
 1

Adaptive Cache Bypassing for Inclusive Last Level Caches

Saurabh Gupta†, Hongliang Gao*, Huiyang Zhou†

Department of Electrical and Computer Engineering†

North Carolina State University
Raleigh, USA

E-mail: {sgupta12, hzhou}@ncsu.edu

Intel Corporation*
Hillsboro, USA

E-mail: hongliang.gao@intel.com

 Abstract— Cache hierarchy designs, including bypassing,
replacement, and the inclusion property, have significant
performance impact. Recent works on high performance
caches have shown that cache bypassing is an effective
technique to enhance the last level cache (LLC) performance.
However, commonly used inclusive cache hierarchy cannot
benefit from this technique because bypassing inherently
breaks the inclusion property.

This paper presents a solution to enabling cache bypassing
for inclusive caches. We introduce a bypass buffer to an LLC.
Bypassed cache lines skip the LLC while their tags are stored
in this bypass buffer. When a tag is evicted from the bypass
buffer, it invalidates the corresponding cache lines in upper
level caches to ensure the inclusion property. Our key insight is
that the lifetime of a bypassed line, assuming a well-designed
bypassing algorithm, should be short in upper level caches and
is most likely dead when its tag is evicted from the bypass
buffer. Therefore, a small bypass buffer is sufficient to
maintain the inclusion property and to reap most performance
benefits of bypassing. Furthermore, the bypass buffer
facilitates bypassing algorithms by providing the usage
information of bypassed lines. We show that a top performing
cache bypassing algorithm, which is originally designed for
non-inclusive caches, performs comparably for inclusive
caches equipped with our bypass buffer. The usage
information collected from the bypass buffer also significantly
reduces the cost of hardware implementation compared to the
original design.

Keywords: Last level cache; cache bypassing; cache
replacement policy; inclusion property

I. INTRODUCTION
With increasing working sets of applications, the

performance of last level caches (LLCs) is critical to the
overall computer system performance. Cache management
contains two key components: (1) a replacement policy,
which decides the victim block if a block needs to be
replaced, and (2) an allocation policy which decides whether
an incoming block should be allocated in the cache. A good
cache replacement policy improves cache performance by
selecting the least likely to be reused block as the victim and
has been studied extensively [1][3][5][9][16][17][20][23]. A
good cache allocation policy chooses to bypass a block to
upper levels if it is predicted to be less useful than the
blocks currently in the cache [7].

Another key design decision in cache hierarchies is the
inclusion property between an LLC and upper level caches.
Inclusion simplifies the hardware to support cache

coherence. It enables the LLC to act like a snoop filter
because a data block is guaranteed to be absent in upper
levels if not found in the LLC. As a result, inclusive caches
have been widely used. With inclusive caches, the allocation
policy is reduced to allocate all incoming requests by default
in an LLC. This is the reason why previous bypassing
algorithms [4][5][6][7][12][15][21][22][25] only work with
non-inclusive/exclusive LLCs.

Figure 1 shows various flavors of memory hierarchy
organization possible with strict/flexible allocation policies
combined with inclusive/non-inclusive LLCs. Figure 1a
shows a non-inclusive cache where all the incoming cache
blocks from memory are allocated in all three levels of
caches. The LLC is non-inclusive and therefore the
evictions from LLC are silent i.e. they do not try to
invalidate the evicted data blocks from upper levels. On the
other hand, an inclusive LLC (shown in Figure 1b) will
force an eviction of the corresponding data block(s) from L1
and L2 cache when a cache block is evicted from LLC. This
event is also referred as back invalidation. Applying a
selective allocation policy/bypassing is straight forward on a
non-inclusive LLC because the selected incoming blocks
from memory can be filled into L1 cache and L2 cache only
(as shown in Figure 1c) and it does not violate the non-
inclusion property. The inclusive LLC is strict about filling
each incoming block from memory. This causes the
inclusive cache hierarchy to be incapable of using cache
bypassing or any selective allocation policy.

In this work, we propose a solution to enabling cache
bypassing for inclusive LLCs. We introduce a new structure
in an LLC, called a bypass buffer (BB), which keeps
bypassed blocks to support the inclusion property (as shown
in Figure 1d). Therefore, the last level cache hierarchy
consists of an LLC and a bypass buffer. The bypass buffer
keeps tags of the data blocks which are predicted to be less
important than data present in the LLC. In this manner, the
working set present in the LLC is not evicted to make room
for less useful data. When a block is evicted from the LLC
or BB, it invalidates the data copies present in upper level
caches to maintain inclusion property. Our insight is that
with a good bypassing algorithm, bypassed blocks should
have a short lifetime in upper level caches. Therefore, a
small BB is sufficient to ascertain that when a block is
evicted from the BB, it is highly likely that its data copies in
L1/L2 caches are either dead or already evicted.
Furthermore, we show that our proposed BB provides an

 2

efficient way to collect the usage information of bypassed
blocks, which can be used to simplify and facilitate the
design of bypassing algorithms.

L1

L2

P

L3 Cache

Back
Invalidation

Memory

L1

L2

P

L3 Cache

Memory

Fill Fill

(a) Non-inclusive LLC (b) Inclusive LLC

L1

L2

P

L3 Cache

Memory

Fill

L1

L2

P

L3 Cache

Back
Invalidation

Memory

Fill

BB

(d) Inclusive LLC with bypass-
buffer for selective bypassing

(c) Non-inclusive LLC
with bypass

Selective
Fill

Figure 1: Memory hierarchy organization for (a) a non-
inclusive LLC (b) an inclusive LLC (c) a non-inclusive LLC
with bypass (selective fill of L3 cache) (d) an inclusive LLC
with a bypass buffer to support cache bypassing

The key contributions of this paper include:
First, we make an important observation on the lifetime

of bypassed blocks to motivate our low overhead BB idea.
Second, we show that our proposed BB facilitates the

design of bypassing algorithms and it significantly reduces
the hardware cost of the DSB algorithm [6], a top
performing cache-bypassing algorithm.

Third, we evaluate our proposed solution and show that
our bypass-enabled LLC achieves up to 42.0% and an
average of 9.4% performance improvement over an
inclusive 2MB LLC with the least-recently-used (LRU)
replacement policy. Compared to a recently proposed high
performing replacement policy, DRRIP [9], our proposed
approach outperforms it for both single-core systems, by up
to 11.3% and 2.5% on average, and 4-core systems, by up to
14.0% and 1.3% on average.

Fourth, we evaluate the performance of inclusive LLC
with bypass-buffer in various cache configurations and
different scenarios to conclude that bypass buffer can
provide robust and effective solution to employing cache
bypassing algorithms to inclusive LLCs.

The remainder of the paper is organized as follows.
Section II motivates our approach and dissects the lifetime
of bypassed blocks to motivate our low cost solution to
enabling cache bypassing for inclusive LLCs. Section III
details our design of adaptive bypassing for inclusive LLCs.
Section IV presents the experimental methodology and
Section V discusses the experimental results. We discuss
related work in Section VI. Section VII concludes the paper.

II. MOTIVATION
Bypassing has been shown to be high performing by

previous research. In particular, two of the three top
performers in the 1st JILP Cache Replacement Competition
[11] use cache bypassing. On the other hand, many
industrial designs, including Intel Core i7 [26], use inclusive
last level caches which makes employing the cache
bypassing on these designs a non-trivial task. As suggested
in a recent work on cache bypassing algorithm [18], a
bypassing algorithm can be modified to work with inclusive
caches by inserting the bypassed block at the LRU (least
recently used) position. In this manner, the bypassing
candidates chosen by the bypassing algorithm are victimized
on the next miss to the cache set. There are two main
drawbacks to this approach. First, the cache blocks still need
to be placed in the cache set thereby replacing one
potentially more useful block. This problem is more likely
to manifest itself in a cache where the set associativity is
relatively low. Second, this approach is vulnerable to a
pathological scenario where many consecutive accesses are
mapped to a cache set. Due to the prediction of no future
reuse, they will compete for the LRU position. As a result,
the lifetime of these blocks is short, which causes the
victimization of the same data blocks from upper levels.
This will degrade performance of inclusive LLCs. These
potential performance hazards are inherently present in any
cache replacement algorithm and we show in Section V-D
that a benchmark (sphinx) in our experiments indeed
severely suffers from this problem. Therefore, we propose
to combine the bypassing algorithm with inclusive caches
without converting it to a replacement algorithm. The key
reason is that a bypassing algorithm is higher performing
than a replacement algorithm since it does not have to insert
the data in a cache level if there is no future reuse at that
level of cache. Now we present our motivation behind our
bypass buffer idea.

We first make an important observation on cache
bypassing algorithms. The goal of cache bypassing is to
bypass blocks that have fewer reuses than those currently in
the cache. Therefore, for a well-designed bypassing
algorithm, a block, which is bypassed from the LLC and
allocated in the upper levels of caches (i.e., L1/L2 caches),

 3

should not be re-accessed after it is replaced from the L1/L2
caches. Otherwise, such re-accesses would become reuses of
the block in the LLC, conflicting with the choice of
bypassing. To quantify our observation, we collect the
lifetime information of the bypassed blocks, which are
chosen with the DSB bypassing algorithm [6], and report
the lifetime histogram of selected benchmarks in Figure 2.
Here, the lifetime is measured as the number of LLC misses
while a cache block was live in the L1 cache (i.e., the
number of LLC misses between the time when the bypassed
block is allocated in the L1 cache and the time of its last
touch before being evicted). From Figure 2, we can see that
bypassed blocks quickly become dead in the L1 cache. For
example, for benchmark art, 75% of its bypassed cache
blocks have a short lifetime of between 3 to 4 LLC misses
in the L1 cache and 96.4% of its bypassed blocks are dead
after 8 LLC misses. On average of all the benchmarks in our
study (see Section IV for methodology), 94.3% of the
bypassed blocks are dead after 8 LLC misses. We also
collected the lifetime information of the bypassed blocks in
the L2 cache and it exhibits very similar trends.

Figure 2: The lifetime histogram of the blocks, which are
bypassed from the LLC, in the L1 data cache.

The implication of the lifetime information on inclusive
LLCs is that those blocks, which would have been bypassed
otherwise, are essentially useless and are allocated in LLCs
only for the inclusion purpose. Note that even marking those
blocks as early victims to evict in LLCs may still replace
more useful data, thereby not as effective as bypassing. In
the next section, we leverage the short lifetime of bypassed
blocks to design our low cost solution to enable cache
bypassing for inclusive LLCs.

III. ADAPTIVE CACHE BYPASSING FOR INCLUSIVE LLCS
To enable cache bypassing for inclusive LLCs, we

propose a bypass buffer (BB). The bypassed blocks are kept
in the BB rather than replacing victims in an LLC. When a
block is evicted from the BB, it invalidates the copies of the
same data in upper level caches to ensure the inclusion
property. The lifetime information presented in Section II
shows that the bypassed blocks become dead quickly in
L1/L2 caches. Therefore, a small BB is sufficient to reap the
performance benefit of bypassing while maintaining the
inclusion property.

Next, we present our design to incorporate a bypassing
algorithm within an inclusive cache hierarchy. We use the
winning algorithm from CRC [11], Dueling Segmented
LRU Replacement Algorithm with Adaptive Bypassing
(DSB) [6]. A key feature of DSB is bypassing the LLC
adaptively, which is shown as the highest contributing
factor to the performance gains. Then, we show how the
proposed BB can be leveraged to reduce the hardware cost
of the DSB algorithm. Our design is based on an inclusive
LLC (L3 cache) and a non-inclusive L2 and L1 caches
shown in Figure 1d, as used in Intel Core architectures [26].

A. Dueling Segmented LRU Replacement Algorithm with
Adaptive Bypassing (DSB)

In this section we briefly present the DSB algorithm and
summarize the key ideas [6].

1. A Segmented LRU (SLRU) replacement algorithm
[14], which was originally proposed for cache management
for disk systems. Random promotion and aging policies are
proposed to enhance performance.

2. An adaptive bypassing policy, which randomly
bypasses cache blocks based on a probability. This
probability is increased or decreased based on whether
bypassing is effective or not. The effectiveness of bypassing
is determined by tracking whether a bypassed block is
reused before the replacement victim. To do so, each cache
set is augmented with an additional tag and a competitor
pointer. In the case of a bypass, the additional tag field
keeps the tag of a bypassed block and the competitor pointer
points to the replacement victim, which would have been
evicted without bypassing. If the competitor is accessed
before the bypassed one, bypassing is determined as
effective. If the bypassed tag is accessed before the
competitor, bypassing is determined to be ineffective. DSB
algorithm invalidates a bypass block – competitor pointer
pair when there is a fill at the location pointed by competitor
pointer. To assess the impact of bypassing when a no-
bypassing decision is made, some newly allocated blocks
are randomly selected for ‘virtual bypassing’. In this case,
the additional tag keeps the tag of the replacement victim
and the competitor pointer keeps the position of the newly
incoming block. If the replacement victim is re-accessed
earlier than the incoming block, it means that bypass is
effective.

3. Set sampling, in which a few sample sets maintain
auxiliary tag directory (ATD) [20] to exercise two dueling
policies and a saturating counter decides which policy is
applied to the cache.

B. Bypass-Buffer Enabled Inclusive DSB
With a BB, we only need to make the following small

changes to support inclusion.
If the bypassing algorithm decides to bypass a

requested cache block, it is allocated in the BB instead of
the LLC and forwarded to upper level caches. If the BB is

0
10
20
30
40
50
60
70
80
90

100

0 1 2 3-4 5-8 9-16 17-32 33-64 65-128 129-256

%
 o

f c
ac

he
 b

lo
ck

s

Lifetime histogram of cache blocks in L1 cache

sphinx
ammp
art
mcf
Avg

 4

full, a victim is selected and the data copies of the victim are
invalidated in upper level caches.

L2 cache misses are serviced with both the BB and the
LLC. A hit in the BB provides the data to the L2 cache and
the cache block is de-allocated from the BB and filled in the
LLC.

C. Data-less Bypass Buffers
To reduce the hardware overhead of a BB, we propose to

not include payload data in BB entries. A data-less BB is
feasible as the tags are sufficient to maintain the inclusion
property. Since the bypassed cache blocks become dead in
upper level caches very soon, a hit in the BB should be very
rare. Therefore, a data-less BB does not incur performance
penalties. In a case when there is a miss in the LLC and hit
in BB, it is treated like a miss and the data is brought in
from memory. Considering multi-processor design, the BB
entries also keep coherence information along with tags
similar to the LLC tag store. Assuming a MESI-like
coherence protocol, a data-less BB works without any
significant modifications. For snoop requests that do not
need to respond with data, the data-less BB acts exactly the
same as the LLC. In the case for a snoop request asking for
data which hits in the BB with the M state, the upper cache
levels are searched to find the most recent copy of the data.

D. Efficient Tracking Using Bypass Buffers
As discussed in Section III-A, the DSB algorithm needs

to track the effectiveness of bypassing and does so by
adding additional tags and pointers in each cache set. This
incurs relatively high hardware overhead. We propose to
leverage the BB to reduce such bookkeeping cost by adding
a competitor pointer in each BB entry. Since the number of
BB entries is much smaller than the number of sets in the
LLC, the overall storage requirement for the DSB algorithm
can be significantly reduced.

As the tracking information is no longer stored in each
cache set, we make the following modifications to the
original DSB algorithm:
1. For each bypassed block, its competitor pointer points

to the replacement victim, which would have been
replaced without bypassing.

2. When a block is chosen to be virtually bypassed (i.e., it
is still allocated in the LLC but selected to assess the
impact of bypassing), a BB-entry is allocated for the
replaced block and its competitor pointer points to the
newly allocated block. Since the probability of virtual
bypass is low in the DSB algorithm, we do not expect
the BB to be flooded with virtual bypasses/victims.

3. When L2 cache misses are serviced with both LLC and
BB, depending on whether (virtual) bypassed blocks are
accessed earlier than the corresponding replacement
victims, the bypassing probability is adjusted
accordingly, same as the original DSB algorithm.

To summarize, we present three adaptive bypassing
designs for inclusive LLCs: (1) DSB with a BB containing

data (I-DSB-BB-data) (2) DSB with a data-less BB (I-DSB-
BB) (3) DSB with a data-less BB, which is augumented for
tracking bypass effectiveness (I-DSB-BBtracking). Since
the data stored in the BB are very rarely accessed, we
mainly focus on I-DSB-BB and I-DSB-BBtracking in the
rest of the paper.

The design of the bypass buffer used for I-DSB-
BBtracking is shown in Figure 3. It is organized as a set
associative strucutre of multiple BB-entries. In each entry,
the BB-tag is the block address of the bypassed block. It is
different from the tag stored in the cache because the index
bits are removed from the cache tags in any cache. To track
the effectiveness of bypassing, a virutual bypass bit and a
competitor pointer are maintained in each BB-entry.

Set Associative
Bypass Buffer

valid Competitor
pointer BB-tagVirtual

Bypass

BB entry

Figure 3: Various fields present in a BB-entry

E. Hardware Overhead of Bypass Buffer
Here, we discuss the hardware storage of bypass buffer

for I-DSB-BBtracking. In most of our experiments (if
otherwise not mentioned), we use a 64-entry BB which is
organized as a 4-way set associative structure. Each entry
contains a 54-bit (= 64-bit address – 6-bit block offset – 4-
bit index) tag field, a competitor pointer and two status bits
as shown in Figure 3. Since the tag field shares the same
index bits for the LLC as the competitor (i.e., the bypassed
block and the competitor are in the same cache set), the
competitor pointer is reduced to a way pointer. For a 16-way
LLC, a competitor pointer requires 4 bits. So, the overall
hardware storage cost of the BB is 64× (54+4+2) = 3,840
bits.

In comparison, the original DSB algorithm keeps a 16-
bit partial tag for bypassed block, a competing way pointer
(4 bits for 16-way set associative cache) and 2 status bits.
As a 2MB cache with 64-B blocks has 2048 sets, the overall
cost is 22x2048 = 44K bits. Therefore, I-DSB-BBtracking
incurs 91% less hardware overhead compared to DSB cache
bypassing algorithm.

For a 4MB shared LLC in a 4-core system, we use 256
entry bypass buffer. The storage cost of our BB-based
design is 256*(52+4+2) = 14.5K bits whereas the original
DSB implementation costs 88K bits of storage.

The auxiliary tag directory and randomization hardware
as proposed in DSB remain the same in I-DSB-BB and I-
DSB-BBtracking and they cost 46.8K bits for a 2MB LLC
(93.5K bits for a 4MB LLC) and 51 bits, respectively [6].

 5

IV. EXPERIMENTAL METHODOLOGY
To model the performance impact of our proposed

approach, we use an in-house execution-driven simulator.
This simulator uses the SimpleScalar [2] frontend while the
timing simulator is completely revamped to model a 4-way
issue superscalar processor with a 64-entry active list. The
memory hierarchy contains a 32kB 4-way set associative L1
data cache with a block size of 64 bytes (1-cycle hit
latency), a 32kB 2-way set associative L1 instruction cache
(1-cycle hit latency) and an 8-way set associative 256kB L2
cache with a block size of 64 bytes (10-cycle hit latency).
We use 16-way set associative 2MB LLC with a block size
of 64 bytes (30-cycle hit latency) for our single-core
systems. For multi-core systems, we increase the capacity of
shared LLC to 4MB. The LLC in our baseline system is
inclusive and enforces inclusion on L1 and L2 caches by
sending back invalidations for LLC evictions. L1 and L2
caches are kept non-inclusive as mentioned before. The
main memory latency is 200 cycles.

We include all the SPEC 2000 and SPEC 2006
benchmarks that we were able to compile and run using the
SimpleScalar ISA (PISA), 16 from SPEC 2000 and 7 from
SPEC 2006. We use reference input for all the benchmarks
and use Simpoint [8] tool to find simulation phases. For
each benchmark, we use a representative 100M Simpoint for
simulations. We also include 4 additional memory intensive
phases and label them as gap-2, gcc-2, mcf-2 and sphinx-2.
Among the 27 benchmark Simpoints, listed in Appendix-1,
we only report results for 14 selected programs phases. The
selection criterion is that either these phases show
performance gains, measured with instructions per cycle
(IPC), of more than 3% when the LLC size is increased to
16MB from the baseline size of 2MB or they have more
than 5 LLC misses per 1K instructions (MPKI).

To evaluate our proposed design in a 4-core system, we
generate four multi-programmed workload categories: (a)
4H: all 4 benchmarks with high MPKI; (b) 3H1L: 3
benchmarks with high MPKI and 1 benchmark with low
MPKI; (c) 2H2L: 2 benchmarks with high MPKI and 2
benchmarks with low MPKI; and (d) 1H3L: 1 benchmark
with high MPKI and 3 benchmarks with low MPKI. We do
not include category 4L in this study because of its low
memory intensiveness. In each category, eight multi-
programmed workloads are generated randomly. The
detailed list of all the combinations is in Appendix-2. The
performance of multi-programmed workloads is measured
using the weighted speedup as proposed in [24].

V. EXPERIMENTAL RESULTS

A. Effect of bypassing on LLC performance
We start our experimental analysis with evaluating the

LLC miss rates obtained by the baseline system, DSB with a
non-inclusive LLC, I-DSB-BB with an inclusive LLC and I-
DSB-BBtracking with an inclusive LLC and the results are
shown in in Figure 4. I-DSB-BB and I-DSB-BBtracking

both use a 64 entry bypass buffer which is organized as a 4-
way set associative structure. DSB is able to reduce LLC
misses for many benchmarks. For some benchmarks such as
equake, mcf, parser and sphinx, I-DSB-BB has slightly
more misses than DSB. It is caused by inclusion victims, i.e.
few live L1 and L2 blocks being invalidated due to back
invalidations. Between I-DSB-BB and I-DSB-BBtracking,
some entries in a 64-entry BB are evicted early, which
affects the accuracy of tracking the bypassing effectiveness
for I-DSB-BBtracking. Therefore, I-DSB-BBtracking has a
slightly higher number of misses than I-DSB-BB. This
difference gets smaller as we increase the number of BB
entries (see Section V-C on the impact of the BB size).
Also, the benchmark mcf from SPEC2000 (mcf-2k) have a
very low number of LLC misses for a 2MB LLC therefore
there is no impact of using bypassing for this LLC
configuration. But we include this benchmark because it
shows high MPKI due to thrashing behavior when the LLC
capacity is 1MB. (More results in Section V-F).

Figure 4: LLC miss rate comparison for different designs

Next, we analyze the fraction of bypassed LLC
allocations and fraction of bypass buffer hits (BB-hits) for I-
DSB-BBtracking. Figure 5 shows the fraction of LLC
allocations which are decided to be bypassed and Figure 6
shows the fraction of bypassed blocks which are recalled by
L2 cache and experience a hit in BB. As shown in Figure 5,
many benchmarks heavily prefer bypassing of cache blocks.
For most of the benchmarks with high fraction of cache
bypassing (e.g. art, gcc-2, mcf and sphinx), the bypassing is
effective and we observe significant reductions in LLC
misses as shown in Figure 4. The exception is the
benchmark equake, which shows a high fraction of bypasses
and yet does not achieve significant reduction in LLC miss
rate, meaning that both the bypassed blocks and their
competitor LRU blocks have no reuses. The benchmarks
bzip2-2k, gromacs, lbm, mcf-2k, parser and vortex show low
amount of bypassing and therefore their LLC miss rates are
largely unaffected. The benchmark ammp has a repetitive
access pattern with very long reuse distances and causes the

0%

20%

40%

60%

80%

100%

am
m

p
ar

t
bz

ip
2-

2k
eq

ua
ke

gc
c-

2
gr

om
ac

s
lb

m
m

cf
-2

m
cf

m
cf

-2
k

pa
rs

er
sp

hi
nx

-2
sp

hi
nx

vo
rt

ex
av

er
ag

e

LL
C

M
is

s-
ra

te

Baseline (inclusive LLC)
DSB (non-inclusive LLC)
I-DSB-BB (inclusive LLC)
I-DSB-BBtracking (inclusive LLC)

 6

tracking information (i.e. bypass block –competitor pointer
pair) to be cancelled before it can be detected to be effective
(as mentioned in III-A). Therefore, the bypassing
probability stays low, and this minimal amount of bypassing
leads to a small reduction in the LLC miss rate.

A key aspect of our motivation of proposing the Bypass
Buffer is that the bypassed blocks are not likely to be
reaccessed by upper levels. We also mentioned in the
Section III-C that hits in bypass buffer should be very rare
and therefore it does not incur any performance penalty if
BB-entries are data-less. In Figure 6, we present the fraction
of hits in the bypass buffer (called BB-hits) normalized to
the number of cache bypasses. There are two key
observations that can be made from comparing Figure 5 and
Figure 6. First, for most benchmarks with high amount of
bypassing, the fraction number of BB-hits is very low.
Second, benchmarks such as bzip2 (SPEC2000) and vortex
have relatively higher fraction of BB-hits. A BB-hit
indicates an incorrect bypassing decision and results in
lower probability of bypass. Therefore the fraction of
bypassed blocks is relatively low for these two benchmarks.

Figure 5: Fraction of bypassed LLC allocations for I-DSB-
BBtracking

Figure 6: Fraction of bypassed blocks incurring a hit in the
bypass buffer for I-DSB-BBtracking

B. Performance improvement of Bypass Buffers
In this experiment, we evaluate the effectiveness of our
proposed I-DSB-BB and I-DSB-BBtracking designs. We
present the performance improvements, measured in the
instruction per cycle (IPC) speedups, as shown in Figure 7.
For reference, we also show the IPC improvement of the
non-inclusive DSB design. From Figure 7, we can see that

DSB achieves an 11.6% IPC improvement for non-inclusive
cache hierarchies on average, using the geometric mean
(Gmean), across the high MPKI benchmarks. Both I-DSB-
BB and I-DSB-BBtracking enable bypassing for inclusive
LLCs. I-DSB-BB achieves an 9.8% performance gain on
average while I-DSB-BBtracking has an overall speedup of
9.4%. As discussed in Section III-D, I-DSB-BBtracking
uses the BB to keep usage information for both bypassed
blocks and the replacement victims chosen to participate in
virtual bypass. Compared to I-DSB-BB, some entries in a
64-entry BB are evicted early, which affects the accuracy of
tracking the bypassing effectiveness. Therefore, I-DSB-
BBtracking has slightly lower performance than I-DSB-BB.
When increasing the BB size to 128 entries, the
performance gains of I-DSB-BBtracking is improved to
10.0%. Considering its significant savings in hardware cost
and relatively minor performance difference to I-DSB-BB,
we consider I-DSB-BBtracking as our design of choice.

Figure 7: Performance improvements of DSB, I-DSB-BB and
I-DSB-BBtracking (w.r.t. the baseline inclusive LLC with the
LRU replacement policy)

C. Effect of the Bypass Buffer size
In this section, we analyze the performance of I-DSB-

BB and I-DSB-BBtracking for different bypass buffer sizes.
As mentioned in Section II the number of bypass buffer
entries required should be small because of the lifetime of
most bypassed cache blocks in upper cache levels is small.
Therefore, we chose to experiment with a design with 64
BB-entries. Figure 8 shows the geometric mean of IPC
speedup of benchmarks for different sizes of bypass buffer.
It can be observed from the results clearly that increasing
the size of bypass buffer increases the performance of I-
DSB-BB gradually. On the other hand, I-DSB-BBtracking
gains performance with increasing size of bypass buffer
more rapidly in the beginning but it saturates after 128-
entries.

To elaborate, increasing the bypass buffer size for I-
DSB-BB allows the tags of bypassed blocks to be stored in
BB longer. Therefore, with the increase of size of bypass

0%

20%

40%

60%

80%

100%

am
m

p
ar

t
bz

ip
2-

2k
eq

ua
ke

gc
c-

2
gr

om
ac

s
lb

m
m

cf
-2

m
cf

m
cf

-2
k

pa
rs

er
sp

hi
nx

-2
sp

hi
nx

vo
rt

ex
av

er
ag

e%
 B

yp
as

se
d

al
lo

ca
tio

ns

0%
1%
2%
3%
4%
5%
6%

am
m

p
ar

t
bz

ip
2-

2k
eq

ua
ke

gc
c-

2
gr

om
ac

s
lb

m
m

cf
-2

m
cf

m
cf

-2
k

pa
rs

er
sp

hi
nx

-2
sp

hi
nx

vo
rt

ex
av

er
ag

e

%
 B

B
hi

ts

0.90

1.00

1.10

1.20

1.30

1.40

1.50

am
m

p
ar

t
bz

ip
2-

2k
eq

ua
ke

gc
c-

2
gr

om
ac

s
lb

m
m

cf
-2

m
cf

m
cf

-2
k

pa
rs

er
sp

hi
nx

-2
sp

hi
nx

vo
rt

ex
gm

ea
n

Sp
ee

du
p

DSB (non-inclusive LLC)
I-DSB-BB (inclusive LLC)
I-DSB-BBtracking (inclusive LLC)

 7

buffer the performance increases. I-DSB-BBtracking has
two benefits from increasing the size of BB. The first is the
same as I-DSB-BB and the second is that the bypass
tracking mechanism has more entries and the detection of
effectiveness and ineffectiveness of bypassing is done more
accurately. This is the reason why I-DSB-BBtracking
recovers more performance compared to I-DSB-BB when
number of BB-entries is increased.

 Figure 8: Performance of I-DSB-BB and I-DSB-BBtracking
for different bypass buffer sizes

D. Comparison to a high performing replacement
algorithm, DRRIP

DRRIP [9] is one of the high performing cache
replacement algorithms for LLCs. It provides scan-
resistance and thrash-resistance via the use of bimodal
insertion policies and set dueling [20]. We adopt the source
code (distributed by the authors) to incorporate DRRIP in
our simulator framework. We compare the performance
gains of the DRRIP replacement policy with our proposed I-
DSB-BBtracking design and the results are shown in Figure
9. In this experiment, both DRRIP and our I-DSB-
BBtracking are used for an inclusive LLC and the baseline
is an inclusive LLC with the LRU replacement policy. For
reference, we also include a bar for each benchmark in the
figure showing the IPC speedup of DRRIP on a non-
inclusive LLC and it is normalized to same baseline system
as other two bars (inclusive LLC with the LRU replacement
policy).

From Figure 9, we can see that both DRRIP and our
proposed I-DSB-BBtracking can support the inclusion
property while achieving performance gains over the
baseline LLC, an average of 9.4% and 6.7%, respectively.
For benchmarks such as art, gcc-2, mcf and sphinx, I-DSB-
BBtracking outperforms DRRIP significantly although
DRRIP already shows good performance. The reason is that
DRRIP still needs to allocate a block even if it knows the
thrashing behavior. Therefore, in our 16-way set associative
LLC, out of 16 ways in a cache set, one way is being
thrashed while other ways enjoy hits when being reused.
Bypassing eliminates such inefficiency and can fully utilize
the 16 ways for data reuse. The other limitation of any
replacement algorithm, as discussed in Section II, causes
both program phases of the benchmark sphinx to degrade

performance compared to non-inclusive case. Multiple
consecutive accesses to the same cache set are inserted at
the LRU position in the set and evict each other in the case
of this benchmark. This phenomenon does not hurt
performance in a non-inclusive LLC but it degrades
performance when inclusion is enforced via back
invalidation. As a result, DRRIP (inclusive LLC) shows
17% and 7% lesser performance for sphinx and sphinx-2
respectively compared to DRRIP (non-inclusive LLC). On
the other hand, I-DSB-BBtracking recovers all the
performance in the case of sphinx-2 and ensures no
slowdown in the case of sphinx. This recovery of
performance is enabled by the bypass buffer which lets the
bypassed cache blocks stay in the LLC for longer duration
as opposed to using DRRIP which evicts the LRU inserted
cache blocks on the next miss to the cache set.

Figure 9: Performance improvements of DRRIP and I-DSB-
BBtracking (w.r.t. the baseline inclusive LLC with the LRU
replacement policy)

E. Performance gains of Bypass Buffers in the presence of
a stream-buffer

High performance microprocessors employ hardware
prefetching mechanisms to hide memory latency. For our
high MPKI benchmarks, when we employ a stream buffer
[13] with the following configuration: 8 four-entry stream
buffers with a PC-based two-way 512-entry stride prediction
table, the streaming buffer prefetcher results in a 39% IPC
improvement on average. Here, it is interesting to see
whether the intelligent LLC management can still benefit in
the presence of the stream buffer. As shown in Figure 10,
when we use I-DSB-BBtracking algorithm for inclusive
cache hierarchy with such a stream buffer, a 9.2% IPC
improvement (on average) is observed over the baseline
inclusive cache hierarchy with the LRU replacement policy
and the same streaming buffer.

In comparison, inclusive DRRIP provides an IPC
speedup of 7.3% in such a case. Therefore, we conclude that
bypassing for inclusive cache using I-DSB-BBtracking can

1

1.02

1.04

1.06

1.08

1.1

1.12

I-DSB-BB I-DSB-BBtracking

Av
er

ag
e

Sp
ee

du
p 32

64

128

256

512

0.90

1.00

1.10

1.20

1.30

1.40

1.50

am
m

p
ar

t
bz

ip
2-

2k
eq

ua
ke

gc
c-

2
gr

om
ac

s
lb

m
m

cf
-2

m
cf

m
cf

-2
k

pa
rs

er
sp

hi
nx

-2
sp

hi
nx

vo
rt

ex
gm

ea
n

Sp
ee

du
p

DRRIP (non-inclusive LLC)
DRRIP (inclusive LLC)
I-DSB-BBtracking (inclusive LLC)

 8

outperform intelligent replacement policy like DRRIP in
presence of stream prefetching as well.

 Figure 10: Performance improvements of DRRIP and I-DSB-
BBtracking in presence of a stream buffer. The baseline is an
inclusive LLC with the LRU replacement and a stream buffer
prefetcher.

F. Sensitivity to LLC configurations
We also evaluate DSB, I-DSB-BB, I-DSB-BBtracking

and DRRIP for different LLC sizes and set-associativity.
Their average performance gains across the high MPKI
benchmarks are shown in Figure 11. The baseline LLC for
each set of bars is of specified size and uses LRU
replacement policy. The same BB size, 64, is used for all
these cache configurations. The rationale behind the same
size of bypass-buffer being effective for various cache sizes
is that the bypass-buffer is sized for the lifetime of bypassed
cache blocks in upper cache levels and which does not
change significantly with the configuration of LLC.
Moreover, the number of cache sets (which increases with
increasing cache size and decreasing set associativity)
increases the overhead of bypassing for DSB and I-DSB-BB
while I-DSB-BBtracking has a fixed overhead.

From Figure 11, we can see that the adaptive bypassing
schemes achieve high performance for all the cache
configurations that we studied. As we move towards a
smaller capacity of LLC, the performance gains of
bypassing (DSB) as well as replacement (here DRRIP) are

reduced. This is due to the thrashing behavior of some of the
benchmarks which causes the baselines of 1MB and 2MB to
be similar performing. On the other hand, DSB and DRRIP
both provide thrash resistance and 2MB LLC can fit bigger
portion of the working set compared to 1MB LLC and
enjoys significantly more hits. It should also be noted that,
with bigger LLC capacity of 4MB the difference in
performance between DSB (non-inclusive LLC) and DRRIP
(inclusive LLC) grows comparatively small. This is due to
two reasons. Firstly, the negative effect of enforcing
inclusion decreases when LLC capacity is bigger. Secondly,
DSB does not evict data from LLC while DRRIP has to
insert data in LLC which hurts more performance for
smaller cache associativity/capacity and vice-versa. Overall,
we can see that I-DSB-BBtracking consistently outperforms
DRRIP across a variety of LLC configurations we studied.

Figure 11: Performance improvements of DSB, I-DSB-BB and
I-DSB-BBtracking for different cache configurations. (the
baselines are inclusive LLCs with the corresponding
configurations)

G. Bypass Buffers for Shared Last Level Caches
In the next experiment, we focus on the effectiveness of

the BB for the shared LLCs in multi-core systems. For a
4MB LLC shared among 4 cores, we employ a 256-entry
BB and measure the performance of 32 multi-programmed
workloads as described in Section IV. Although the original
DSB bypassing algorithm is inherently thread unaware, it
outperforms thread-aware DRRIP (TA-DRRIP) [9] in our

0.9

1

1.1

1.2

1.3

1.4

am
m

p
ar

t
bz

ip
2-

2k
eq

ua
ke

gc
c2

gr
om

ac
s

lb
m

m
cf

2
m

cf
m

cf
-2

k
pa

rs
er

sp
hi

nx
2

sp
hi

nx
vo

rt
ex

gm
ea

n

Sp
ee

du
p

DRRIP (inclusive LLC)
I-DSB-BBtracking (inclusive LLC)

1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14

1MB
8way

1MB
16way

2MB
8way

2MB
16way

4MB
8way

4MB
16way

Av
er

ag
e

Sp
ee

du
p

DSB (non-inclusive LLC)
I-DSB-BB (inclusive LLC)
I-DSB-BBtracking (inclusive LLC)
DRRIP (inclusive LLC)

Figure 12: Performance improvements of I-DSB-BBtracking and TA-DRRIP for a 4MB inclusive LLC for multi-programmed
workloads (w.r.t. the baseline with the LRU replacement policy)

 9

experiments. We did not observe any significant
improvement from making DSB algorithm thread aware
therefore we conclude that a simpler (thread unaware)
design is a more cost effective approach. We also compared
the performance of a shared BB and a private BB in our
design. A thread private bypass buffer limits the amount of
bypassed blocks a thread can store in the bypass buffer.
Moreover, if there are a few threads in a multi-programmed
workload that do not prefer bypassing, many BB-entries
may be underutilized. In our experiments, the shared bypass
buffer design performs superior to a private bypass buffer
design and therefore it is the choice in our design of bypass
buffer for shared LLC.

Our simulations results comparing the performance of
TA-DRRIP and I-DSB-BBtracking are reported in Figure
12, which shows that our proposed I-DSB-BBtracking
algorithm provides an average speedup of 6.6%, 11.6%,
8.4%, 4.3% for the category 4H, 3H1L, 2H2L and 1H3L
respectively. The workloads in these categories have one or
more programs, which have high MPKI and they compete
heavily for the shared LLC. The bypassing algorithm
selectively bypasses the cache blocks and therefore provides
the cache capacity to data blocks with smaller reuse
distances.

As shown in Figure 12, TA-DRRIP also improves the
performance with an average of 4.8%, 9.4%, 7.2% and 2.9%
for categories 4H, 3H1L 2H2L and 1H3L respectively. Due
to strict allocation policy, it always has to allocate a data
block in cache. Moreover, multiple insertions from different
threads at lower LRU stack positions in a cache set result in
victimizing the blocks prematurely and a loss of
performance due to inclusion. This is responsible for
relatively lower average performance of TA-DRRIP
compared to I-DSB-BBtracking algorithm in all the
categories. Therefore we conclude that bypass buffer can
make cache bypassing effective for inclusive shared LLCs
as well.

H. Energy Consumption
In this section, we compare the energy consumption of I-

DSB-BBtracking scheme with the baseline. We use McPAT
tool [19] to obtain the static and dynamic power
consumption results. The power model is based on the 45nm
technology and 3.4 GHz frequency. Figure 13 shows the
energy consumption for each benchmark when the 100M
simulation phase is executed on the baseline system as well
as when the I-DSB-BBtracking mechanism is deployed.
From Figure 13, we can see that for most benchmarks DSB-
BBtracking reduces overall energy consumption by up to
25.6% and 6.2% on average. Most of the energy savings are
a result of reduced execution time which translates into
significant savings in static energy consumption. For the
remaining benchmarks, on which DSB-BBtracking has little
performance impact, the energy consumption impact is
nearly negligible.

 Figure 13: Comparing energy consumption of I-DSB-
BBtracking with the baseline

I. Memory Bandwidth Reduction
As shown in Section V-A, I-DSB-BBtracking reduces

LLC misses. This in turn reduces the off-chip memory
traffic and the execution time. As the reduction in LLC
miss-rate is typically higher in proportion than the reduction
in execution time, average memory bandwidth is reduced.
As shown in Figure 14, we observe average memory
bandwidth of 3.3 GB/s in the baseline for benchmark art
while I-DSB-BBtracking reduces it to 1.9 GB/s. For
benchmarks such as bzip2, equake, gromacs and mcf, we
observe slight increase in the bandwidth. Bzip2 and gromacs
have slightly more misses compared to the baseline and
therefore the bandwidth is increased. On the other hand,
equake and mcf have reduced number of LLC misses and
yet the bandwidth increases due to faster execution of the
program. Overall, the aggregate memory bandwidth is
reduced by 13% on average across the benchmarks.

 Figure 14: Comparing memory bandwidth of I-DSB-
BBtracking with the baseline system

J. Additional Benefits of Cache Bypassing Algorithms
Many proposals for high performance cache

management focus on replacement algorithms. A common
theme is to alter the insertion policy whereas the allocation
policy is strict and each incoming block is allocated space in
an LLC. The key contribution of a bypassing algorithm is to

0

1

2

3

4

am
m

p

ar
t

bz
ip

2-
2k

eq
ua

ke

gc
c2

gr
om

ac
s

lb
m

m
cf

2

m
cf

m
cf

-2
k

pa
rs

er

sp
hi

nx
2

sp
hi

nx

vo
rt

ex

En
er

gy
 C

on
su

m
pt

io
n

(J
ou

le
s)

Baseline-Static
Baseline-Dynamic
I-DSB-Bbtracking -Static
I-DSB-Bbtracking -Dynamic 10.5 10.3

0
0.5

1
1.5

2
2.5

3
3.5

am
m

p
ar

t
bz

ip
2-

2k
eq

ua
ke

gc
c-

2
gr

om
ac

s
lb

m
m

cf
-2

m
cf

m
cf

-2
k

pa
rs

er
sp

hi
nx

-2
sp

hi
nx

vo
rt

ex
av

er
ag

e

M
em

or
y

Ba
nd

w
id

th
 (G

B/
s)

Baseline (inclusive LLC)
I-DSB-BBtracking (inclusive LLC)

 10

combine a placement / allocation policy with the
replacement policy. Bypassing has some interesting benefits
for upcoming memory technologies. For example, phase-
change memory (PCM) provides high integration density
while suffers from limited write endurance. In a design
using PCM technology for LLCs, we can utilize cache
management algorithms like DSB to reduce the number of
fill operations to the LLC. This would not only increase the
life of such PCM based LLC structure but also increase the
overall performance (as shown in previous sections). In
Section V-A, Figure 5 shows the fraction (in percentage) of
bypassed LLC allocations when the I-DSB-BBtracking
algorithm is used. From this figure, we can see that for
certain benchmarks, up to 80% of the LLC allocations can
be bypassed while enjoying good performance gains.

VI. RELATED WORK
There is a plethora of research work on designing high

performing cache replacement algorithms. Recently
proposed replacement algorithms [3][9][16][20][23] for
LLCs focus on providing thrash-resistance and scan-
resistance. There is also a significant amount of work on
cache bypassing algorithms [4][5][6][7][12][15][18][21]
[22][25]. The results of 1st JILP Cache Replacement
Competition indicated that bypassing algorithm like DSB[6]
can be an effective method to improve the LLC performance
for a wide variety of workloads. Recent work by Li et al.
[18] uses a similar mechanism to decide the effectiveness of
bypassing. The key difference is they do not use
probabilistic bypassing and instead maintain a signature
based history per program counter to make bypassing
decisions. A major disadvantage of using signature based
approach is to have the program counter being sent to LLC
from each core with the cache access. This can be an
expensive requirement to fulfill in a real design. Therefore,
DSB is our choice of bypassing algorithm in this study.
However, it should be noted that a bypass buffer can help
employ any complex bypassing algorithms on inclusive
LLCs.

Gaur et al. [7] proposed cache bypassing algorithms
specific to exclusive cache hierarchies. The key contribution
of this work is to tackle the problem of no reuse information
being available for cache blocks (a cache hit de-allocates the
cache block and the reuse information is lost). The work
presents both insertion and bypassing algorithms designed
for exclusive caches.

Jaleel et al. [9] pointed out a key performance problem in
inclusive cache hierarchies due to invalidation victims. The
non-inclusive cache performance is achieved in this work by
making the last-level cache replacement policy aware of the
temporal locality in upper levels of cache. This work can be
used in conjunction with our scheme to further enhance
performance for inclusive caches.

VII. CONCLUSIONS
In this work, we focus on the inherent limitation of

inclusive caches in utilizing cache bypassing. We propose
and evaluate a novel solution, called a bypass buffer (BB),
to overcome this limitation. The bypassed data blocks skip
the LLC and their tags are stored in the BB. When a tag is
replaced from the BB, it invalidates the upper cache levels
to maintain the inclusion property. We show that for a well
design bypassing algorithm a relatively small BB is
sufficient to reap most of the performance gains of
bypassing. Our proposed BB also enables us to significantly
reduce the storage hardware cost of bypassing algorithms as
it readily provides the usage information of bypassed cache
blocks. Our experimental results show that our proposed
design achieves high performance and outperforms a
recently proposed high performing replacement algorithm,
DRRIP, in both single core and 4-core systems. Our
evaluation of our proposed design on different cache
configurations and in presence of a stream prefetcher shows
that it provides a cost-effective design for inclusive LLCs.

ACKNOWLEDGMENT
We would like to thank the anonymous reviewers for

their valuable comments to improve our paper. This
research is supported by an NSF grant CCF-1216569, an
NSF CAREER award CCF-0968667 and a research fund
from Intel Corporation.

REFERENCES

[1] L. A. Belady. “A Study of Replacement Algorithms for a
Virtual-storage Computer.” In IBM Systems Journal, 5(2):
78-101, 1966.

[2] D. Burger and T. M. Austin. “The Simplescalar Tool Set
Version 2.0.” Technical Report, Computer Science
Department, University of Wisconsin-Madison, 1997.

[3] M. Chaudhuri. “Pseudo-LIFO: The foundation of a new
family of replacement policies for LLCs.” In MICRO 2009.

[4] C. H. Chi and H. Dietz, “Improving cache performance by
selective cache bypass.” In Proceedings of the Twenty-
Second Annual Hawaii International Conference on System
Sciences, 1989. Vol. I: Architecture Track, 1989, pp 277 -
285 vol.1.

[5] H. Dybdahl and P. Stenstro¨m, “Enhancing Last-Level
Cache Performance by Block Bypassing and Early Miss
Determination.” In ACSAC06, 2006.

[6] H. Gao and C. Wilkerson. “A dueling segmented LRU
replacement algorithm with adaptive bypassing.” In
Proceedings of the 1st JILP Workshop on Computer
Architecture Competitions, 2010

[7] Jayesh Gaur et al. “Bypass and Insertion Algorithms for
Exclusive Last-level Caches.” In ISCA 2011.

[8] G. Hamerly et al. “SimPoint 3.0: Faster and More Flexible
Program Analysis.” In MoBS 2005.

[9] A. Jaleel et al. “Achieving Non-Inclusive Cache
Performance with Inclusive Caches -- Temporal Locality
Aware (TLA) Cache Management Policies.” In MICRO-
2010.

 11

[10] A. Jaleel et al. “High performance cache replacement using
re-reference interval prediction (RRIP).” In ISCA 2010.

[11] 1st JILP Workshop on computer architecture competitions
(Cache Replacement Championship). http: //jilp.org/jwac-1/

[12] Teresa L. Johnson et al.“Run-Time Cache Bypassing.” IEEE
Trans. Comput. 48, 12 (December 1999), 1338-1354.

[13] N. P. Jouppi. “Improving direct-mapped cache performance
by the addition of a small fully-associative cache and
prefetch buffers.” In ISCA 1990.

[14] R. Karedla et al. “Caching Strategies to Improve Disk
System Performance.” Computer, vol. 27, no. 3, pp. 38-46,
Mar. 1994.

[15] M. Karlsson and E. Hagersten. “Timestamp-based Selective
Cache Allocation.” High Performance Memory Systems,
edited by H. Hadimiouglu, D. Kaeli, J. Kuskin, A. Nanda,
and J. Torrellas, Springer-Verlag, 2003.

[16] S. Khan and D. A. Jimenez. “Insertion Policy Selection
Using Decision Tree Analysis.” In ICCD, 2010.

[17] M. Kharbutli and Y. Solihin. “Counter-based Cache
Replacement and Bypassing Algorithms.” In IEEE Trans. on
Computers, 57(4): 433-447, April 2008.

[18] L. Li et al. “Optimal Bypass Monitor for High Performance
Last-level Caches.” In PACT 2012.

[19] Sheng Li et al. “McPAT: An Integrated Power, Area, and
Timing Modeling Framework for Multicore and Manycore
Architectures.” In MICRO-42, 2009.

[20] M. K. Qureshi et al. “Adaptive insertion policies for high
performance caching.” In ISCA, 2007.

[21] J.A. Rivers and E.S. Davidson, “Reducing Conflicts in
Direct-Mapped Caches with a Temporality-Based Design.”
In ICPP, 1996.

[22] G. Tyson et al. “A Modified Approach to Data Cache
Management.” In Proceedings of MICRO-28, 1995.

[23] C.-J. Wu et al. “SHiP: Signature-based hit predictor for high
performance caching.” In MICRO, 2011.

[24] A. Snavely and D. Tullsen. “Symbiotic job scheduling for a
simultaneous multithreading processor.” In ASPLOS, 2000.

[25] L. Xiang et al. “Less reused filter: improving: L2 cache
performance via filtering less reused lines.” In ICS, 2009.

[26] Intel. Intel Core i7 Processor. http://www.intel.com/
products/processor/corei7/specifications.htm

Appendix-1: Simulation points (starting instruction number) used
for benchmarks from SPEC2000 and SPEC2006

Benchmark Starting Point Benchmark Starting Point
ammp 1,400,000,000 mcf-2k 16,900,000,000
art 2,800,000,000 mesa 117,600,000,000
bzip2 44,800,000,000 milc 20,700,000,000
bzip2-2k 18,800,000,000 parser 42300,000,000
equake 36,700,000,000 perl 1,800,000,000
gap-2 4,200,000,000 sjeng 91,400,000,000
gap 6,900,000,000 sphinx-2 3,200,000,000
gcc-2 3,800,000,000 sphinx 83,900,000,000
gcc 6,100,000,000 swim 50,000,000,000
gromacs 62,900,000,000 twolf 800,000,000
gzip 13,800,000,000 vortex 70,000,000,000
lbm 66,100,000,000 vpr 15,200,000,000
mcf-2 2,000,000,000 wupwise 10,900,000,000
mcf 46,300,000,000

Appendix-2: The list of multiprogrammed workloads

 4H 3H1L
1 sphinx, gcc-2, milc, mcf-2k ammp, art, mcf-2k, twolf
2 equake, lbm, gap-2, sphinx2 ammp, art, lbm, bzip2-2k
3 ammp, equake, gcc-2, lbm equake, mcf-2k, sphinx, gap
4 lbm, art, gap-2, swim lbm, milc, gap-2, gcc
5 sphinx, gap-2, sphinx2, swim sphinx, gap-2, gcc-2, gzip
6 sphinx2, gcc-2, swim, milc gcc-2, sphinx-2, swim, mesa
7 lbm, sphinx, milc, swim swim, mcf-2k, equake, parser
8 gap-2, gcc-2, sphinx2, milc art, mcf-2k, milc, gromacs
 2H2L 1H3L
1 art, ammp, bzip2-2k, gap art, wupwise, gcc, bzip2-2k
2 equake, mcf-2k, gzip, perl equake, wupwise, vpr, twolf
3 mcf-2k, equake, vpr, vortex art, bzip2-2k, gcc, gap
4 ammp, swim, twolf, wupwise equake, gromacs, sjeng, perl
5 lbm, milc, bzip2-2k, sjeng mcf-2k, mesa, parser, gap
6 sphinx, gap-2, gromacs, parser sphinx-2, twolf, gzip, gcc
7 gcc-2, sphinx-2, gcc, vpr gap-2, parser, sjeng, gzip
8 swim, art, vortex, gzip lbm, bzip2-2k, gromacs, perl

