations involving Young's, Poincare’s, and

Agmon’s inequalities, and using that fact thaty € (0,1),
one arrives at a conservative bound

hfw@@mm

7 83 9 1 2
< 8025V, |2 4 § s

(120)

Substituting this bound into (117), we get

. 1 3 2
Vv < — (= =8a— =) [lw?
1+mw+wm2{(4 m)””

a 2 7 8VE 2
(2 o 80a2e llvz]]

— (b= 2p0® = 2™ o} . (120)
Selecting now
o = L (122)
16
v = ie_sﬁ (123)
320
p = 16 (124)
16
p2 = — (125)
b = 64 (a+ §2e2ﬁ), (126)
for a € (0,a*] and~y € (0,~v*] we obtain
. 1 N 2 N 2 4b . 2
v 1 lwe]? + allve || + 4ble. | (127)

- 8
From (127) one can conclude the boundednes$wgf, ||v||

L+ [lw]? + afjo]]?

(129)
(130)

Ut = Ugy
uf(o) —qu(O,t) )

where onlyu(0,t), the boundary value ofi(z,t) at z = 0,
is available for measurement. The transfer function from the
input u(1,t) to the outputu(0,t) has infinitely many poles
and no zeros (the relative degree is infinite).

Our output feedback adaptive controller uses the same input
filter (94)—(96), but with an output filter

V= Vg (131)
v:(0) = —u(0) (132)
v(l) = 0, (133)
a control law
1
u(1) = - /0 G900 (qu(e) +n(©) de,  (134)

and an update law

X Y .
= Proj, - {v(0
1= Tl v ap e 00O

X <av(0) +4q <w(0) +q /O 1 eqzw(x)dz>)} .(135)

The variable changé, v) — w(z) is defined as

wle) = o(e) + ) + [ 4610 (qule) + nle)) de.
0 (136)
Theorem 7:Suppose that the system (129)—(134), (135),
(94)—(96), has a well defined classical solution fortat 0.
Then, there exista* > 0, such that for alla € (0,a*) there

and the integrability in time ofjw,|?, ||v.||?. From this, one existsy*(a) > 0 [where botha* and~*(a) can be a priori
can conclude thgiQ|| is bounded and, with Agmon’s inequal-estimated by the designer], such that for gl (0,+*) the
ity, that ¢ is square integrable over infinite time, which imfollowing holds: For any initial conditiong, 79, vg € Lo and

plies thatéHQH is square integrable. Agmon’s inequality alsany ¢(0) €

[1,q], the spatialLy norms ||u(t)]l, |9, [|[v|| and

guarantees thatcosh (v/gz) (e(0) + w(0)), which appears in the estimatej(t) remain uniformly bounded|u(t)]], |7, |||



converge to zero as — oo, andu(t,z),n(t, ),
square integrable in for all z € [0, 1].

v(t,z) are we get

11

To prove this result we start with a target system derived Wy = EWgp +bw, —cw
in [29], + [ (e, ule) de
Wy = Wgy x ,
. @ +b/ e1(x ) d§
sifos [Ce o) + () de ) o
0
+3%e% ((0) + qu(0)) (137) +A /0 p2(z )dg
wz(0) = —G(e(0) +qv(0)) (138) e
w(l) = 0, (139) Wtz 0 <p3(x §w(€) d§
and then proceed with the Lyapunov function (112), wjth
instead ofg, going through inequalities as in Section VIII- +b /O ps(a €) dg + hw (148)
A. The regulation is deduced as in Section VII-B, using the ;) = o, (149)
upperboundedness df (¢), the square integrability in time of (1) 0 (150)
lwz ], llvz||, and]le.|| [all those properties are obtained from v o
an inequality similar to (127)], and Lemma 3.1 in [18]. Th&vhere
inverse transformation needed for deducing the properties of A+ e P
n andu from the properties ofv, v, e is wo(z,§) = —pa(x,8) — zp1(x,§) (151)
3 3
Wa) =)~ o) +q [ w@d. Q0 e = LSk
0
IX. DESIGN FORSYSTEMS WITH UNKNOWN DIFFUSION +% (x — o)k(z,0)l(0,§) (152)
AND ADVECTION COEFFICIENTS € Je
For the sake of clarity we started in Section Il with a po(z,&) = 2%6—%(1—5) (153)

reaction-diffusion system with only an unknown reaction co-
efficient. In this section we show how one can also incorporateps(x, £)
adaptation for unknown diffusion and advection coefficients.

divi(z, €) + / " (divk(, 0))i(0, €) do (154)
3

Consider the system and
Ut Elgy + bug + Au (141) divk(z,€) = lk‘(x,g) L A —i— ce_%(x_g) £
u(0) = 0, (142) 3 z+¢
wheree, b, A are unknown constants. Aec ) )
The control law for this system is [25] x I ( é ] )) (155)
13 N
u(l) = —/ A + Cfe‘z%(l—@ Based on (148) and the Lyapunov function
0 €
: 1 22 4 )2 4 N2
n(yia-e) v, <log<1 +lwl?) + **) (156)
X - u(§)ds,  (143)
Ate(] —¢2) we choose the update laws
whereé, b, \ are the estimates af b, A andc > 0 is a design § _ 5 Jlw]? (157)
gain. Using the transformation 1+ [jw|?
: Jo w(@) J§ p3(@, Ow(€) déda
w(z) = u() —/ k(x, €)u(€) de (144) b = = T e (158)
0
; e < [322 (22 52)) ; (A4 ) Il + fy w(e) fi sl w(€) dedz
E = - =
B(r,6) = - (145) ! E(+wl?)
2% (22 - €2) (159)
and its inverse where projection is used (though we don't explicitly include
B * it in the definition of the update laws) to keep the parameter
ulz) = +/0 U, w(€) d (146)  estimates within a priori bounda, \], [b, 8], and|e, ], where
e £ > 0. As in the previous problems; is limited by an upper
Ste N1 ( (% - 52)> bound which can be a priori computed.
W(z,§) = - Z gem2e (=) = (147)  Theorem 8:Suppose that the system (141)—(143), (157)-
Ate (g2 — ¢2) (159) has a well defined classical solution fortatt 0. Then,
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there existsy* > 0 such that, for ally € (0,7%), for any where
initial condition uo € H; and anyA(0) € [A Al b(0) € [b, ], G _
and£(0) € [g, &], the solutionsu(z,t) and \(t), b(t),£(t) are (z) = bug .
uniformly bounded andim; ., u(z,t) = 0 for all z € [0, 1]. +é/ po(x, §)w(E) dE
Proof: It can be shown that 0
.1 - + [ ol ule) de
+2F +bFy + AR ) | (160) A /0 2, w(€) dg
where + 222 [ e gu©de. (169)
0
1 x
F) = [ w@) [ e u@deds (161) Next we note that
0 0 X
. . . ) Al < v (170)
fori=0,1,2,3. By applying the Cauchy-Schwartz inequality )
twice to (161), we get bl < M (171)
1 T 1/2 A
gl < M. 172
|Fy| < [|w]? (/ / goi(x,f)Qdfdx) . (162) = (172)
0 0 72
| o LD <, (173)
Because the functiong;(z, &) are continuous in,§,€,0,A €
over the domain of their definition given 1% x [, £] x [b, b] x h
AN, wheree > 0 and7 = {z,éeR0< <z <1}, it "VNe€ ) )
can be shown that there exist continuous, nonnegative-valued, .~ max {IALL A} + ¢+ Msmax {|b], |b]} (174)
nondecreasing function®/; : R, — R such that o e
L N ) ) ) — (175)
[ o) [ oo €ute) dedo < v (218 LA ) E
0 0 With Young'’s inequality we get
(163)
The simplest one among these functions is 1 , 1 )
1 o - / o (0)G(2)de < sl + |G (A76)
My = ——ez mx{bhPl} 164 ‘
2 4\/§§e (164) Let us denote
From (160)—(163), it follows that Hie) = / (o, E0(E) e a7
: 1 o] y
V < —0 [—5||wgc|2—cw||2+w2 for ¢+ = 0,1,2,3, for which, with the Cauchy-Schwartz
1+ Jlw] 1+ ] inequality, we get
Al +c b
<’ ’5 Mo + b ’MgMo + M3 My +M2>](165) [ H:l| < M;|jw]| . (178)

Then, from (169)-(178), with the triangle inequality and
where we emphasize the emergence of the fourth power (glncares inequality we obtain

||lw| in the last term of the first line of (165). By applying

Poincare’s inequality we obtain 1G> < 8[b+~y (MyM§ + MsM; + M3)
« My M2 ||w,||? . 17
E Va0 8 Gt 7 PN M5 Mg] | A79)
- 1+ |Jwl||? ’ Substituting (179) into (176) and then into (168), we get
where 1d
5 Zllwel < Nljuw |2, (180)
Ate,, ., Bl B
y Z( — My + M3M0+M3M1 +M2> . Wwhere
= 2
(167) N(t) = = b+ (MyM§ + MzM} + M3) + MsM3)
This establishes the boundednesg|af| for v < ~*. IS S
To prove the boundedness (b, ||%, we show that - (181)
3
1d Dl = —eflwns? ec+ e+ )\EHw 2 is bounded. WitH|w/| bounded, from (166) we get théiv,||?

2 dt € is integrable over infinite time. By integrating (180), it follows
! that ||w, || is bounded. By Agmon’s inequalityy(x, t) is also
_/0 Wea(2)G(2)dz (168)  pounded for allt > 0 and for allz € [0, 1].
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To show regulation, we calculate I(z,€), and divk(x, ) redefined as

Ld, 2 — 2 2L iR b 4 K(r,6) = —age3@9 186
§£||w\| = —g|lwg|® = c||w||® + EFy + bF1 + AF; (z,€) 3 ) (186)

O (Ve

— - F bF: . 1
5( B H’LUH + 2 3) + 3+)‘Hw|| 1(3375) — _dgefg(xfﬁ) ( A(xQ _52) ) (187)
(182) 1
divk(z,§) = gk(x,f)

All of the terms on the right hand side of this inequality have f o~ (z—g) S 9 2
been proved to be bounded. Therefofg|w||? is bounded. +ae $+512< a@® =& )> (188)
Since||lwl|? is also integrable over infinite time, by Barbalat's
lemma [|w(t)|| — 0 ast — oo. Regulation in maximum X. CONCLUSIONS ANDFUTURE WORK
norm follows from Agmon’s inequality and the boundedness o .
of |Jw,]l. The need for projection and a bound on the adaptation

gain are the key limitations of the Lyapunov approach. In a

(hose for(s. 1), we recal the inverse wransformation (14g)SCTPAMION paper on "estimation-basec” approaches t0 adap-
(147), which is a bounded operator in bath and H,. tive control of PDEs [28] we present methods which do

not require projection and which work without limits on the
While the Lyapunov design requires the use of projectiogfyaptation gain. These methods employ ‘passivity/observer-
and a low adaptation gain, one of its remarkable propertiesjgsed’ and ‘swapping-based’ identifiers presented for finite-
that, even though the plant has parametric uncertainties Muffimensional systems in [16]. However, in the case of uncertain
plying u, andu,,, the adaptive scheme does not require th§ffusion and advection coefficients, these schemes require the
measurement of neither, nor u,,. The update laws (157)— measurement af,, (, ¢) (and in some cases of,, (z, t)), like
(159) employ only the measurement@f This is in contrast the schemes in [1], [2], [7], [30]. The Lyapunov schemes in
with adaptive controllers in [1], [2], [7], [30] for reaction- section IX require only the measurementufr, ¢).
advection-diffusion systems which require the measuremeniyhile, for the sake of clarity, we chose to present our design
of ug, to estimate the unknown diffusion coefficient tools through benchmark problems, it is possible to develop
The update laws emplays(z, &) which is given in quadra- an adaptive controller for the class of systems
tures. The integral in (154) would be calculated numerically,
just like the other integrals appearing in the update laws and U = EUgg + bug + Au+ gu(0) (189)
depending on the measured state, t). uy(0) = —qu(0), (190)

Remark 5:It should be pointed out that in the Lyapunov

e . - . wher re unknown. It is al ibl
approach the diffusion coefficient need not be est|matedwhznet5h’ebég’ g(,)gff?cieenuts arc; s attiaﬁ avZ? IF;] ossat;ee;olgﬁezoin
directly. This is analogous to the finite dimensional adapti P y varying, P

i . emark 2.
coqtrol [16]_where_ the “high frequency gain” need no_t be At present we have not worked out how to extend the
estimated directly in the Lyapunov approach, whereas in the

passive or swapping approaches it needs to be estimated. [ﬁ%ﬂt of Section IX to the output-feedback case. Even though

estimation ot is avoided by denoting the unknown parameter%Oundary observers for this class of systems were developed

o = (A+c)/z and 3 — b/e and by replacing the adaptivem [26] for the case where, b, A are known, the design of
controller (143) by adaptive observers will be more complex than for the systems

in Section VIII. In [29] we present the estimation-based
versions of the Lyapunov output-feedback designs presented

_/1 s b (\/W) here.
0

u(l) = age— 20178 u(€)d¢, (183) It is possible to extend the results of this paper to special
(1 —¢€2) geometries in arbitrary dimension. For example, in 3D it
is possible to extend them to domains in the shape of a

by replacing the update laws (157)-(159) by rectangular parallelepiped with,, in (189) replaced by\u

andbu, replaced byb,uy + bauy + bsu,. It is shown in [28]
how to deal with higher dimensions, thus we do not pursue

A J[w]® them here
= Y 184 .
R ey P (184)
1 x
5 o= Jo w(z) folsf:)(zﬁ:)w(f) déda (185) APPENDIX
Lemma A.1:
1 x

(equipped with appropriate projection), and by usingand / w(z) (/ fw(f)df) dz| < LHwHQ. (A1)
3 as defined in (144) and (154), respectively, with, &), 0 0 2v3
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Proof: Using the Cauchy-Schwartz inequality twice weave get
obtain the following sequence of inequalities: /£
0

o ([ evterie) ao
s/l ol ([ elute |d€> T ) :g
< [ ([ §d£) ( [ wterie) as - [ Swene a.6)

< ||lw w(z —x3/2dz n
< [ fote) v
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