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Adaptive Boundary Detection Using “Live-Wire” Two-Dimensional 
Dynamic Programming 

Eric Mortensen, Bryan Morse, William Barrett, Jayaram Udupa* 

Department of Computer Science, Brigham Young University, Provo, Utah 
*Medical Image Processing Group, Department of Radiology, Univ. of Pensylvania 

Abstract 

An adaptive boundary detection algorithm that uses 
two-dimensional dynamic programming is presented. The 
algorithm is  less constrained than previous one- 
dimensional dynamic programming algorithms and allows 
the user to interactively determine the mathematically 
optimal boundary between a user-selected seed point cad 
any other dynamically selected ‘Ifree” point in the image. 

Interactive movement of the free point by the cursor 
causes the boundary to behave like a “live wire” as it 
adapts to the new minimum cost path between the seed 
point and the currently selectedfree point. The algorithm 
can also be adapted or customized to learn boundary- 
defining features for a particular class of images. 

Adaptive 2 0  DP performs well on a variety of images 
(angiocardiograms, CT, MRI). In particular, it accurately 
detects the boundaries of low contrast objects, such as 
occur with intravenous injections, as well as those found 
in noisy, low SNR images. 

1 .  Introduction 

Defining an object’s boundary is a general problem in 
medical imaging as well as many other image processing 
fields. The segmentation problem (ie. defining the 
boundariedareas of the objects of interest in an image) has 
not been solved in a fully automated way. Many current 
edge following techniques exist which employ local edge 
gradient and/or orientation information combined, at 
times, with some idea of an object template. Such 
techniques are limited by the relative local strength of the 
edge “criteria“ as compared to the criteria for neighboring 
edges and/or noise. 

Dynamic programming (DP) attempts to overcome the 
problems associated with using only local information for 
edge following. It does this by employing both local 
gradient information with global “edge cost“ information. 
In general, one-dimensional dynamic programming (1-D 
DP)[1-4,6] attempts to discover a globally optimal edge 
path but imposes directional sampling and searching 
constraints for two-dimensional (2-D) images: thus 
requiring 2-D boundary templates. 

This paper presents a new technique in dynamic 
programming which allows freedom in two variables 
(2-D) as compared to freedom in one variable for 1-D DP. 
Two-dimensional dynamic programming (2-D DP) may 
discover a globally optimal boundary path that is allowed 
to vary freely between any given starting seed point and 
any other free point in the image. Further, 2-D DP can be 
used to dynamically and interactively define the desired 
boundary using an active contour (“live-wire”) with 
minimal user interaction--typically two to four seed points 
per boundary. 

2 .  2-D dynamic programming 

As with 1-D DP, 2-D dynamic programming can be 
formulated as a directed graph-searching problem. The 
goal is to find the globally “optimal” (least cost or 
greatest cost) path between start and end points or nodes in 
the directed graph. 

Formulating dynamic programming as a graph- 
searching problem quires  nodes and arcs between nodes. 
For 2-D images, pixels becomenodes with (initial) local 
costs calculated for each pixel and its neighbors. Arcs are 
defined as connections between a pixel and its neighbors. 
We define the globally “optimal” path as the minimum 
cumulative cost path between the start and end points. 

2.1 Connectivity 

The basic difference between 1-D and 2-D dynamic 
programming lies in defining the connectivity between 
nodes/pixels. 1-D DP constrains node connections to be 
in the approximate direction of the end node. That is, 
node connections must be “in front” of each current node 
towards the end node. Thus, 1-D DP constrains the path 
to freedom in only one variable (y). 

However, 2-D DP allows 
freedom in two variables (x and 
y). Thus, node connections exist 
for a node’s entire neighborhood 
(ie. in front, to the side, and in (a) 
back). Figure 1 illustrates the Figure l.(a) 1-D DP 
differences between 1-D and 2-D 
connectivity. connectivity . 

(b) 

and (b) 2-D DP 
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These connectivity dif€erences can result in a different 
globally optimal 1-D DP path than for a 2-D DP path. 
Figure 2 shows how a globally optimal 1-D DP path can 
differ from a 2-D DP path. As can be seen, 1-D DP must 
cut across the peninsula since it can only search forward 
(in the x direction). 

1-D DPPath - 2-D DPPath 

Figure 2. 1-D DP vs. 2-D DP path. 
I 

2 2  Cost matrix 

Initially, we generate a two-dimensional “cost matrix“ 
where every element in the matrix corresponds to an 
image pixel with the cost defined by the pixel’s local 
boundary criteria. The cost matrix is generated as a 
function of the image’s gradient magnitude and gradient 
orientation. Letting G, and G, represent the horizontal 
and vertical gradients of the image, then the cost matrix 
c(x,y) is genemM as follows: 

c(x,y) = Iqy(G(x.y)) - G(x,y)I + alO(x.y) 9f - O(X.Y)~ 
where G(x,y) and O(x,y) are the gradient magnitude d 
orientation images respectively, f is an averaging or 
gaussian filter and a is a scaling factor. Note that the 
gradient magnitude image is subtracted from the 
maximum gradient magnitude value so that strong 
gradients represent low costs. Further, the absolute 
difference between the low-pass filtered orientation image 
and itself will also be low if a pixel’s neighborhood 
contains gradient orientations that are similar to itself. 
Thus, low local edge costs correspond to pixels with 
strong gradient magnitude and gradient orientations similar 
to its neighbors. Figure 3a is an example cost matrix. 

Associated with the cost matrix is a connection 
weighting matrix. Each connection is “weighted” such 
that diagonal connections have higher cost than horizontal 
or vertical connections. The horizontal and vertical 
connections have unity weights whereas the diagonal 

connections are weighted by 42, thus maintaining 
Euclidean distance weighting for the neighborhood. 

2.3 Optimal path generation 

Since the cost matrix and graph connectl ‘ons a ~ .  defined 
in image space terms, imagespace terms will be used to 
describe the 2-D DP algorithm. 

Unlike most other dynamic programming or graph- 
searching algorithms, we do not defme both a start point 
and end point. Rather, we calculate the globally optimal 
path from a start or seed point to all other points/pixels in 
the image in an incremental fashion. The algorithm is 
similar to a well-known heuristic search algorithmrq and 
is as follows: 

cr -> local cost lor point x. 
pc -> optimal path pointer from point x. 
wxy -> mnecbOn wight between pints x and y. 
Tx -> total accumulaesd cost to pant x. 
L -> list of ”auive” points sorted by btal costs (initially empty). 

d 
d 

end 
end 

Starting with a user-defmed seed point, the algorithm 
places that point on an initially empty sorted list, L. The 
point, x, with minimum total cost, T, (initially on the 
seed point), is then removed from the list andchecked for 
unprocessed neighbors. A total cost, T,, is then 
computed for each unprocessed point y in  the 
neighborhood of x. T, is computed as the sum of the 
total cost to x, T,, and the weighted local cost from x to 
y, wxYcy. Each neighboring point, y, along with its 
associated total cost, is added to the sorted list for later 
processing and the optimal path pointer for the neighbor 
is set to the point being processed. If the neighboring 
point is a diagonal then it is marked as such since it may 
be necessary to recompute the total cost to that point. 

Figure 3 gives an example of how the total cost and 
the least cost path is computed. Figure 3a is the initial 
local cost matrix with the seed point circled. Figure 3b 
shows the total cost/path matrix after the seed point has 
been processed. Figure 3c shows the matrix after 
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processing 2 points--the seed point and the next lowest 
total cost point on the sorted list. Notice how the points 
diagonal to the seed point have changed total cost and 
direction pointers. The Euclidean weighting between the 
seed and diagonal points make them more expensive than 
non-diagonal paths. Figures 3d, 3e, and 3f show the 
matrix at various stages of completion. Note how the 
algorithm produces a “wave-front” of active points and 
that the wave-front grows out faster were there are lower 
costs. Thus the wave-front grows out more quickly along 
edges in the image, 

’ 41 35 31 29 35 

38 29‘2!4 2?!!24!29 

28\11  l b L 2 1 - 2 8  \37 

18 12 16-27 38 

14‘!’13 20’29 35 52 36 28 32 I 14: ‘I’ b b012 11’22’28 35 27‘24’31 

1 8 -  7‘1° 9 !- b - 1 1 5 1  1 ! i i 2 3 2 2  

116- 4 p  !i ~ - U ‘ ~ ~ - I S & - Z ~ ‘ ~ O ~  

18’13 \‘14 \7 1 1 \ 7 2 4 ‘ 3 0  

(e) 

(f) 

Figure 3.(a) Initial local cost matrix. (b) Seed point 
(shaded) processed. (c) 2 points (shaded) processed. (d) 5 
points (shaded) processed. (e) 47 points processed. (f) 
Finished total cost and path matrix with two of many paths 
indicated. 

2.4 Live-wire 2-D DP 

Once the path matrix is finished, a boundary path can 
be chosen dynamically via a “free” point. Interactive 
movement of the h e  point by cursor position causes the 
boundary to behave like a live-wire as it adapts to the new 
minimum cost path. Thus, by constraining the seed point 
and the free point to lie near a given edge, the user is able 
to interactively “wrap” the live-wire boundary around the 
object of interest. When movement of the free point 
causes the boundary to digress from the desired object 
edge, input of a new seed point prior to the point of 
departure reinitiates the 2-D DP boundary detection. This 
causes potential paths to be recomputed from the new seed 
point, while effectively “tieing off” the boundary 
computed up to the new seed point. Figures 4 and 5 show 
two example images (an MRI scan and a left 
ventriculogram) and indicate how many seed points each 
outlined object required. 

3 .  Results 

Adaptive 2-D DP performs well on a variety of images 
(angiocardiograms, CT, MRI). In particular, it accurately 
detects the boundaries of low contrast objects, such as 
occur with intravenous injections, as well as those found 
in noisy, low S N R  images. Boundaries are typically 
detected with two to four seed points. 

Figure 4. MRI scan with left ventricle outlined and seed 
points and free point circled. 
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The algorithm’s computational complexity for a N 
image pixels is 00. This can been seen by examining 
the algorithm in a worst case situation. Suppose first that 
all the weights were unity, then once a total cost to a 
point is computed, it is not computed again since that 
total cost already represents the minimum cost to that 
pixel. Thus the total cost is computed only once for each 
of the N pixels. ‘There is also some computation required 
to add the point to a sorted list. But the unique conditions 
of this algorithm allow us to use a sort algorithm that 
requires only an array indexing operation (indexed by total 
cost) and changing two pointers. Thus, the computation 
complexity for sorting N points is N . Now, since the 
diagonal weights are not unity, then it may become 
necessary to recompute the cost to those points processed 
initially as diagonal neighbors. In the worst case, this 
will have to be done for half the points in the matrix since 
half of the points will be initially processed as diagonal 
neighbors. This means in the worst case that total costs 
for N/2 points will have to be recomputed and those 
points will have to be madded to the sorted list again. 
The algorithm’s computational complexity is therefore N 
(to calculate the total costs) + N (to add N points to the 
sorted list) + N (to recompute the costs for diagonals and 
add them again to the list) = 3N, or O(N). This is 
comparable to the complexity for the more restricted 1-D 
DP algorithm. 

Figure 5. Coronary angiogram with vessel outlined and 
seed and free points circled. 

The algorithm was implemented on a IBM compatible 
33 MHz ‘386 with ‘387 co-processor and a hardware 
imaging board. Generating the cost matrix for a 512x512 
image requires approximately 45 seconds but only needs 
to be done once per image. The user then selects a seed 
point interactively with the mouse. “Growing” the 
optimal path map requires up to one and a half minutes 
per seed point for a 512x512 image but this process in 
usually interrupted after 15 to 20 seconds when the DP 
wave-front encloses the desired object or point. The user 
can then use the path matrix to interactively wrap a 
boundary around the desired object Though this process 
requires a small delay for each seed point, we are currently 
porting this algorithm to HP workstations where we 
expect to generate the optimal path matrix at interactive 
speeds. 

4 .  Conclusions 

An algorithm has been presented for iterative 
determination of globally optimal paths derived from local 
gradient magnitude and orientation information. The 
algorithm uses two-dimensional dynamic programming 
and can be applied to a variety of image types and 
anatomy. 2-D DP performs well based on visual 
comparison and is the same order of complexity as the 
more restrictive 1-D DP. 

By calculating the optimal path from all points to a 
seed point, 2-D DP accommodates interactive selection of 
the desired optimal path via a “live-wire”, making it a 
valuable interactive tool for defining an object’s 
boundaries. 
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