
Adaptive Cache Management for Energy-
Efficient GPU Computing

Xuhao Chen

MICRO 47



Overview
• Challenges: Throughput-oriented execution model, GPGPU, generates

massive amount of memory requests which cause cache contention
and resource congestion.

• Observation:

• Cache contention: The working sets of the massive threads in
GPGPU is much larger than L1D cache size. This causes severe
cache threshing.

• Resource congestion: Cache efficiency doesn’t directly correlate
with system performance in GPUs. The GPU resource, i.e. NOC
and DRAM bandwidth can be bottleneck to the performance.

• Target: Protect cache hierarchy from contention and reduce resource
congestion through adaptive cache management.

• Approach: CBWT(coordinated bypassing and warp throttling)

• Performance: harmonic mean IPC improvement of 74% and 17% over
baseline GPU architecture and optimal static warp throttling.



Observation 1

• Two potential explanations to this figure:

• 1. the lifetime of cache block is very short in GPGPU. It means this
cache line only be used for once and never be touched again.

• 2. Because of massive memory requests from threads, working set
size of threads is much larger than L1 cache size. Thus cache blocks
are early evicted before the end of their lifetime.

• This paper consider reason 2 is the dominant one and focus on
solving it.

L1 cache reuse count distribution. It shows the number of repeated accesses to 
cache blocks in L1, after block fill in.



Observation 2

The L1 cache contention ratio detected by the L2 cache. A repeated memory request from L1
cache to L2 cache is regarded as contention. The contention ratio is calculated by # of
contentions and total number of requests to L2 cache.

• Red circle shows, a lot of 
memory request come from L1 
is because of cache threshing.

• This supports reason 2.

Two reasons:
• The cache lock is dead after first 

access. So there are not too much 
contention.

• L2 cache also experience cache 
threshing, which increase memory 
access times of L2 cache.



Cache Bypassing
• Purpose: enlarge the throughput while reducing cache contention.
• Approach: Protection Distance Prediction (PDP).
• Details: 

• Each line has a remaining prediction distance value (RPD).
• Once filling, a cache line is set to RPD.
• Each memory access to this line will decrement RPD by 1.
• If RPD>0, this cache line cannot be evicted. Otherwise, it can be 

replaced by new data.
• If RPD of all cache lines > 0, new data will be bypassed.
• Reuse distance(RD) is predicted by hardware sampling.



Contention Detection
• Purpose: To dynamically change the threshold of protection distance 

values. 
• Approach: periodically detect the number of early evictions, called 

“lost locality score”(LLS).
• Details: 

• Add Victim Bits to L2 Cache tag array entries.
• Repeated memory access will increment Victim Bits by 1.
• Periodically detect the number of repeated memory access.
• Decide threshold based on the lost locality score.



Observation 3

• Two Hints from this figure:

• 1. Simply increasing the number of active warps cannot directly
increase the performance. Because the mass traffic in NOC will
degrade the performance.

• 2. Using cache bypass also may result in performance degradation
because of resource congestion.

Average NOC latency changes as maximum active warps in a SM increases from 1 to 24.



Warp Throttling
• Purpose: throttling active warp number to reduce traffic congestion of 

NOC.
• Problem: static warp throttling is difficult to get optimized.

• Solution: Adaptive warp throttling based on congestion detection.
• Details:

• Profiling the behavior of NOC and get the threshold of packet 
latency.

• Sampling packet randomly and detect the transfer latency.

Active warps



Coordinated Bypassing and 
Warp Throttling(CBWT)


