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 Abstract— Cache hierarchy designs, including bypassing, 
replacement, and the inclusion property, have significant 
performance impact. Recent works on high performance 
caches have shown that cache bypassing is an effective 
technique to enhance the last level cache (LLC) performance. 
However, commonly used inclusive cache hierarchy cannot 
benefit from this technique because bypassing inherently 
breaks the inclusion property. 

This paper presents a solution to enabling cache bypassing 
for inclusive caches. We introduce a bypass buffer to an LLC. 
Bypassed cache lines skip the LLC while their tags are stored 
in this bypass buffer. When a tag is evicted from the bypass 
buffer, it invalidates the corresponding cache lines in upper 
level caches to ensure the inclusion property. Our key insight is 
that the lifetime of a bypassed line, assuming a well-designed 
bypassing algorithm, should be short in upper level caches and 
is most likely dead when its tag is evicted from the bypass 
buffer. Therefore, a small bypass buffer is sufficient to 
maintain the inclusion property and to reap most performance 
benefits of bypassing. Furthermore, the bypass buffer 
facilitates bypassing algorithms by providing the usage 
information of bypassed lines. We show that a top performing 
cache bypassing algorithm, which is originally designed for 
non-inclusive caches, performs comparably for inclusive 
caches equipped with our bypass buffer. The usage 
information collected from the bypass buffer also significantly 
reduces the cost of hardware implementation compared to the 
original design.  

Keywords: Last level cache; cache bypassing; cache 
replacement policy; inclusion property 

I. INTRODUCTION 
With increasing working sets of applications, the 

performance of last level caches (LLCs) is critical to the 
overall computer system performance. Cache management 
contains two key components: (1) a replacement policy, 
which decides the victim block if a block needs to be 
replaced, and (2) an allocation policy which decides whether 
an incoming block should be allocated in the cache. A good 
cache replacement policy improves cache performance by 
selecting the least likely to be reused block as the victim and 
has been studied extensively [1][3][5][9][16][17][20][23]. A 
good cache allocation policy chooses to bypass a block to 
upper levels if it is predicted to be less useful than the 
blocks currently in the cache [7].  

Another key design decision in cache hierarchies is the 
inclusion property between an LLC and upper level caches. 
Inclusion simplifies the hardware to support cache 

coherence. It enables the LLC to act like a snoop filter 
because a data block is guaranteed to be absent in upper 
levels if not found in the LLC. As a result, inclusive caches 
have been widely used. With inclusive caches, the allocation 
policy is reduced to allocate all incoming requests by default 
in an LLC. This is the reason why previous bypassing 
algorithms [4][5][6][7][12][15][21][22][25] only work with 
non-inclusive/exclusive LLCs.  

Figure 1 shows various flavors of memory hierarchy 
organization possible with strict/flexible allocation policies 
combined with inclusive/non-inclusive LLCs. Figure 1a 
shows a non-inclusive cache where all the incoming cache 
blocks from memory are allocated in all three levels of 
caches. The LLC is non-inclusive and therefore the 
evictions from LLC are silent i.e. they do not try to 
invalidate the evicted data blocks from upper levels. On the 
other hand, an inclusive LLC (shown in Figure 1b) will 
force an eviction of the corresponding data block(s) from L1 
and L2 cache when a cache block is evicted from LLC. This 
event is also referred as back invalidation. Applying a 
selective allocation policy/bypassing is straight forward on a 
non-inclusive LLC because the selected incoming blocks 
from memory can be filled into L1 cache and L2 cache only 
(as shown in Figure 1c) and it does not violate the non-
inclusion property. The inclusive LLC is strict about filling 
each incoming block from memory. This causes the 
inclusive cache hierarchy to be incapable of using cache 
bypassing or any selective allocation policy.  

In this work, we propose a solution to enabling cache 
bypassing for inclusive LLCs. We introduce a new structure 
in an LLC, called a bypass buffer (BB), which keeps 
bypassed blocks to support the inclusion property (as shown 
in Figure 1d). Therefore, the last level cache hierarchy 
consists of an LLC and a bypass buffer. The bypass buffer 
keeps tags of the data blocks which are predicted to be less 
important than data present in the LLC. In this manner, the 
working set present in the LLC is not evicted to make room 
for less useful data. When a block is evicted from the LLC 
or BB, it invalidates the data copies present in upper level 
caches to maintain inclusion property.  Our insight is that 
with a good bypassing algorithm, bypassed blocks should 
have a short lifetime in upper level caches. Therefore, a 
small BB is sufficient to ascertain that when a block is 
evicted from the BB, it is highly likely that its data copies in 
L1/L2 caches are either dead or already evicted. 
Furthermore, we show that our proposed BB provides an 
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efficient way to collect the usage information of bypassed 
blocks, which can be used to simplify and facilitate the 
design of bypassing algorithms. 
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The key contributions of this paper include: 
First, we make an important observation on the lifetime 

of bypassed blocks to motivate our low overhead BB idea. 
Second, we show that our proposed BB facilitates the 

design of bypassing algorithms and it significantly reduces 
the hardware cost of the DSB algorithm [6], a top 
performing cache-bypassing algorithm. 

Third, we evaluate our proposed solution and show that 
our bypass-enabled LLC achieves up to 42.0% and an 
average of 9.4% performance improvement over an 
inclusive 2MB LLC with the least-recently-used (LRU) 
replacement policy. Compared to a recently proposed high 
performing replacement policy, DRRIP [9], our proposed 
approach outperforms it for both single-core systems, by up 
to 11.3% and 2.5% on average, and 4-core systems, by up to 
14.0% and 1.3% on average. 

Fourth, we evaluate the performance of inclusive LLC 
with bypass-buffer in various cache configurations and 
different scenarios to conclude that bypass buffer can 
provide robust and effective solution to employing cache 
bypassing algorithms to inclusive LLCs. 

The remainder of the paper is organized as follows. 
Section II motivates our approach and dissects the lifetime 
of bypassed blocks to motivate our low cost solution to 
enabling cache bypassing for inclusive LLCs. Section III 
details our design of adaptive bypassing for inclusive LLCs. 
Section IV presents the experimental methodology and 
Section V discusses the experimental results. We discuss 
related work in Section VI. Section VII concludes the paper. 

II. MOTIVATION 
Bypassing has been shown to be high performing by 

previous research. In particular, two of the three top 
performers in the 1st JILP Cache Replacement Competition 
[11] use cache bypassing. On the other hand, many 
industrial designs, including Intel Core i7 [26], use inclusive 
last level caches which makes employing the cache 
bypassing on these designs a non-trivial task. As suggested 
in a recent work on cache bypassing algorithm [18], a 
bypassing algorithm can be modified to work with inclusive 
caches by inserting the bypassed block at the LRU (least 
recently used) position. In this manner, the bypassing 
candidates chosen by the bypassing algorithm are victimized 
on the next miss to the cache set. There are two main 
drawbacks to this approach. First, the cache blocks still need 
to be placed in the cache set thereby replacing one 
potentially more useful block. This problem is more likely 
to manifest itself in a cache where the set associativity is 
relatively low. Second, this approach is vulnerable to a 
pathological scenario where many consecutive accesses are 
mapped to a cache set. Due to the prediction of no future 
reuse, they will compete for the LRU position. As a result, 
the lifetime of these blocks is short, which causes the 
victimization of the same data blocks from upper levels. 
This will degrade performance of inclusive LLCs. These 
potential performance hazards are inherently present in any 
cache replacement algorithm and we show in Section V-D 
that a benchmark (sphinx) in our experiments indeed 
severely suffers from this problem. Therefore, we propose 
to combine the bypassing algorithm with inclusive caches 
without converting it to a replacement algorithm. The key 
reason is that a bypassing algorithm is higher performing 
than a replacement algorithm since it does not have to insert 
the data in a cache level if there is no future reuse at that 
level of cache. Now we present our motivation behind our 
bypass buffer idea. 

We first make an important observation on cache 
bypassing algorithms. The goal of cache bypassing is to 
bypass blocks that have fewer reuses than those currently in 
the cache. Therefore, for a well-designed bypassing 
algorithm, a block, which is bypassed from the LLC and 
allocated in the upper levels of caches (i.e., L1/L2 caches), 



 3 

should not be re-accessed after it is replaced from the L1/L2 
caches. Otherwise, such re-accesses would become reuses of 
the block in the LLC, conflicting with the choice of 
bypassing.  To quantify our observation, we collect the 
lifetime information of the bypassed blocks, which are 
chosen with the DSB bypassing algorithm [6], and report 
the lifetime histogram of selected benchmarks in Figure 2. 
Here, the lifetime is measured as the number of LLC misses 
while a cache block was live in the L1 cache (i.e., the 
number of LLC misses between the time when the bypassed 
block is allocated in the L1 cache and the time of its last 
touch before being evicted). From Figure 2, we can see that 
bypassed blocks quickly become dead in the L1 cache. For 
example, for benchmark art, 75% of its bypassed cache 
blocks have a short lifetime of between 3 to 4 LLC misses 
in the L1 cache and 96.4% of its bypassed blocks are dead 
after 8 LLC misses. On average of all the benchmarks in our 
study (see Section IV for methodology), 94.3% of the 
bypassed blocks are dead after 8 LLC misses. We also 
collected the lifetime information of the bypassed blocks in 
the L2 cache and it exhibits very similar trends. 

 

 
Figure 2: The lifetime histogram of the blocks, which are 
bypassed from the LLC, in the L1 data cache. 

The implication of the lifetime information on inclusive 
LLCs is that those blocks, which would have been bypassed 
otherwise, are essentially useless and are allocated in LLCs 
only for the inclusion purpose. Note that even marking those 
blocks as early victims to evict in LLCs may still replace 
more useful data, thereby not as effective as bypassing. In 
the next section, we leverage the short lifetime of bypassed 
blocks to design our low cost solution to enable cache 
bypassing for inclusive LLCs.  

III. ADAPTIVE CACHE BYPASSING FOR INCLUSIVE LLCS 
To enable cache bypassing for inclusive LLCs, we 

propose a bypass buffer (BB). The bypassed blocks are kept 
in the BB rather than replacing victims in an LLC. When a 
block is evicted from the BB, it invalidates the copies of the 
same data in upper level caches to ensure the inclusion 
property. The lifetime information presented in Section II 
shows that the bypassed blocks become dead quickly in 
L1/L2 caches. Therefore, a small BB is sufficient to reap the 
performance benefit of bypassing while maintaining the 
inclusion property.  

Next, we present our design to incorporate a bypassing 
algorithm within an inclusive cache hierarchy. We use the 
winning algorithm from CRC [11], Dueling Segmented 
LRU Replacement Algorithm with Adaptive Bypassing 
(DSB) [6]. A key feature of DSB is bypassing the LLC 
adaptively, which is shown as the highest contributing 
factor to the performance gains. Then, we show how the 
proposed BB can be leveraged to reduce the hardware cost 
of the DSB algorithm. Our design is based on an inclusive 
LLC (L3 cache) and a non-inclusive L2 and L1 caches 
shown in Figure 1d, as used in Intel Core architectures [26]. 

A. Dueling Segmented LRU Replacement Algorithm with 
Adaptive Bypassing (DSB) 

In this section we briefly present the DSB algorithm and 
summarize the key ideas [6].  

1. A Segmented LRU (SLRU) replacement algorithm 
[14], which was originally proposed for cache management 
for disk systems. Random promotion and aging policies are 
proposed to enhance performance.  

2. An adaptive bypassing policy, which randomly 
bypasses cache blocks based on a probability. This 
probability is increased or decreased based on whether 
bypassing is effective or not. The effectiveness of bypassing 
is determined by tracking whether a bypassed block is 
reused before the replacement victim. To do so, each cache 
set is augmented with an additional tag and a competitor 
pointer. In the case of a bypass, the additional tag field 
keeps the tag of a bypassed block and the competitor pointer 
points to the replacement victim, which would have been 
evicted without bypassing. If the competitor is accessed 
before the bypassed one, bypassing is determined as 
effective. If the bypassed tag is accessed before the 
competitor, bypassing is determined to be ineffective. DSB 
algorithm invalidates a bypass block – competitor pointer 
pair when there is a fill at the location pointed by competitor 
pointer. To assess the impact of bypassing when a no-
bypassing decision is made, some newly allocated blocks 
are randomly selected for ‘virtual bypassing’. In this case, 
the additional tag keeps the tag of the replacement victim 
and the competitor pointer keeps the position of the newly 
incoming block. If the replacement victim is re-accessed 
earlier than the incoming block, it means that bypass is 
effective.  

3. Set sampling, in which a few sample sets maintain 
auxiliary tag directory (ATD) [20] to exercise two dueling 
policies and a saturating counter decides which policy is 
applied to the cache. 

B. Bypass-Buffer Enabled Inclusive DSB  
With a BB, we only need to make the following small 

changes to support inclusion.  
If the bypassing algorithm decides to bypass a 

requested cache block, it is allocated in the BB instead of 
the LLC and forwarded to upper level caches. If the BB is 
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full, a victim is selected and the data copies of the victim are 
invalidated in upper level caches. 

L2 cache misses are serviced with both the BB and the 
LLC. A hit in the BB provides the data to the L2 cache and 
the cache block is de-allocated from the BB and filled in the 
LLC.  

C. Data-less Bypass Buffers 
To reduce the hardware overhead of a BB, we propose to 

not include payload data in BB entries. A data-less BB is 
feasible as the tags are sufficient to maintain the inclusion 
property. Since the bypassed cache blocks become dead in 
upper level caches very soon, a hit in the BB should be very 
rare. Therefore, a data-less BB does not incur performance 
penalties. In a case when there is a miss in the LLC and hit 
in BB, it is treated like a miss and the data is brought in 
from memory. Considering multi-processor design, the BB 
entries also keep coherence information along with tags 
similar to the LLC tag store. Assuming a MESI-like 
coherence protocol, a data-less BB works without any 
significant modifications. For snoop requests that do not 
need to respond with data, the data-less BB acts exactly the 
same as the LLC. In the case for a snoop request asking for 
data which hits in the BB with the M state, the upper cache 
levels are searched to find the most recent copy of the data. 

D. Efficient Tracking Using Bypass Buffers   
As discussed in Section III-A, the DSB algorithm needs 

to track the effectiveness of bypassing and does so by 
adding additional tags and pointers in each cache set. This 
incurs relatively high hardware overhead. We propose to 
leverage the BB to reduce such bookkeeping cost by adding 
a competitor pointer in each BB entry. Since the number of 
BB entries is much smaller than the number of sets in the 
LLC, the overall storage requirement for the DSB algorithm 
can be significantly reduced. 

As the tracking information is no longer stored in each 
cache set, we make the following modifications to the 
original DSB algorithm:  
1. For each bypassed block, its competitor pointer points 

to the replacement victim, which would have been 
replaced without bypassing.  

2. When a block is chosen to be virtually bypassed (i.e., it 
is still allocated in the LLC but selected to assess the 
impact of bypassing), a BB-entry is allocated for the 
replaced block and its competitor pointer points to the 
newly allocated block. Since the probability of virtual 
bypass is low in the DSB algorithm, we do not expect 
the BB to be flooded with virtual bypasses/victims.  

3. When L2 cache misses are serviced with both LLC and 
BB, depending on whether (virtual) bypassed blocks are 
accessed earlier than the corresponding replacement 
victims, the bypassing probability is adjusted 
accordingly, same as the original DSB algorithm. 

To summarize, we present three adaptive bypassing 
designs for inclusive LLCs: (1) DSB with a BB containing 

data (I-DSB-BB-data) (2) DSB with a data-less BB (I-DSB-
BB) (3) DSB with a data-less BB, which is augumented for 
tracking bypass effectiveness (I-DSB-BBtracking). Since 
the data stored in the BB are very rarely accessed, we 
mainly focus on I-DSB-BB and I-DSB-BBtracking in the 
rest of the paper. 

The design of the bypass buffer used for I-DSB-
BBtracking is shown in Figure 3. It is organized as a set 
associative strucutre of multiple BB-entries. In each entry, 
the BB-tag is the block address of the bypassed block. It is 
different from the tag stored in the cache because the index 
bits are removed from the cache tags in any cache. To track 
the effectiveness of bypassing, a virutual bypass bit and a 
competitor pointer are maintained in each BB-entry. 

Set Associative 
Bypass Buffer

valid Competitor 
pointer BB-tagVirtual 

Bypass

BB entry

Figure 3: Various fields present in a BB-entry 

E. Hardware Overhead of Bypass Buffer 
Here, we discuss the hardware storage of bypass buffer 

for I-DSB-BBtracking. In most of our experiments (if 
otherwise not mentioned), we use a 64-entry BB which is 
organized as a 4-way set associative structure. Each entry 
contains a 54-bit (= 64-bit address – 6-bit block offset – 4-
bit index) tag field, a competitor pointer and two status bits 
as shown in Figure 3. Since the tag field shares the same 
index bits for the LLC as the competitor (i.e., the bypassed 
block and the competitor are in the same cache set), the 
competitor pointer is reduced to a way pointer. For a 16-way 
LLC, a competitor pointer requires 4 bits. So, the overall 
hardware storage cost of the BB is 64× (54+4+2) = 3,840 
bits. 

In comparison, the original DSB algorithm keeps a 16-
bit partial tag for bypassed block, a competing way pointer 
(4 bits for 16-way set associative cache) and 2 status bits. 
As a 2MB cache with 64-B blocks has 2048 sets, the overall 
cost is 22x2048 = 44K bits. Therefore, I-DSB-BBtracking 
incurs 91% less hardware overhead compared to DSB cache 
bypassing algorithm.  

For a 4MB shared LLC in a 4-core system, we use 256 
entry bypass buffer. The storage cost of our BB-based 
design is 256*(52+4+2) = 14.5K bits whereas the original 
DSB implementation costs 88K bits of storage.  

The auxiliary tag directory and randomization hardware 
as proposed in DSB remain the same in I-DSB-BB and I-
DSB-BBtracking and they cost 46.8K bits for a 2MB LLC 
(93.5K bits for a 4MB LLC) and 51 bits, respectively [6]. 
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IV. EXPERIMENTAL METHODOLOGY 
To model the performance impact of our proposed 

approach, we use an in-house execution-driven simulator. 
This simulator uses the SimpleScalar [2] frontend while the 
timing simulator is completely revamped to model a 4-way 
issue superscalar processor with a 64-entry active list. The 
memory hierarchy contains a 32kB 4-way set associative L1 
data cache with a block size of 64 bytes (1-cycle hit 
latency), a 32kB 2-way set associative L1 instruction cache 
(1-cycle hit latency) and an 8-way set associative 256kB L2 
cache with a block size of 64 bytes (10-cycle hit latency). 
We use 16-way set associative 2MB LLC with a block size 
of 64 bytes (30-cycle hit latency) for our single-core 
systems. For multi-core systems, we increase the capacity of 
shared LLC to 4MB. The LLC in our baseline system is 
inclusive and enforces inclusion on L1 and L2 caches by 
sending back invalidations for LLC evictions. L1 and L2 
caches are kept non-inclusive as mentioned before. The 
main memory latency is 200 cycles. 

We include all the SPEC 2000 and SPEC 2006 
benchmarks that we were able to compile and run using the 
SimpleScalar ISA (PISA), 16 from SPEC 2000 and 7 from 
SPEC 2006. We use reference input for all the benchmarks 
and use Simpoint [8] tool to find simulation phases. For 
each benchmark, we use a representative 100M Simpoint for 
simulations. We also include 4 additional memory intensive 
phases and label them as gap-2, gcc-2, mcf-2 and sphinx-2. 
Among the 27 benchmark Simpoints, listed in Appendix-1, 
we only report results for 14 selected programs phases. The 
selection criterion is that either these phases show 
performance gains, measured with instructions per cycle 
(IPC), of more than 3% when the LLC size is increased to 
16MB from the baseline size of 2MB or they have more 
than 5 LLC misses per 1K instructions (MPKI).  

To evaluate our proposed design in a 4-core system, we 
generate four multi-programmed workload categories: (a) 
4H: all 4 benchmarks with high MPKI; (b) 3H1L: 3 
benchmarks with high MPKI and 1 benchmark with low 
MPKI; (c) 2H2L: 2 benchmarks with high MPKI and 2 
benchmarks with low MPKI; and (d) 1H3L: 1 benchmark 
with high MPKI and 3 benchmarks with low MPKI. We do 
not include category 4L in this study because of its low 
memory intensiveness. In each category, eight multi-
programmed workloads are generated randomly. The 
detailed list of all the combinations is in Appendix-2. The 
performance of multi-programmed workloads is measured 
using the weighted speedup as proposed in [24]. 

V. EXPERIMENTAL RESULTS 

A. Effect of bypassing on LLC performance 
We start our experimental analysis with evaluating the 

LLC miss rates obtained by the baseline system, DSB with a 
non-inclusive LLC, I-DSB-BB with an inclusive LLC and I-
DSB-BBtracking with an inclusive LLC and the results are 
shown in in Figure 4. I-DSB-BB and I-DSB-BBtracking 

both use a 64 entry bypass buffer which is organized as a 4-
way set associative structure. DSB is able to reduce LLC 
misses for many benchmarks. For some benchmarks such as 
equake, mcf, parser and sphinx, I-DSB-BB has slightly 
more misses than DSB. It is caused by inclusion victims, i.e. 
few live L1 and L2 blocks being invalidated due to back 
invalidations. Between I-DSB-BB and I-DSB-BBtracking, 
some entries in a 64-entry BB are evicted early, which 
affects the accuracy of tracking the bypassing effectiveness 
for I-DSB-BBtracking. Therefore, I-DSB-BBtracking has a 
slightly higher number of misses than I-DSB-BB. This 
difference gets smaller as we increase the number of BB 
entries (see Section V-C on the impact of the BB size). 
Also, the benchmark mcf from SPEC2000 (mcf-2k) have a 
very low number of LLC misses for a 2MB LLC therefore 
there is no impact of using bypassing for this LLC 
configuration. But we include this benchmark because it 
shows high MPKI due to thrashing behavior when the LLC 
capacity is 1MB. (More results in Section V-F). 

 
Figure 4: LLC miss rate comparison for different designs 

Next, we analyze the fraction of bypassed LLC 
allocations and fraction of bypass buffer hits (BB-hits) for I-
DSB-BBtracking. Figure 5 shows the fraction of LLC 
allocations which are decided to be bypassed and Figure 6 
shows the fraction of bypassed blocks which are recalled by 
L2 cache and experience a hit in BB. As shown in Figure 5, 
many benchmarks heavily prefer bypassing of cache blocks. 
For most of the benchmarks with high fraction of cache 
bypassing (e.g. art, gcc-2, mcf and sphinx), the bypassing is 
effective and we observe significant reductions in LLC 
misses as shown in Figure 4. The exception is the 
benchmark equake, which shows a high fraction of bypasses 
and yet does not achieve significant reduction in LLC miss 
rate, meaning that both the bypassed blocks and their 
competitor LRU blocks have no reuses. The benchmarks 
bzip2-2k, gromacs, lbm, mcf-2k, parser and vortex show low 
amount of bypassing and therefore their LLC miss rates are 
largely unaffected. The benchmark ammp has a repetitive 
access pattern with very long reuse distances and causes the 
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tracking information (i.e. bypass block –competitor pointer 
pair) to be cancelled before it can be detected to be effective 
(as mentioned in III-A). Therefore, the bypassing 
probability stays low, and this minimal amount of bypassing 
leads to a small reduction in the LLC miss rate. 

A key aspect of our motivation of proposing the Bypass 
Buffer is that the bypassed blocks are not likely to be 
reaccessed by upper levels. We also mentioned in the 
Section III-C that hits in bypass buffer should be very rare 
and therefore it does not incur any performance penalty if 
BB-entries are data-less. In Figure 6, we present the fraction 
of hits in the bypass buffer (called BB-hits) normalized to 
the number of cache bypasses. There are two key 
observations that can be made from comparing Figure 5 and 
Figure 6. First, for most benchmarks with high amount of 
bypassing, the fraction number of BB-hits is very low. 
Second, benchmarks such as bzip2 (SPEC2000) and vortex 
have relatively higher fraction of BB-hits. A BB-hit 
indicates an incorrect bypassing decision and results in 
lower probability of bypass. Therefore the fraction of 
bypassed blocks is relatively low for these two benchmarks. 

  

 
Figure 5: Fraction of bypassed LLC allocations for I-DSB-
BBtracking 

 
Figure 6: Fraction of bypassed blocks incurring a hit in the 
bypass buffer for I-DSB-BBtracking 

B. Performance improvement of Bypass Buffers 
In this experiment, we evaluate the effectiveness of our 
proposed I-DSB-BB and I-DSB-BBtracking designs. We 
present the performance improvements, measured in the 
instruction per cycle (IPC) speedups, as shown in Figure 7. 
For reference, we also show the IPC improvement of the 
non-inclusive DSB design. From Figure 7, we can see that 

DSB achieves an 11.6% IPC improvement for non-inclusive 
cache hierarchies on average, using the geometric mean 
(Gmean), across the high MPKI benchmarks. Both I-DSB-
BB and I-DSB-BBtracking enable bypassing for inclusive 
LLCs. I-DSB-BB achieves an 9.8% performance gain on 
average while I-DSB-BBtracking has an overall speedup of 
9.4%. As discussed in Section III-D, I-DSB-BBtracking 
uses the BB to keep usage information for both bypassed 
blocks and the replacement victims chosen to participate in 
virtual bypass.  Compared to I-DSB-BB, some entries in a 
64-entry BB are evicted early, which affects the accuracy of 
tracking the bypassing effectiveness. Therefore, I-DSB-
BBtracking has slightly lower performance than I-DSB-BB. 
When increasing the BB size to 128 entries, the 
performance gains of I-DSB-BBtracking is improved to 
10.0%. Considering its significant savings in hardware cost 
and relatively minor performance difference to I-DSB-BB, 
we consider I-DSB-BBtracking as our design of choice. 
 

 
Figure 7:  Performance improvements of DSB, I-DSB-BB and 
I-DSB-BBtracking (w.r.t. the baseline inclusive LLC with the 
LRU replacement policy) 

C. Effect of the Bypass Buffer size 
In this section, we analyze the performance of I-DSB-

BB and I-DSB-BBtracking for different bypass buffer sizes. 
As mentioned in Section II the number of bypass buffer 
entries required should be small because of the lifetime of 
most bypassed cache blocks in upper cache levels is small. 
Therefore, we chose to experiment with a design with 64 
BB-entries. Figure 8 shows the geometric mean of IPC 
speedup of benchmarks for different sizes of bypass buffer. 
It can be observed from the results clearly that increasing 
the size of bypass buffer increases the performance of I-
DSB-BB gradually. On the other hand, I-DSB-BBtracking 
gains performance with increasing size of bypass buffer 
more rapidly in the beginning but it saturates after 128-
entries.  

To elaborate, increasing the bypass buffer size for I-
DSB-BB allows the tags of bypassed blocks to be stored in 
BB longer. Therefore, with the increase of size of bypass 
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buffer the performance increases. I-DSB-BBtracking has 
two benefits from increasing the size of BB. The first is the 
same as I-DSB-BB and the second is that the bypass 
tracking mechanism has more entries and the detection of 
effectiveness and ineffectiveness of bypassing is done more 
accurately. This is the reason why I-DSB-BBtracking 
recovers more performance compared to I-DSB-BB when 
number of BB-entries is increased. 

 Figure 8: Performance of I-DSB-BB and I-DSB-BBtracking 
for different bypass buffer sizes 

D. Comparison to a high performing replacement 
algorithm, DRRIP 

DRRIP [9] is one of the high performing cache 
replacement algorithms for LLCs. It provides scan-
resistance and thrash-resistance via the use of bimodal 
insertion policies and set dueling [20]. We adopt the source 
code (distributed by the authors) to incorporate DRRIP in 
our simulator framework. We compare the performance 
gains of the DRRIP replacement policy with our proposed I-
DSB-BBtracking design and the results are shown in Figure 
9. In this experiment, both DRRIP and our I-DSB-
BBtracking are used for an inclusive LLC and the baseline 
is an inclusive LLC with the LRU replacement policy. For 
reference, we also include a bar for each benchmark in the 
figure showing the IPC speedup of DRRIP on a non-
inclusive LLC and it is normalized to same baseline system 
as other two bars (inclusive LLC with the LRU replacement 
policy).  

From Figure 9, we can see that both DRRIP and our 
proposed I-DSB-BBtracking can support the inclusion 
property while achieving performance gains over the 
baseline LLC, an average of 9.4% and 6.7%, respectively. 
For benchmarks such as art, gcc-2, mcf and sphinx, I-DSB-
BBtracking outperforms DRRIP significantly although 
DRRIP already shows good performance. The reason is that 
DRRIP still needs to allocate a block even if it knows the 
thrashing behavior. Therefore, in our 16-way set associative 
LLC, out of 16 ways in a cache set, one way is being 
thrashed while other ways enjoy hits when being reused. 
Bypassing eliminates such inefficiency and can fully utilize 
the 16 ways for data reuse. The other limitation of any 
replacement algorithm, as discussed in Section II, causes 
both program phases of the benchmark sphinx to degrade 

performance compared to non-inclusive case. Multiple 
consecutive accesses to the same cache set are inserted at 
the LRU position in the set and evict each other in the case 
of this benchmark. This phenomenon does not hurt 
performance in a non-inclusive LLC but it degrades 
performance when inclusion is enforced via back 
invalidation. As a result, DRRIP (inclusive LLC) shows    
17% and 7% lesser performance for sphinx and sphinx-2 
respectively compared to DRRIP (non-inclusive LLC). On 
the other hand, I-DSB-BBtracking recovers all the 
performance in the case of sphinx-2 and ensures no 
slowdown in the case of sphinx. This recovery of 
performance is enabled by the bypass buffer which lets the 
bypassed cache blocks stay in the LLC for longer duration 
as opposed to using DRRIP which evicts the LRU inserted 
cache blocks on the next miss to the cache set. 

Figure 9:  Performance improvements of DRRIP and I-DSB-
BBtracking (w.r.t. the baseline inclusive LLC with the LRU 
replacement policy) 

E. Performance gains of Bypass Buffers in the presence of 
a stream-buffer 

High performance microprocessors employ hardware 
prefetching mechanisms to hide memory latency. For our 
high MPKI benchmarks, when we employ a stream buffer 
[13] with the following configuration: 8 four-entry stream 
buffers with a PC-based two-way 512-entry stride prediction 
table, the streaming buffer prefetcher results in a 39% IPC 
improvement on average. Here, it is interesting to see 
whether the intelligent LLC management can still benefit in 
the presence of the stream buffer. As shown in Figure 10, 
when we use I-DSB-BBtracking algorithm for inclusive 
cache hierarchy with such a stream buffer, a 9.2% IPC 
improvement (on average) is observed over the baseline 
inclusive cache hierarchy with the LRU replacement policy 
and the same streaming buffer.  

In comparison, inclusive DRRIP provides an IPC 
speedup of 7.3% in such a case. Therefore, we conclude that 
bypassing for inclusive cache using I-DSB-BBtracking can 
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outperform intelligent replacement policy like DRRIP in 
presence of stream prefetching as well. 

 Figure 10:  Performance improvements of DRRIP and I-DSB-
BBtracking in presence of a stream buffer. The baseline is an 
inclusive LLC with the LRU replacement and a stream buffer 
prefetcher. 

F. Sensitivity to LLC configurations 
We also evaluate DSB, I-DSB-BB, I-DSB-BBtracking 

and DRRIP for different LLC sizes and set-associativity. 
Their average performance gains across the high MPKI 
benchmarks are shown in Figure 11. The baseline LLC for 
each set of bars is of specified size and uses LRU 
replacement policy. The same BB size, 64, is used for all 
these cache configurations. The rationale behind the same 
size of bypass-buffer being effective for various cache sizes 
is that the bypass-buffer is sized for the lifetime of bypassed 
cache blocks in upper cache levels and which does not 
change significantly with the configuration of LLC. 
Moreover, the number of cache sets (which increases with 
increasing cache size and decreasing set associativity) 
increases the overhead of bypassing for DSB and I-DSB-BB 
while I-DSB-BBtracking has a fixed overhead. 

From Figure 11, we can see that the adaptive bypassing 
schemes achieve high performance for all the cache 
configurations that we studied. As we move towards a 
smaller capacity of LLC, the performance gains of 
bypassing (DSB) as well as replacement (here DRRIP) are 

reduced. This is due to the thrashing behavior of some of the 
benchmarks which causes the baselines of 1MB and 2MB to 
be similar performing. On the other hand, DSB and DRRIP 
both provide thrash resistance and 2MB LLC can fit bigger 
portion of the working set compared to 1MB LLC and 
enjoys significantly more hits. It should also be noted that, 
with bigger LLC capacity of 4MB the difference in 
performance between DSB (non-inclusive LLC) and DRRIP 
(inclusive LLC) grows comparatively small. This is due to 
two reasons. Firstly, the negative effect of enforcing 
inclusion decreases when LLC capacity is bigger. Secondly, 
DSB does not evict data from LLC while DRRIP has to 
insert data in LLC which hurts more performance for 
smaller cache associativity/capacity and vice-versa. Overall, 
we can see that I-DSB-BBtracking consistently outperforms 
DRRIP across a variety of LLC configurations we studied.  

 
Figure 11:  Performance improvements of DSB, I-DSB-BB and 
I-DSB-BBtracking for different cache configurations. (the 
baselines are inclusive LLCs with the corresponding 
configurations) 

G. Bypass Buffers for Shared Last Level Caches 
In the next experiment, we focus on the effectiveness of 

the BB for the shared LLCs in multi-core systems. For a 
4MB LLC shared among 4 cores, we employ a 256-entry 
BB and measure the performance of 32 multi-programmed 
workloads as described in Section IV. Although the original 
DSB bypassing algorithm is inherently thread unaware, it 
outperforms thread-aware DRRIP (TA-DRRIP) [9] in our 
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experiments. We did not observe any significant 
improvement from making DSB algorithm thread aware 
therefore we conclude that a simpler (thread unaware) 
design is a more cost effective approach. We also compared 
the performance of a shared BB and a private BB in our 
design. A thread private bypass buffer limits the amount of 
bypassed blocks a thread can store in the bypass buffer. 
Moreover, if there are a few threads in a multi-programmed 
workload that do not prefer bypassing, many BB-entries 
may be underutilized. In our experiments, the shared bypass 
buffer design performs superior to a private bypass buffer 
design and therefore it is the choice in our design of bypass 
buffer for shared LLC.  

Our simulations results comparing the performance of 
TA-DRRIP and I-DSB-BBtracking are reported in Figure 
12, which shows that our proposed I-DSB-BBtracking 
algorithm provides an average speedup of 6.6%, 11.6%, 
8.4%, 4.3% for the category 4H, 3H1L, 2H2L and 1H3L 
respectively. The workloads in these categories have one or 
more programs, which have high MPKI and they compete 
heavily for the shared LLC. The bypassing algorithm 
selectively bypasses the cache blocks and therefore provides 
the cache capacity to data blocks with smaller reuse 
distances.  

As shown in Figure 12, TA-DRRIP also improves the 
performance with an average of 4.8%, 9.4%, 7.2% and 2.9% 
for categories 4H, 3H1L 2H2L and 1H3L respectively. Due 
to strict allocation policy, it always has to allocate a data 
block in cache. Moreover, multiple insertions from different 
threads at lower LRU stack positions in a cache set result in 
victimizing the blocks prematurely and a loss of 
performance due to inclusion. This is responsible for  
relatively lower average performance of TA-DRRIP 
compared to I-DSB-BBtracking algorithm in all the 
categories. Therefore we conclude that bypass buffer can 
make cache bypassing effective for inclusive shared LLCs 
as well. 

H. Energy Consumption  
In this section, we compare the energy consumption of I-

DSB-BBtracking scheme with the baseline. We use McPAT 
tool [19] to obtain the static and dynamic power 
consumption results. The power model is based on the 45nm 
technology and 3.4 GHz frequency. Figure 13 shows the 
energy consumption for each benchmark when the 100M 
simulation phase is executed on the baseline system as well 
as when the I-DSB-BBtracking mechanism is deployed. 
From Figure 13, we can see that for most benchmarks DSB-
BBtracking reduces overall energy consumption by up to 
25.6% and 6.2% on average. Most of the energy savings are 
a result of reduced execution time which translates into 
significant savings in static energy consumption. For the 
remaining benchmarks, on which DSB-BBtracking has little 
performance impact, the energy consumption impact is 
nearly negligible.  

 
 Figure 13: Comparing energy consumption of I-DSB-
BBtracking with the baseline 

I. Memory Bandwidth Reduction 
As shown in Section V-A, I-DSB-BBtracking reduces 

LLC misses. This in turn reduces the off-chip memory 
traffic and the execution time. As the reduction in LLC 
miss-rate is typically higher in proportion than the reduction 
in execution time, average memory bandwidth is reduced. 
As shown in Figure 14, we observe average memory 
bandwidth of 3.3 GB/s in the baseline for benchmark art 
while I-DSB-BBtracking reduces it to 1.9 GB/s. For 
benchmarks such as bzip2, equake, gromacs and mcf, we 
observe slight increase in the bandwidth. Bzip2 and gromacs 
have slightly more misses compared to the baseline and 
therefore the bandwidth is increased. On the other hand, 
equake and mcf have reduced number of LLC misses and 
yet the bandwidth increases due to faster execution of the 
program. Overall, the aggregate memory bandwidth is 
reduced by 13% on average across the benchmarks. 

 Figure 14: Comparing memory bandwidth of I-DSB-
BBtracking with the baseline system 

J. Additional Benefits of Cache Bypassing Algorithms 
Many proposals for high performance cache 

management focus on replacement algorithms. A common 
theme is to alter the insertion policy whereas the allocation 
policy is strict and each incoming block is allocated space in 
an LLC. The key contribution of a bypassing algorithm is to 
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combine a placement / allocation policy with the 
replacement policy. Bypassing has some interesting benefits 
for upcoming memory technologies. For example, phase-
change memory (PCM) provides high integration density 
while suffers from limited write endurance. In a design 
using PCM technology for LLCs, we can utilize cache 
management algorithms like DSB to reduce the number of 
fill operations to the LLC. This would not only increase the 
life of such PCM based LLC structure but also increase the 
overall performance (as shown in previous sections). In 
Section V-A, Figure 5 shows the fraction (in percentage) of 
bypassed LLC allocations when the I-DSB-BBtracking 
algorithm is used. From this figure, we can see that for 
certain benchmarks, up to 80% of the LLC allocations can 
be bypassed while enjoying good performance gains. 

VI. RELATED WORK 
There is a plethora of research work on designing high 

performing cache replacement algorithms. Recently 
proposed replacement algorithms [3][9][16][20][23] for 
LLCs focus on providing thrash-resistance and scan-
resistance. There is also a significant amount of work on 
cache bypassing algorithms [4][5][6][7][12][15][18][21] 
[22][25]. The results of 1st JILP Cache Replacement 
Competition indicated that bypassing algorithm like DSB[6] 
can be an effective method to improve the LLC performance 
for a wide variety of workloads. Recent work by Li et al. 
[18] uses a similar mechanism to decide the effectiveness of 
bypassing. The key difference is they do not use 
probabilistic bypassing and instead maintain a signature 
based history per program counter to make bypassing 
decisions. A major disadvantage of using signature based 
approach is to have the program counter being sent to LLC 
from each core with the cache access. This can be an 
expensive requirement to fulfill in a real design. Therefore, 
DSB is our choice of bypassing algorithm in this study. 
However, it should be noted that a bypass buffer can help 
employ any complex bypassing algorithms on inclusive 
LLCs.  

Gaur et al. [7] proposed cache bypassing algorithms 
specific to exclusive cache hierarchies. The key contribution 
of this work is to tackle the problem of no reuse information 
being available for cache blocks (a cache hit de-allocates the 
cache block and the reuse information is lost). The work 
presents both insertion and bypassing algorithms designed 
for exclusive caches.  

Jaleel et al. [9] pointed out a key performance problem in 
inclusive cache hierarchies due to invalidation victims. The 
non-inclusive cache performance is achieved in this work by 
making the last-level cache replacement policy aware of the 
temporal locality in upper levels of cache. This work can be 
used in conjunction with our scheme to further enhance 
performance for inclusive caches. 

VII. CONCLUSIONS 
In this work, we focus on the inherent limitation of 

inclusive caches in utilizing cache bypassing. We propose 
and evaluate a novel solution, called a bypass buffer (BB), 
to overcome this limitation. The bypassed data blocks skip 
the LLC and their tags are stored in the BB. When a tag is 
replaced from the BB, it invalidates the upper cache levels 
to maintain the inclusion property. We show that for a well 
design bypassing algorithm a relatively small BB is 
sufficient to reap most of the performance gains of 
bypassing. Our proposed BB also enables us to significantly 
reduce the storage hardware cost of bypassing algorithms as 
it readily provides the usage information of bypassed cache 
blocks. Our experimental results show that our proposed 
design achieves high performance and outperforms a 
recently proposed high performing replacement algorithm, 
DRRIP, in both single core and 4-core systems. Our 
evaluation of our proposed design on different cache 
configurations and in presence of a stream prefetcher shows 
that it provides a cost-effective design for inclusive LLCs.  
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Appendix-1: Simulation points (starting instruction number) used 
for benchmarks from SPEC2000 and SPEC2006 

Benchmark Starting Point Benchmark Starting Point 
ammp 1,400,000,000 mcf-2k 16,900,000,000 
art 2,800,000,000 mesa 117,600,000,000 
bzip2 44,800,000,000 milc 20,700,000,000 
bzip2-2k 18,800,000,000 parser 42300,000,000 
equake 36,700,000,000 perl 1,800,000,000 
gap-2 4,200,000,000 sjeng 91,400,000,000 
gap 6,900,000,000 sphinx-2 3,200,000,000 
gcc-2 3,800,000,000 sphinx 83,900,000,000 
gcc 6,100,000,000 swim 50,000,000,000 
gromacs 62,900,000,000 twolf 800,000,000 
gzip 13,800,000,000 vortex 70,000,000,000 
lbm 66,100,000,000 vpr 15,200,000,000 
mcf-2 2,000,000,000 wupwise 10,900,000,000 
mcf 46,300,000,000   

 
Appendix-2: The list of multiprogrammed workloads 

 4H 3H1L 
1 sphinx, gcc-2, milc, mcf-2k ammp, art, mcf-2k, twolf 
2 equake, lbm, gap-2, sphinx2 ammp, art, lbm, bzip2-2k 
3 ammp, equake, gcc-2, lbm equake, mcf-2k, sphinx, gap 
4 lbm, art, gap-2, swim lbm, milc, gap-2, gcc 
5 sphinx, gap-2, sphinx2, swim sphinx, gap-2, gcc-2, gzip 
6 sphinx2, gcc-2, swim, milc gcc-2, sphinx-2, swim, mesa 
7 lbm, sphinx, milc, swim swim, mcf-2k, equake, parser 
8 gap-2, gcc-2, sphinx2, milc art, mcf-2k, milc, gromacs 
 2H2L 1H3L 
1 art, ammp, bzip2-2k, gap art, wupwise, gcc, bzip2-2k 
2 equake, mcf-2k, gzip, perl equake, wupwise, vpr, twolf 
3 mcf-2k, equake, vpr, vortex art, bzip2-2k, gcc, gap 
4 ammp, swim, twolf, wupwise equake, gromacs, sjeng, perl 
5 lbm, milc, bzip2-2k, sjeng mcf-2k, mesa, parser, gap 
6 sphinx, gap-2, gromacs, parser sphinx-2, twolf, gzip, gcc 
7 gcc-2, sphinx-2, gcc, vpr gap-2, parser, sjeng, gzip 
8 swim, art, vortex, gzip lbm, bzip2-2k, gromacs, perl 

 


