
Brigham Young University Brigham Young University

BYU ScholarsArchive BYU ScholarsArchive

Faculty Publications

1992-10-01

Adaptive Boundary Detection Using “Live-Wire” Two-Dimensional Adaptive Boundary Detection Using “Live-Wire” Two-Dimensional

Dynamic Programming Dynamic Programming

William A. Barrett
william_barrett@byu.edu

Bryan S. Morse
morse@byu.edu

Eric N. Mortensen

Jayaram Udupa

Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

 Part of the Computer Sciences Commons

Original Publication Citation Original Publication Citation
E. N. Mortensen, B. S. Morse,W. A. Barrett, and J. K. Udupa, "Adaptive boundary dectection using

'livewire' two- dimensional dynamic programming," in IEEE Proceedings of Computers in

Cardiology, pp. 635-638, October 1992.

BYU ScholarsArchive Citation BYU ScholarsArchive Citation
Barrett, William A.; Morse, Bryan S.; Mortensen, Eric N.; and Udupa, Jayaram, "Adaptive Boundary
Detection Using “Live-Wire” Two-Dimensional Dynamic Programming" (1992). Faculty Publications. 713.
https://scholarsarchive.byu.edu/facpub/713

This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been
accepted for inclusion in Faculty Publications by an authorized administrator of BYU ScholarsArchive. For more
information, please contact ellen_amatangelo@byu.edu.

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/facpub
https://scholarsarchive.byu.edu/facpub?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/facpub/713?utm_source=scholarsarchive.byu.edu%2Ffacpub%2F713&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ellen_amatangelo@byu.edu

Adaptive Boundary Detection Using “Live-Wire” Two-Dimensional
Dynamic Programming

Eric Mortensen, Bryan Morse, William Barrett, Jayaram Udupa*

Department of Computer Science, Brigham Young University, Provo, Utah
*Medical Image Processing Group, Department of Radiology, Univ. of Pensylvania

Abstract

An adaptive boundary detection algorithm that uses
two-dimensional dynamic programming is presented. The
algorithm is less constrained than previous one-
dimensional dynamic programming algorithms and allows
the user to interactively determine the mathematically
optimal boundary between a user-selected seed point cad
any other dynamically selected ‘Ifree” point in the image.

Interactive movement of the free point by the cursor
causes the boundary to behave like a “live wire” as it
adapts to the new minimum cost path between the seed
point and the currently selectedfree point. The algorithm
can also be adapted or customized to learn boundary-
defining features for a particular class of images.

Adaptive 2 0 DP performs well on a variety of images
(angiocardiograms, CT, MRI). In particular, it accurately
detects the boundaries of low contrast objects, such as
occur with intravenous injections, as well as those found
in noisy, low SNR images.

1 . Introduction

Defining an object’s boundary is a general problem in
medical imaging as well as many other image processing
fields. The segmentation problem (ie. defining the
boundariedareas of the objects of interest in an image) has
not been solved in a fully automated way. Many current
edge following techniques exist which employ local edge
gradient and/or orientation information combined, at
times, with some idea of an object template. Such
techniques are limited by the relative local strength of the
edge “criteria“ as compared to the criteria for neighboring
edges and/or noise.

Dynamic programming (DP) attempts to overcome the
problems associated with using only local information for
edge following. It does this by employing both local
gradient information with global “edge cost“ information.
In general, one-dimensional dynamic programming (1-D
DP)[1-4,6] attempts to discover a globally optimal edge
path but imposes directional sampling and searching
constraints for two-dimensional (2-D) images: thus
requiring 2-D boundary templates.

This paper presents a new technique in dynamic
programming which allows freedom in two variables
(2-D) as compared to freedom in one variable for 1-D DP.
Two-dimensional dynamic programming (2-D DP) may
discover a globally optimal boundary path that is allowed
to vary freely between any given starting seed point and
any other free point in the image. Further, 2-D DP can be
used to dynamically and interactively define the desired
boundary using an active contour (“live-wire”) with
minimal user interaction--typically two to four seed points
per boundary.

2 . 2-D dynamic programming

As with 1-D DP, 2-D dynamic programming can be
formulated as a directed graph-searching problem. The
goal is to find the globally “optimal” (least cost or
greatest cost) path between start and end points or nodes in
the directed graph.

Formulating dynamic programming as a graph-
searching problem quires nodes and arcs between nodes.
For 2-D images, pixels becomenodes with (initial) local
costs calculated for each pixel and its neighbors. Arcs are
defined as connections between a pixel and its neighbors.
We define the globally “optimal” path as the minimum
cumulative cost path between the start and end points.

2.1 Connectivity

The basic difference between 1-D and 2-D dynamic
programming lies in defining the connectivity between
nodes/pixels. 1-D DP constrains node connections to be
in the approximate direction of the end node. That is,
node connections must be “in front” of each current node
towards the end node. Thus, 1-D DP constrains the path
to freedom in only one variable (y).

However, 2-D DP allows
freedom in two variables (x and
y). Thus, node connections exist
for a node’s entire neighborhood
(ie. in front, to the side, and in (a)
back). Figure 1 illustrates the Figure l.(a) 1-D DP
differences between 1-D and 2-D
connectivity. connectivity .

(b)

and (b) 2-D DP

635
0276-6547192 53.00 0 1992 IEEE

These connectivity dif€erences can result in a different
globally optimal 1-D DP path than for a 2-D DP path.
Figure 2 shows how a globally optimal 1-D DP path can
differ from a 2-D DP path. As can be seen, 1-D DP must
cut across the peninsula since it can only search forward
(in the x direction).

1-D DPPath - 2-D DPPath

Figure 2. 1-D DP vs. 2-D DP path.
I

2 2 Cost matrix

Initially, we generate a two-dimensional “cost matrix“
where every element in the matrix corresponds to an
image pixel with the cost defined by the pixel’s local
boundary criteria. The cost matrix is generated as a
function of the image’s gradient magnitude and gradient
orientation. Letting G, and G, represent the horizontal
and vertical gradients of the image, then the cost matrix
c(x,y) is genemM as follows:

c(x,y) = Iqy(G(x.y)) - G(x,y)I + alO(x.y) 9f - O(X.Y)~
where G(x,y) and O(x,y) are the gradient magnitude d
orientation images respectively, f is an averaging or
gaussian filter and a is a scaling factor. Note that the
gradient magnitude image is subtracted from the
maximum gradient magnitude value so that strong
gradients represent low costs. Further, the absolute
difference between the low-pass filtered orientation image
and itself will also be low if a pixel’s neighborhood
contains gradient orientations that are similar to itself.
Thus, low local edge costs correspond to pixels with
strong gradient magnitude and gradient orientations similar
to its neighbors. Figure 3a is an example cost matrix.

Associated with the cost matrix is a connection
weighting matrix. Each connection is “weighted” such
that diagonal connections have higher cost than horizontal
or vertical connections. The horizontal and vertical
connections have unity weights whereas the diagonal

connections are weighted by 42, thus maintaining
Euclidean distance weighting for the neighborhood.

2.3 Optimal path generation

Since the cost matrix and graph connectl ‘ons a ~ . defined
in image space terms, imagespace terms will be used to
describe the 2-D DP algorithm.

Unlike most other dynamic programming or graph-
searching algorithms, we do not defme both a start point
and end point. Rather, we calculate the globally optimal
path from a start or seed point to all other points/pixels in
the image in an incremental fashion. The algorithm is
similar to a well-known heuristic search algorithmrq and
is as follows:

cr -> local cost lor point x.
pc -> optimal path pointer from point x.
wxy -> mnecbOn wight between pints x and y.
Tx -> total accumulaesd cost to pant x.
L -> list of ”auive” points sorted by btal costs (initially empty).

d
d

end
end

Starting with a user-defmed seed point, the algorithm
places that point on an initially empty sorted list, L. The
point, x, with minimum total cost, T, (initially on the
seed point), is then removed from the list andchecked for
unprocessed neighbors. A total cost, T,, is then
computed for each unprocessed point y in the
neighborhood of x. T, is computed as the sum of the
total cost to x, T,, and the weighted local cost from x to
y, wxYcy. Each neighboring point, y, along with its
associated total cost, is added to the sorted list for later
processing and the optimal path pointer for the neighbor
is set to the point being processed. If the neighboring
point is a diagonal then it is marked as such since it may
be necessary to recompute the total cost to that point.

Figure 3 gives an example of how the total cost and
the least cost path is computed. Figure 3a is the initial
local cost matrix with the seed point circled. Figure 3b
shows the total cost/path matrix after the seed point has
been processed. Figure 3c shows the matrix after

636

processing 2 points--the seed point and the next lowest
total cost point on the sorted list. Notice how the points
diagonal to the seed point have changed total cost and
direction pointers. The Euclidean weighting between the
seed and diagonal points make them more expensive than
non-diagonal paths. Figures 3d, 3e, and 3f show the
matrix at various stages of completion. Note how the
algorithm produces a “wave-front” of active points and
that the wave-front grows out faster were there are lower
costs. Thus the wave-front grows out more quickly along
edges in the image,

’ 41 35 31 29 35

38 29‘2!4 2?!!24!29

28\11 l b L 2 1 - 2 8 \37

18 12 16-27 38

14‘!’13 20’29 35 52 36 28 32 I 14: ‘I’ b b012 11’22’28 35 27‘24’31

1 8 - 7‘1° 9 !- b - 1 1 5 1 1 ! i i 2 3 2 2

116- 4 p !i ~ - U ‘ ~ ~ - I S & - Z ~ ‘ ~ O ~

18’13 \‘14 \7 1 1 \ 7 2 4 ‘ 3 0

(e)

(f)

Figure 3.(a) Initial local cost matrix. (b) Seed point
(shaded) processed. (c) 2 points (shaded) processed. (d) 5
points (shaded) processed. (e) 47 points processed. (f)
Finished total cost and path matrix with two of many paths
indicated.

2.4 Live-wire 2-D DP

Once the path matrix is finished, a boundary path can
be chosen dynamically via a “free” point. Interactive
movement of the h e point by cursor position causes the
boundary to behave like a live-wire as it adapts to the new
minimum cost path. Thus, by constraining the seed point
and the free point to lie near a given edge, the user is able
to interactively “wrap” the live-wire boundary around the
object of interest. When movement of the free point
causes the boundary to digress from the desired object
edge, input of a new seed point prior to the point of
departure reinitiates the 2-D DP boundary detection. This
causes potential paths to be recomputed from the new seed
point, while effectively “tieing off” the boundary
computed up to the new seed point. Figures 4 and 5 show
two example images (an MRI scan and a left
ventriculogram) and indicate how many seed points each
outlined object required.

3 . Results

Adaptive 2-D DP performs well on a variety of images
(angiocardiograms, CT, MRI). In particular, it accurately
detects the boundaries of low contrast objects, such as
occur with intravenous injections, as well as those found
in noisy, low S N R images. Boundaries are typically
detected with two to four seed points.

Figure 4. MRI scan with left ventricle outlined and seed
points and free point circled.

637

The algorithm’s computational complexity for a N
image pixels is 00. This can been seen by examining
the algorithm in a worst case situation. Suppose first that
all the weights were unity, then once a total cost to a
point is computed, it is not computed again since that
total cost already represents the minimum cost to that
pixel. Thus the total cost is computed only once for each
of the N pixels. ‘There is also some computation required
to add the point to a sorted list. But the unique conditions
of this algorithm allow us to use a sort algorithm that
requires only an array indexing operation (indexed by total
cost) and changing two pointers. Thus, the computation
complexity for sorting N points is N . Now, since the
diagonal weights are not unity, then it may become
necessary to recompute the cost to those points processed
initially as diagonal neighbors. In the worst case, this
will have to be done for half the points in the matrix since
half of the points will be initially processed as diagonal
neighbors. This means in the worst case that total costs
for N/2 points will have to be recomputed and those
points will have to be madded to the sorted list again.
The algorithm’s computational complexity is therefore N
(to calculate the total costs) + N (to add N points to the
sorted list) + N (to recompute the costs for diagonals and
add them again to the list) = 3N, or O(N). This is
comparable to the complexity for the more restricted 1-D
DP algorithm.

Figure 5. Coronary angiogram with vessel outlined and
seed and free points circled.

The algorithm was implemented on a IBM compatible
33 MHz ‘386 with ‘387 co-processor and a hardware
imaging board. Generating the cost matrix for a 512x512
image requires approximately 45 seconds but only needs
to be done once per image. The user then selects a seed
point interactively with the mouse. “Growing” the
optimal path map requires up to one and a half minutes
per seed point for a 512x512 image but this process in
usually interrupted after 15 to 20 seconds when the DP
wave-front encloses the desired object or point. The user
can then use the path matrix to interactively wrap a
boundary around the desired object Though this process
requires a small delay for each seed point, we are currently
porting this algorithm to HP workstations where we
expect to generate the optimal path matrix at interactive
speeds.

4 . Conclusions

An algorithm has been presented for iterative
determination of globally optimal paths derived from local
gradient magnitude and orientation information. The
algorithm uses two-dimensional dynamic programming
and can be applied to a variety of image types and
anatomy. 2-D DP performs well based on visual
comparison and is the same order of complexity as the
more restrictive 1-D DP.

By calculating the optimal path from all points to a
seed point, 2-D DP accommodates interactive selection of
the desired optimal path via a “live-wire”, making it a
valuable interactive tool for defining an object’s
boundaries.

References

[l] D. H. Ballard and C. M. Brown, Computer Vision,
Prentice Hall, Englewood Cliffs, NJ. 1982.

[2] Y. P. Chien and K. S. Fu. “A Decision Function Method
for Boundary Detection,” Computer Graphics and Image
Processing. Vol. 3, No. 2. pp. 125-140, June 1974.

[3] A. Martelli, “An Application of Heuristic Search
Methods to Edge and Contour Detection.”
Communications of the ACM Vo1.19, No. 2, pp. 73-83,
February 1976.

[4] U. Montanari, “On the Optimal Detection of Curves in
Noisy Pictures,” Commrtnicationr of the ACM, Vol. 14.
No. 5, pp. 335-345, May 1971.

[5] N. J. Nilsson, Principles of Artificial Inteiiigence, Palo
Alto, CA:Tioga, 1980.

[6] D. L. Pope, D. L. Parker, D. E. Gustafson. and P. D.
Clayton, “Dynamic Search Algorithms in Left
Ventricular Border Recognition and Analysis of
Coronary Arteries,” IEEE Proceedings of Computers in
Cardiology, pp. 71-75, September 1984.

638

	Adaptive Boundary Detection Using “Live-Wire” Two-Dimensional Dynamic Programming
	Original Publication Citation
	BYU ScholarsArchive Citation

	Adaptive boundary detection using 'live-wire' two-dimensional dynamic programming - Computers in Cardiology 1992, Proceedings of

