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Abstract

We present and evaluate the idea of adaptive processor

cache management. Specifically, we describe a novel and

general scheme by which we can combine any two cache

management algorithms (e.g., LRU, LFU, FIFO, Random)

and adaptively switch between them, closely tracking the

locality characteristics of a given program. The scheme

is inspired by recent work in virtual memory management

at the operating system level, which has shown that it is

possible to adapt over two replacement policies to provide

an aggregate policy that always performs within a constant

factor of the better component policy. A hardware imple-

mentation of adaptivity requires very simple logic but dupli-

cate tag structures. To reduce the overhead, we use partial

tags, which achieve good performance with a small hard-

ware cost. In particular, adapting between LRU and LFU

replacement policies on an 8-way 512KB L2 cache yields

a 12.7% improvement in average CPI on applications that

exhibit a non-negligible L2 miss ratio. Our approach in-

creases total cache storage by 4.0%, but it still provides

slightly better performance than a conventional 10-way set-

associative 640KB cache which requires 25% more storage.

1. Introduction

The rapidly increasing gap between the relative speeds of

processor and main memory has made the need for ad-

vanced caching mechanisms more intense than ever. Pro-

cessor performance is now crucially determined by the

amount of memory accesses served from on-chip caches,

as the cost of access to RAM has grown to hundreds of cy-

cles. In response to the need for better caching, computer

architects have extensively explored the directions of ex-

panding the cache size or hiding latency through sophisti-

cated prefetching and out-of-order execution. Compared to

such techniques, there has been relatively little recent work

on improving cache replacement algorithms. Indeed, the

implicit assumption seems to be that LRU is good enough,

and that there is little one can do to increase cache hit rates

for a given size without adding expensive processing to the

cache reference handling critical path.

In this paper, we show that more sophisticated cache re-

placement algorithms exist and can substantially improve

performance. Following up on our recent work in virtual

memory management at the operating systems level [22],

we present and evaluate the idea of adaptive cache man-

agement for use in microprocessor on-chip caches. Adap-

tive cache management consists of observing the behavior

of two (or more) replacement algorithms, such as LRU and

LFU, and then mimicking the behavior of the better per-

forming policy. This work is based on a theoretical founda-

tion that guarantees that our adaptive replacement algorithm

never does worse than the better of the two component poli-

cies by more than a constant factor. In practice, our adap-

tive cache management accurately tracks the better of the

two component policies, and in some cases adaptation can

exploit differences in program phases to provide better per-

formance than either policy in isolation.

Our adaptive cache management is a general idea that

can be applied to any two cache replacement algorithms.

The implementation logic turns out to be remarkably simple

and the adaptivity actions are all performed off the critical

path of memory reference handling. With an optimization

that maintains only partial instead of full tags, the hardware

overhead of adaptive caching can be reduced to 4.0% of

the cache size for a 64-byte cache line size and 2.1% for

a 128-byte cache line size, including the algorithm-specific

per-entry overhead of the component replacement policies.

We evaluate the benefit of adaptive caching with a very

extensive suite of programs (100 in total). Our goal is to

show that over a wide range of program behaviors, our ap-

proach yields significant benefit, especially in cases of in-

tense cache activity. Nevertheless, an equally important

consideration is to show that adaptive caching never hurts

performance by more than a negligible amount, even in the

case of applications with less intense cache activity. We

demonstrate that adaptive cache management can provide

significant benefits in both miss rate reduction and overall

performance improvement. Specifically, our results show

that an LRU/LFU adaptive cache reduces the average L2

misses over all 100 benchmarks by about 19%. For the 26



programs with non-negligible L2 miss rates, the reduction

in cache misses translates in a reduction of the average CPI

by 12.9%. Adaptive caching never hurts performance by

more than about 1% in the worst case for any of the 100

programs.

In the rest of the paper, we first describe the idea and

principles of adaptive caching (Section 2). Then we discuss

the hardware implementation (Section 3) and present the

results of our evaluation (Section 4). A discussion of related

work and our conclusions follow.

2. Adaptive Caching Principles

In this section, we discuss the general idea of adaptive re-

placement and how it can be applied to a processor’s on-

chip caches.

2.1. Adaptive Cache Design

The main reason for adaptive caching is that different work-

loads have better cache behavior under different replace-

ment algorithms. Consider standard replacement policies

such as LRU (Least Recently Used), MRU (Most Recently

Used), FIFO (First-In, First-Out), or LFU (Least Frequently

Used) used to manage each set of a set-associative cache.

Traditional code that manipulates scattered data with good

temporal locality performs almost optimally with LRU and

fairly well with FIFO, yet causes LFU to underperform.

In contrast, a linear loop slightly larger than the cache is

bad for a set-associative, LRU-managed cache. In fact, the

higher the associativity the more likely it becomes for LRU

to produce bad behavior for linear loops. Finally, LFU is

ideal for separating large regions of blocks that are only

used once from commonly accessed data—a common pat-

tern in media-management applications.

2.1.1. Hardware Structures

The goal of adaptive caching is to switch on-the-fly between

two policies, in order to imitate the one that has been per-

forming better on recent memory accesses. To do this, the

adaptive cache needs to maintain some more information

than a traditional cache. Specifically, our adaptive cache de-

sign has two extra elements (shown in Figure 1) compared

to traditional caches.

The first additional structure is a set of parallel tag ar-

rays that reflect the cache contents of each of the component

policies A and B being adapted over. That is to say, each of

these tag arrays tracks what would have been in the cache if

only that one component policy was used. The parallel tag

structures for the component policies have the same num-

ber of sets and set associativity as the regular tag array of

the adaptive cache. Note that, even though the parallel tag

structures register which blocks would be in the cache for

each of the component policies, there is no record of the

data contained in these blocks.
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Figure 1. The basic hardware organization of an

adaptive cache. The additional components re-

quired for the technique are grouped on the left.

The second additional structure is a per-set miss history

buffer. For each cache set, the miss history buffer repre-

sents the past performance of the component replacement

algorithms. Whenever a memory access misses in the real

adaptive cache, the adaptive algorithm examines the miss

history buffer for the appropriate cache set and chooses to

imitate the component policy that has suffered fewer misses

according to the miss history.

There are many possible implementations of a miss his-

tory buffer. The easiest to reason about (i.e., prove theo-

rems) is one that keeps counters of all misses so far for both

component policies. Maintaining a count of all misses since

the beginning of time would require a large counter, which

is neither realistic nor likely to adapt quickly to program be-

havior. Saturating counters could also be used as an approx-

imation. In our implementation, we use a slightly different

approach for quicker adaptation to recent program behav-

ior. We keep a bit-vector of m bits, recording the latest m
misses when only one of the two (but not both) component

policies misses. (If both component policies would have

missed, then there is no need to record this in the history.)

For each such miss, the buffer’s bit indicates whether it was

a miss for the first or the second component policy. We set

the parameter m to be equal to the cache associativity (e.g.,

8 for a 8-way cache) or a small multiple of it.

The parallel tag arrays and the miss history buffers can

cause the overall size of the cache to increase quite consid-

erably. The rest of this section will continue to assume this

full overhead, and we will then explain how to reduce this

overhead to acceptable levels in Section 3.

2.1.2. The Replacement Algorithm

On every memory block reference, we update the paral-

lel tag structures by emulating the behavior of component

caches A and B for that reference. We also update the miss

history buffer of the corresponding cache set. If the refer-

ence misses the cache, then we use the adaptive replacement

logic detailed in Algorithm 1.

Note that on a cache lookup, the original tag and data

arrays (in the right side of Figure 1) remain unmodified and



therefore the adaptive policy has no impact on the overall

cache access latency. The access of the parallel tag arrays,

the miss history buffer, and updating these structures can

occur in parallel with the original cache lookup and may

even have a longer latency (see Section 3.3).

Algorithm 1 Algorithm for adaptive block replacement.

if ( misses(A) > misses(B) ) // if A missed more than

{ // B in history buffer

// then imitate B

if(B missed AND the block it evicts is in adapt. cache)

adaptive cache evicts the same block B evicts

else

adaptive cache evicts any block not in B
// such a block is guaranteed to exist, since, in this

// case, B’s cache contents are different from those

// in the adaptive cache and the two caches have

// the same size.

}
else // B missed more than A

Same as above, but with B replaced by A

2.1.3. An Example

The above definition of adaptivity is independent of the

two component policies. Figure 2 illustrates the adaptive

cache’s behavior in a specific example. The figure shows a

single set of the adaptive cache and its 4 entries. We rep-

resent the addresses of cache blocks with capital letters for

ease of reference. In this example, we also assume for sim-

plicity that the history buffer consists of two miss counters,

storing the number of misses ever suffered by each of the

component policies. The adaptive cache keeps track of the

contents of both of its component policies. After the four

initial references, all caches have the same contents and the

miss counts of both component policies are equal to 4. The

next reference, to block “D”, causes evictions. The adaptive

cache chooses to imitate policy A, since both component

policies have the same number of misses. The subsequent

reference to block “B”, however, is a miss only for policy A,

causing the adaptive cache to start imitating policy B.1 For

this to happen, the adaptive cache needs to find a block that

policy B does not currently store—effectively trying to im-

itate policy B’s cache contents. Thus, block “A” is evicted.

Subsequently, the reference to block “C” causes an eviction

only for policy A, confirming that the adaptive cache cor-

rectly picked in the previous step and reinforcing its choice

of policy B. Finally, block “G” is referenced. Policy B still

has the fewest misses and, furthermore, the contents of the

adaptive cache are now identical to that of policy B’s cache,

1To keep the example brief, we assume that the current miss is counted

in the consideration of which component policy performs best. This does

not have to be the case in an implementation.
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Figure 2. Example adaptive cache behavior.

therefore the adaptive cache replaces whichever block pol-

icy B replaces.

2.2. Theoretical Guarantees

Interestingly, it is possible to prove that our adaptive algo-

rithm fairly closely imitates the better of its two component

algorithms. In the domain of virtual memory, our previ-

ously published adaptive algorithm [22] was proven to in-

cur at most three times as many faults as the best of the

component algorithms. This algorithm is quite similar to

our cache adaptivity logic and all the proofs can be easily

adapted to our set associative domain. The complete proof

of the bound on the number of misses can be found in the

Appendix. The main theoretical result bounds the number

of misses of our adaptive policy to twice (or three times,

depending on the exact version of adaptivity) the misses

of the best of the component policies. In fact, our current

theoretical result improves on our earlier ones. Whereas

we previously only proved a bound of two for a simplified

adaptive algorithm and a bound of three for the realistic al-

gorithm, we now manage to prove a bound of two for a real-

istic version of adaptivity: one that keeps integer counts of

past misses in order to pick the best component algorithm.

Of course, in practice we want our policy to match or

outperform the best component policy, rather than just be

within a factor of 2 of its misses. (This is indeed what our

experiments later show.) Yet the 2x bound has three nice

properties. First, it is good to have a worst-case guarantee,

to bound how much the adaptivity can be “fooled.” Second,

the guarantee is often sufficient to ensure a performance

benefit, since one component algorithm may be vastly better

than the other for some program behaviors and vastly worse

for others. Third, the bound is on the misses of the adaptive

policy relative to the best component policy for every set.

Thus, if the best component policy changes from one set of

the cache to the other, the adaptive policy will outperform

both component policies overall just by selecting the better

one for every set.



3. Efficient Hardware Implementation

We next discuss hardware implementation considerations of

adaptive caching.

3.1. Partial Tags

As described, our adaptive caching mechanism can poten-

tially increase the implementation overhead of a cache by a

significant amount. For example, an 8-way set associative

512KB L2 cache with 64-byte cache lines requires about

32KB of additional storage for tags and other meta-data

for a total SRAM storage requirement of 544KB.2 Imple-

menting two additional tag arrays at 28KB each,3 plus the

miss history buffers at 1KB (8 bits per set), minus 3KB

to avoid double-counting the LRU state (we do not need

to replicate the LRU meta-data in both the main tag array

and the component array) increases the total SRAM stor-

age requirement to ∼598KB (+9.9%). An adaptive cache

that employed all of this hardware would need to pro-

vide a significant performance gain to justify the substan-

tial overhead. Furthermore, the adaptive cache must also

provide more benefit than could be had with conventional

approaches such as increasing the size and/or associativity

of the cache. For example, a 9/10-way set associative cache

provides 576KB/640KB of data at a cost of 612KB/680KB

total storage for data and tags (+12.5/25.0%) which can re-

duce both capacity and conflict misses.

The key insight that enables a practical adaptive cache is

the observation that a replacement policy is merely a heuris-

tic used to (hopefully) improve performance, but the choice

of policy has no bearing on the correctness of the processor.

In the same way that branch predictors do not always pro-

vide a correct branch prediction, a given replacement policy

will not always choose the optimal cache line to evict. This

implies that any modification to the adaptive replacement

scheme is acceptable in that the processor will still perform

correctly, and that enables us to explore simplifications and

approximations that yield better tradeoffs between perfor-

mance and overhead.

In our design, we reduce this overhead by employing

partial tags [12]. Traditional partial tagging serially com-

pares disjoint portions of the tag for fast miss determination,

but the entire tag is still maintained. Instead of keeping the

entire tag in our parallel tag arrays, we can keep a subset of

the tag bits [5], typically the low-order bits of the tag or a

combination (e.g., XOR of bit groups). The size of this par-

tial tag needs to be chosen such that the tag contains enough

information to make conflicts/aliasing rare. Recall that the

28K cache lines, with about 32 bits each (24 for tags assuming a 40-

bit physical address + 8 for LRU, valid, dirty and coherence bits, etc.) =

32KB.
3The additional tag arrays do not require as many meta-data bits (e.g.,

no valid, dirty, or coherence bits), which leaves 24 bits for tags + 4± bits

for policy-specific meta-data, e.g., LRU ordering or LFU counts.

parallel tag structures are used to answer the question “what

would each component cache contain at this point in the ex-

ecution?” in order to enable the adaptive cache to emulate

either component policy. If the answer is correct most of the

time, minor inaccuracies should affect performance very lit-

tle.

Using partial tags slightly changes the behavior of the

overall adaptive replacement policy. Recall that in the defi-

nition of adaptive caching, part of the algorithm is stated as

“evict a block that is not in cache A/B.” (The contents of

cache A and B are reflected in the parallel tag structures.)

We previously asserted that such blocks are guaranteed to

exist. Indeed, in the case of full tags, if no such block ex-

ists, the contents of the adaptive cache are identical to those

of the corresponding component cache, and one of the other

branches of the decision logic would be taken. In the case

of partial tags, however, the check for tag equality between

blocks in the adaptive cache and in the (partial) parallel tag

structures may succeed even though the original block in

the component cache is different. For example, the actual

cache may contain block “X”, and with full tags, the pol-

icy would choose to evict “X” because it is not present in a

cache with policy A (suppose A contains the cache line “Y”

instead). However, if the partial tag for “X” is equal to the

partial tag for “Y”, then the adaptive policy may not be able

to find a “block that is not in cache A.” This case is rare,

but if it occurs the adaptive cache simply picks an arbitrary

block to evict.

3.2. Storage Requirements

By employing partial tags, we can drastically reduce the

overhead for the parallel tag arrays. For example, with 8-

bit partial tags, the total storage requirements for the same

512KB cache discussed earlier is now reduced from 598KB

down to only 566KB (+4.0% over a conventional 512K

cache).4 For a 128-byte cache line size [11], the overhead

is reduced to only 2.1%. For the small amount of additional

storage needed for our adaptive scheme, it is not even possi-

ble to add an extra way to the cache. Using these additional

bits to add more sets would not be practical either, because

that would make the total number of sets to not be a power-

of-two.

Counting bits is only an approximation of the area and

transistor overhead. Our parallel tag arrays can be im-

plemented with somewhat less overhead due to reduced

port requirements. The main tag array needs an extra

port for snooping to maintain cache coherence in a multi-

processor/multi-core environment. However, our parallel

tag arrays can be implemented without support for snoop-

ing, which reduces the area, latency and power require-

4Each of the parallel tag arrays has been reduced from 28KB down to

12KB (1K sets × 8 ways × 12 bits for an 8-bit partial tag and four more

bits for policy-specific meta-data).



ments of our technique. As a result, the parallel tag may

report that a given cache line is present when it has been

invalidated, but this only causes the replacement policy to

deviate slightly from an implementation that accounted for

coherence invalidations. This is likely to have very little im-

pact on performance and provides a much greater benefit in

reducing the hardware overhead of the extra tag arrays.

The small area overhead for the extra logic and state of

our adaptive architecture is also a first-order approximation

of its power overhead. Nevertheless, our approach can pro-

vide a substantial reduction in off-chip memory accesses

that consume a substantial amount of power. Other mitigat-

ing factors include the fact that the adaptivity logic is only

activated on accesses to the L2 cache, and that the timing of

the adaptivity logic is off the critical path of the L2 cache

and therefore can be implemented with lower-power and/or

less leaky transistors. Thus, overall, we consider it unlikely

that power will be a concern, or even a net overhead.

3.3. Timing

When accessing the adaptive cache, the processor accesses

the primary components (right side of Figure 1) in the same

fashion as a conventional non-adaptive cache. The adaptive

cache must also access the parallel tag structures, but this

can occur in parallel and off of the critical path of the main

cache lookup. In the case of a cache hit, the adaptive cache

returns the data with the same latency as the conventional

cache, and the tag array (replacement policy) updates can

complete without slowing down the corresponding memory

instruction. The bookkeeping for the adaptive policy does

not prevent the miss from initiating a fill request from the

next level of the memory hierarchy either.5

The cache applies the adaptivity logic only in the case of

a miss and entails choosing the component algorithm to im-

itate and searching in the set for the block to replace. Even

though the decision and search will incur some overhead,

the actions take place in parallel with fetching the missed

data and should not be a bottleneck. The most involved part

of adaptivity is the search for a block that is in the adaptive

cache but not in one of the component caches. For reason-

ably low associativity caches (4-way or 8-way) this search

can be implemented in parallel efficiently with only a small

amount of hardware. In practice, this search can be made

easier by taking advantage of the properties of the specific

component policies: for instance, when adapting over LRU,

the adaptive cache can keep a recency order and evict the

least recent block when it wants to imitate LRU, instead of

checking which block is not in the LRU tag structure.

5Depending on the implementation of the eviction/writeback buffers,

an entry can be pre-reserved before the actual evictee has been determined

to prevent deadlocking the buffers and queues of the hierarchy.

Instruction Cache 16KB, 64B line-size, 4-way LRU, 2 cycles

Data Cache 16KB , 64B line-size, 4-way LRU, 2 cycles

Branch Predictor 16KB gshare/16KB bimodal/16KB meta;
4K-entry, 4-way BTB

Decode/ Issue 8-wide; 32 RS entries, 64 ROB entries

Execution units 4 Integer ALUs, 4 Integer Mult/Div,
4 FP ALUs, 4 FP Mult/Div, 2 Memory ports

Execution unit IALU (1), IMULT/IDIV (8), FPADD (4),
latencies FPDIV (16)

Unified L2 Cache 512KB, 64B - line size, 8-way with
adaptive LRU/LFU replacement,
history buffer size m = 8, 5-bit LFU counters,
15 cycle hit latency, 4-entry store buffer

Memory 120 cycle latency

Bus 8B-wide split-transaction bus;
processor to bus frequency ratio 8:1

Table 1. Simulated processor configuration.

4. Evaluation

We evaluated adaptive caching primarily using an

LRU/LFU combination. This yielded significant perfor-

mance improvement over a wide range of benchmarks.

4.1. Workloads and Experimental Settings

We use cycle-level simulation to evaluate the performance

of adaptive caching. Specifically, we use the MASE sim-

ulator [13] from the SimpleScalar toolset [2] for the Alpha

instruction set architecture. We made modifications to more

accurately model the cost of memory stores, as the original

simulator effectively assumed an infinite number of store

buffers. Table 1 shows the configuration of the simulated

processor—the settings are quite analogous to other recent

caching studies [18, 19]. We later vary cache configurations

to analyze the sensitivity of our technique to different pro-

cessor configurations. Note that our L2 hit latency is pes-

simistic, which is conservative since it understates the po-

tential performance speedup of our approach.

We simulated 100 applications6 (our extended set) from

many popular benchmark suites: SPECcpu2000 (INT and

FP), MediaBench [14], MiBench [9], BioBench [1], pointer

intensive applications [3], and graphics programs includ-

ing 3D games and ray-tracing. All SPEC applications use

the reference inputs and applications with multiple refer-

ence inputs are listed with different suffixes. We used the

SimPoint 2.0 toolset to choose representative samples of

100 million instructions from these applications [17]. Us-

ing SimPoint avoids simulating non-representative portions

of an application such as start-up and initialization code,

which can sometimes take up the first several billion instruc-

tions of a program’s execution.

Of these 100 programs, we focus our attention on those

for which improvements to the L2 cache are likely to have a

performance impact and use them as the primary set for our

6Some benchmarks have multiple inputs. The number 100 counts each

benchmark×input pair as a separate “application.”
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evaluation. The 26 selected programs are those whose exe-

cution suffers more than one miss per thousand instructions

(MPKI) for a 512KB L2 cache managed with plain LRU.

In the following, when we do not explicitly mention the set

of tested applications, our primary set of 26 applications

should be assumed.

4.2. Main Results

Adaptive caching has the potential to reduce cache misses

and improve overall processor performance. Figure 3 shows

the MPKI rates for each of the 26 applications and the over-

all average in our primary set.7 Note that these results are

for an implementation of adaptive caching with full tags—

we later show that 6-or-more-bit partial tags achieve practi-

cally identical miss rates and performance.

We show the miss rates for our adaptive cache, and the

LRU and LFU component policies. Of particular interest is

the ability of the adaptive cache to accurately track the bet-

ter performing component policy. For example, the lucas

benchmark shows much better miss rates with an LRU pol-

icy, and the adaptive cache achieves a nearly identical rate.

However for art, an LFU policy is superior and our adaptive

scheme accurately adopts this behavior. Overall, adaptive

caching reduces the average MPKI rate of our primary set

by 19.0%.

In a modern out-of-order processor, the impact of miss

rates on overall performance depends on many factors in-

cluding the amount of independent work available to hide

the memory latency (ILP), the degree of overlap of misses

(MLP [8]), the criticality [7] or vitalness [20] of the cache

7Throughout the paper, we present “linear” metrics of performance

cost, such as MPKI and CPI, so that they can be meaningfully averaged

with a simple arithmetic average. For instance, our arithmetic mean of

CPI rates is equivalent to the harmonic mean of IPC, and provides a metric

proportional to overall execution time.

miss, and many other factors. Figure 4 shows the CPI rates

for each program in our primary set and the average CPI

rates. Overall, adaptive caching reduces the average CPI

of these applications by 12.9%. Ten of the executions ben-

efit substantially from using adaptive caching: ammp, art

(2 runs), gcc, mcf, mgrid, twolf, x11quake (2 runs) and

xanim see a CPI improvement of 4% to 60%. The rest of

the programs are never significantly harmed by employing

adaptivity. The maximum CPI deterioration due to adaptive

caching is 1.2% for unepic. This is exactly the desired be-

havior for an adaptive caching mechanism: the mechanism

should be neutral relative to a reasonable baseline, unless it

can derive benefit.

Over all 100 programs (primary set and otherwise), the

reduction in average misses is 18.6%, and the improvement

in average CPI is 8.4%. The reduction in benefit is primarily

due to dilution from many of the traces whose working sets

fit comfortably in a 512KB cache. A program that rarely

misses in our 512KB L2 cache will not derive much bene-

fit from adaptive caching. Yet, our 100-program extended

evaluation set is important for demonstrating the stability of

adaptive caching: adaptivity never increases misses by more

than 2.7% (for the BioBench program tigr) and never hurts

CPI by more than 1.2% (for unepic, as mentioned earlier).

4.3. Partial Tags

Partial tags are necessary to reduce the hardware cost of im-

plementing adaptive caching. At the same time, partial tags

introduce inaccuracies due to false positive matches. Ex-

cessive false positives could make the adaptive cache per-

formance suffer by not accurately tracking the policy that

truly has fewer misses.

We expect such errors to be quite rare with reasonable

length partial tags. For our 8-way cache, we simulated par-

tial tags of 4, 6, 8, 10, and 12 bits, using only the low-order
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bits of the tag (no XOR’ing of tag bits). Figure 5 compares

the miss rate and CPI performance of full tags compared to

partial tags for the 26 programs of our primary set. As Fig-

ure 5 shows, the difference is minimal: under 1% for partial

tags of 6 bits or more. This difference does not affect in a

significant way the benefit of adaptivity we reported earlier.

With 8-bit partial tags we obtain about a 12.7% improve-

ment in average CPI, compared to the 12.9% of full tags.

Inspecting the individual programs’ performance confirms

that partial tags of 8 bits or higher do not distort the per-

formance of adaptivity. 6-bit partial tags also achieve very

good overall performance, however they introduce more

per-benchmark variation. Whereas the maximum CPI de-

terioration for adaptive caching was around 1% with 8-bit

or higher partial tags, with 6-bit partial tags this number

climbs to 4% (for the lucas benchmark).

As discussed earlier in Section 3, using 8-bit partial tags

results in an overall SRAM storage requirement of 566KB

for our adaptive cache. An alternative to dedicating more re-

sources to building an adaptive cache is to implement larger

caches. Figure 6 shows the CPI performance for our adap-

tive cache with full tags, 8-bit partial tags, and conventional

LRU caches with 8-, 9- and 10-way set associativities. Note

that our adaptive cache is only 4.0% larger than the 512KB

8-way cache, whereas the 9-way and 10-way caches are

12.5% and 25% larger, respectively. We can see that for

these applications, it is much more effective to use the ex-

isting resources more intelligently (i.e. use adaptation) than

to blindly increase the size of the cache. With less than one

sixth of the overhead (4.0% vs. 25.0%), our adaptive cache

still performs slightly better (2.8%) than the 10-way 640KB

cache.

4.4. Adaptivity Behavior and Comparison to Other
Replacement Policies

We have already shown how our adaptive caching is able

to accurately mimic the better of two replacement poli-

cies (LRU and LFU). However, on occasion, as for the

ammp benchmark, the adaptive cache outperforms both of

the component LRU and LFU policies, suggesting that each

of them is more appropriate for different cache sets and/or

phases of program execution. That is, the adaptive cache

can track different behaviors temporally across different

phases of a program as well as spatially across the differ-

ent cache sets.

Indeed, ammp’s behavior switches between LFU-

friendly and LRU-friendly during the course of its execu-

tion. Figure 7(a) shows the behavior of all 1024 sets in our

cache for ammp, sampled every one million cycles. A dark

point in the figure indicates that the majority of replace-

ment decisions during that time quantum were LRU, while

a white point corresponds to LFU. As can be seen, there is

a distinct phase at the beginning of execution where both

LFU and LRU are the best replacement policies depending

on the cache set, then from about 34M to 46M cycles, LFU

is dominant, and then finally LRU takes over for the vast

majority of the sets.

The pattern of switching behaviors during execution is
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not rare among the tested applications. Similar to ammp,

consider the mgrid benchmark whose behavior is shown

in Figure 7(b). There is a clear pattern of behavior that

favors LFU at first. The extent of the pattern gradually

disappears and eventually the program’s behavior is LRU-

friendly. However, the rate of transition to LFU also varies

spatially per set. The mgrid benchmark handles large 3-

dimensional arrays, but the refernce patterns to the arrays

vary depending on the exact subroutine. The subroutines

such as ZERO3 and NORM2U3 traverse the arrays in a lin-

ear fashion, whereas the subroutine RPRJ3 skips elements

but references all of the neighboring array entries.

We have also experimented with combinations of a few

other standard algorithms, such as FIFO, MRU, and Ran-

dom. These expriments are important for demonstrating the

generality of our adaptivity approach, as well as for explor-

ing the design space. For instance, consider Figure 8, which

shows the misses of an L2 cache adapting between FIFO

and MRU. This is an interesting combination in that MRU
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on its own is typically a very bad replacement algorithm.

Yet for programs with large linear loops, MRU will outper-

form more reasonable policies such as LRU and FIFO. As

can be seen in Figure 8, the adaptive policy tightly tracks

the better of the two component algorithms. MRU is only

beneficial for one of the gcc inputs, as well as for the art

benchmark. For these, the adaptive policy tracks the MRU

behavior.

Across the board, no combination of policies outper-

formed the LRU+LFU adaptivity. Furthermore, we exper-

imented with a generalized version of the adaptive policy

which combined five policies (LRU, LFU, FIFO, MRU, and

Random). Although this is perhaps not a realistic configu-

ration due to its high implementation overhead for five sets

of extra parallel tag arrays (even with partial tags), it is in-

teresting to see the achievable benefit in practice. The com-

bination of all five policies was not clearly superior to just

combining LRU and LFU, however. Although some bench-

marks exhibited improvement, of up to 10% in CPI, oth-

ers experienced an equal loss. The cumulative CPI over

our primary evaluation set was virtually identical to that of

LRU/LFU adaptivity.

4.5. Sensitivity Analysis

We next examine the sensitivity of our adaptive cache to

various parameters and show that it is robust across a range

of design points. In the rest of this section, our sensitivity

results are for configurations using full tags. We do this to

isolate the effects of the parameter under consideration from

effects due to partial tagging. We have also repeated all of

these experiments using 8-bit partial tags and have verified

that the results still hold, but we do not include them here in

the interest of space.

4.5.1. Associativity

In Figure 9 we show how the benefit metrics discussed ear-

lier (improvement in average CPI and reduction of aver-

age misses) vary relative to associativity, over the 26 ap-

plications of our primary evaluation set. All configurations

are for a 512KB cache, and so, for example, the 16-way

cache (indicated by white points in the figure) has only

half as many sets as the baseline 8-way cache. For highly

set-associative caches (16- and 32-way), the relative bene-

fit of the adaptive cache policy increases slightly, indicat-

ing that our technique would be effective for future highly-

associative last-level caches.

4.5.2. Store Buffer Capacity

Out-of-order processors often use store buffers to queue up

cache writeback requests after store instructions have re-

tired from the main processor buffers (e.g., the store queue

and ROB). The store buffer may also perform other func-

tions such as write combining to further enhance perfor-

mance. Figure 10 shows the effect of varying the number of

entries in the store buffer on overall performance (average

CPI improvement over the 26 benchmarks of our primary

set). The benefit of adaptive caching is not only due to read

misses but also due to store buffer stalls. As the number of

store buffer entries increases, processor stalls due to store

buffer contention decreases which reduces the overall num-

ber of opportunities for adaptive caching to provide a ben-

efit. However, more than half of the benefit remains even

for an unrealistically large 256-entry store buffer. The re-

duction in overall performance benefit degrades gracefully

as the store buffer size increases (note that, after 16, the X

axis becomes logarithmically spaced).

4.6. Adaptivity at Other Levels

The idea of adaptive caching can be applied at other lev-

els of the cache hierarchy. We simulated our standard con-

figuration with LRU/LFU adaptive L1 instruction and data

caches. In a 16KB instruction cache, the adaptive approach

reduces the average MPKI rate by about 12%, whereas in

the data cache the miss rate reduction was less than 1%.

This did not result in any meaningful performance improve-

ment (<0.1%) because our out-of-order microarchitecture

can buffer enough instructions to tolerate the occasional in-

struction cache miss, and the L1 data cache is so dominated

by capacity misses where there is not much opportunity for

better replacement policies to help.

4.7. Eliminating the Overheads with Set Sampling
(SBAR)

Although the hardware overheads of our adaptive cache are

low (4.0% for the evaluated version), they can be further

reduced by eliminating the overhead for all but a few sam-

ple sets in the cache. This is the recently proposed Sam-

pling Based Adaptive Replacement (SBAR) technique of

Qureshi, Lynch, Mutlu and Patt [18]. Under SBAR, a small

number of “leader” sets are used to approximate how well

a cache using an alternative policy would have performed.

In fact, Qureshi et al. mentioned the potential of SBAR as

a general technique capable of adapting between any two

policies, and proposed the evaluation of the general case as
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future work. Our evaluation shows that indeed SBAR is

very promising as a general adaptivity technique.

We implemented an SBAR-like adaptive cache in our

simulator, using the same component policies as described

earlier, namely LRU and LFU. Policy-specific meta-data

(e.g., frequency counts or recency information) are kept at

all times for the blocks in the cache. For the leader sets (the

few sample sets used to determine which policy performs

best) the SBAR-like policy is very similar to our regular

adaptive policy. Nevertheless, the SBAR-like cache does

not have duplicate tag structures for the rest of the sets.

Thus, when a decision is made to switch from, e.g., LRU

to LFU, the cache does not have a record of what the con-

tents of the LFU cache would have been at this point in the

execution. Instead, the LFU algorithm begins executing on

the blocks that are currently in the cache, and replaces the

one with the lowest frequency. This means that the SBAR-

like cache does not enjoy the theoretical guarantees of our

adaptivity scheme, and may suffer a few more misses when

switching policies often.

Yet in practice the SBAR-like cache’s performance turns

out to be quite competitive. For the programs in our primary

set, the SBAR-like cache results in a 12.5% improvement

in average CPI while our regular adaptive cache is only

slightly better at 12.9%. As expected, the SBAR-like cache

is a little less robust. We observed two benchmarks where

the regular adaptive cache performed much better than the

SBAR-like cache (9% on ammp and 40% on xanim) and

the SBAR-like cache never performed much better (at most

4.4% on twolf). However, the SBAR-like cache’s hardware

overhead is just 0.16% compared to 11.8% for an adaptive

cache with full tags, and 4.0% for an adaptive cache with

8-bit partial tags.

For even further benefits, the set sampling and partial

tags techniques can be combined. When the leader sets of

the SBAR-like policy make use of 8-bit partial tags, the per-

formance is nearly identical to the original SBAR-like con-

figuration and the overhead has been reduced to a miniscule

0.09%. Our evaluation over a larger set of benchmarks for

both the basic adaptive cache and the SBAR-variant pro-

vides very strong evidence for the value of adaptive replace-

ment policies for on-chip caching.

5. Related Work

There is clearly much work on improving cache perfor-

mance for modern microarchitectures. We next selectively

discuss only representative recent work or work particularly

related to ours, and compare to our adaptive caching when

possible.

The closest relatives of our work are our past research

on adaptivity in virtual memory systems [22] and the recent

work of Qureshi, Lynch, Mutlu and Patt [18].

Adaptive replacement algorithms in virtual memory sys-

tems [22] are algorithmically quite similar to our hardware

scheme and offer the inspiration for stating our algorithm

in its general form and proving theoretical bounds about it.

The adaptive virtual memory management scheme operates

by simulating two competing replacement policies, and then

mimicking the best one. Just like in our approach, the OS

needs to maintain three sets of “tags” (i.e., VM subsystem

data structures with an entry for each page) and simulate the

component policies in addition to managing real memory.

However, the tag data structures are small (the meta-data for

a 4K OS page is typically around a 40-byte linked-list node)

and the extra processing time (perhaps a few microseconds)

is a negligible price to pay for the corresponding reduc-

tion in disk accesses due to page misses (many millisec-

onds). Yet the adaptive replacement work in virtual mem-

ory did not examine the problem at all from the perspective

of processor microarchitectures (e.g., set-associativity) and

the physical constraints of a hardware implementation (e.g.,

timing, hardware cost of tag structures).

On the other hand, Qureshi et al. [18] recently proposed

an adaptive caching scheme for processor caches. Their

scheme is similar to ours, in that duplicate tag structures

are maintained and adaptivity is affected by choosing the



algorithm to imitate based on past statistics. Qureshi et al.’s

work focused on adding awareness of memory-level paral-

lelism to the cache subsystem. Their adaptivity considers

switching between LRU and their LIN algorithm, which

combines recency information with the expected cost to

fetch a block. Qureshi et al. proposed the evaluation of

their scheme for general adaptivity as future work. Indeed,

our experiment of Section 4.7 shows that their set sampling

(SBAR) approach is very powerful for general adaptivity.

Much of the recent work in caching deals with the elim-

ination of context misses using techniques to increase the

effective associativity, either uniformly for the entire cache,

or on a dynamic, per-set basis. Good representatives of

such work are Hallnor and Reinhardt’s fully associative

cache [10] and Qureshi et al.’s V-Way cache [19]. We next

discuss the V-Way cache as an example, but our comments

also hold for most other work in increasing associativity.

The V-Way cache is a technique for dynamically varying

the associativity of a cache on a per-set basis, in response

to program behavior. Thus, the V-Way cache has some

similarities to our approach, due to its adaptive and per-

set character. Nevertheless, our adaptive caching scheme

is strictly employed within the framework of a standard set-

associative cache and incurs no overhead in the critical path

of cache access. Our adaptive caching technique is suffi-

ciently general in that it can simulate adapting between two

different set associativities where policy A uses all n ways,

and policy B effectively manages its cache lines as two sep-

arate sets of n/2 ways. Peir, Lee and Hsu also employ cache

adaptivity for determining globally “least recently used”

blocks for replacement [16]. Their work is closest to the

V-Way cache, rather than to our adaptive replacement—the

Peir, Lee and Hsu cache’s adaptive behavior can be seen as

a way to dynamically vary its associativity.

The above is also a more general observation: any ad-

vanced caching algorithm can be used as a component al-

gorithm in an adaptive cache implementation. Examples

include Seznec and Bodin’s skewed associativity [4, 21],

Hallnor and Reinhardt’s fully associative cache [10], etc.

Given the robust performance of an adaptive cache and its

ability to faithfully imitate the better one of its component

mechanisms, we believe that our work is orthogonal to other

recent caching advances.

Other work uses adaptivity in processor caching, yet

without applying it in relation to replacement algorithms.

Speight et al. described “adaptive mechanisms” for manag-

ing cache hierarchies in multiprocessors [23]. This is a very

different use of adaptivity, however. Their cache adapts its

behavior (e.g., the way to perform write-backs) based on

hints regarding the residence of blocks at different cache

levels. Yet the replacement policy is never varied.

Although not entirely directly related to caching, there

has also been much work in predictor design that attempts to

make use of adaptivity between multiple policies (i.e. pre-

dictors). For example, there have been a variety of hybrid

branch predictors that attempt to combine or adapt across

multiple component algorithms [6, 15], and similar tech-

niques have been attempted for value prediction [24], and

load hit-miss prediction [25]. It may be possible to gen-

eralize the theoretical underpinnings of our work to prove

worst-case bounds on these other types of adaptivity.

6. Conclusions

While there has been much work on improving processor

caches, our work makes several new contributions:

• We introduce a general adaptivity scheme based on a

strong theoretical foundation which provides a guaran-

teed worst-case bound on the number of misses relative

to the component replacement policies.

• We propose a practical hardware embodiment of the

adaptive replacement algorithm employing a partial-

tagging scheme to reduce implementation overhead.

• We evaluate our approach thoroughly over a wide va-

riety of benchmark programs, demonstrating the effec-

tiveness and robustness of the technique across differ-

ent behaviors as well as cache configurations.

There are several possible future directions for this work.

We plan on evaluating adaptive caching policies for shared

last-level caches in a multi-core environment. We believe

that the combination of memory traffic from dissimilar

threads or applications will provide even more opportunities

for the adaptive mechanism to help performance. Our adap-

tation technique could possibly be modified to improve hy-

brid hardware prefetchers as well (hit/miss is replaced with

useful/not-useful prefetch). As discussed earlier, the theo-

retical analysis of worst-case adaptation behavior can be ex-

tended to other hybrid/adaptive microarchitecture structures

to better understand how and why these techniques improve

processor performance. The strong theoretical guarantees

of our technique increase the likelihood that it will be effec-

tive across a wide range of microarchitecture applications.
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Appendix

Below we prove that the adaptive caching mechanism, as de-

fined in Section 2, never incurs more than a small factor (plus a

constant) more misses than either of its component algorithms. We

examine two versions of adaptivity: one where the miss history

buffer records the counts of all misses since the beginning of exe-

cution for the component policies, and one that models our exact

implementation, which maintains an m-bit vector of recent misses.

In the former case we prove that the adaptive caching technique is

always within a factor of 2, plus a constant, of the best component

policy. In the latter case, we prove a factor of 3. Our approach

is similar to that of our earlier work [22], but our first version of

adaptivity improves on the earlier result by showing a two-fold

bound for a non-contrived algorithm.

Consider first an adaptive cache that keeps two counters CA

and CB of all misses suffered by component policies A and B.

Then, at every miss, the adaptive policy will imitate the compo-

nent policy with the lowest miss count. We will prove that such an

adaptive policy will never suffer more than twice as many misses

as either of its component policies. (The counters can be peri-

odically reset, but our theorem will hold, adjusted by a constant,

between successive resets.)

First we show an intermediate lemma.

Lemma 1 If a tag appears in the parallel tag structures for both

component algorithms A and B then it is also in the adaptive

cache.

Proof : The above property holds initially (empty caches) and if it

holds up to a point, then consider the next miss for either algorithm

A or B. If the access is not a miss for the adaptive cache, then

the property will hold after the eviction (because the new block

is already in the adaptive cache). If the access is also a miss for

the adaptive cache, then there are 4 cases in the adaptive cache’s

eviction logic:

• the adaptive cache evicts a block not in B’s tag structure.

• the adaptive cache evicts a block not in A’s tag structure.

• the adaptive cache evicts evicts the same block as A

• the adaptive cache evicts evicts the same block as B

In each of the above cases, the block evicted by the adaptive cache

either could not have been in both A’s and B’s tag structures

before the eviction or will be evicted from one of them at the same

time. Thus, if the property held before the current miss, it will

hold after the eviction.

Now we can show our theorem.

Theorem 1 The adaptive cache will never suffer more than 2x +

w misses, where x is the minimum of the numbers of misses of

component algorithms A and B, and w is the size of the cache in

blocks.

Proof :

We will treat each cache set independently and will prove that

the total misses suffered by the adaptive cache for a single set alone

are at most twice the misses of algorithms A or B for that same

set plus a constant equal to the cache’s associativity, a. If we then

sum over all sets, we get the desired theorem.

We define “potential” quantities and examine how their values

change on every miss for either algorithm A or B.

Let dA be the number of blocks currently in the adaptive cache

that are not in A’s tag structure. Let dB be the number of blocks

currently in the adaptive cache that are not in B’s tag structure.

The values of CA, CB , dA, and dB change as follows on every

miss (we denote the new values C
′

A, C
′

B , d
′

A, and d
′

B):

(Note that according to Lemma 1 a hit for both A and B implies

a hit for the adaptive cache and none of the potentials changes.)

1. if CA > CB (the adaptive cache imitates policy A)

(a) miss for B, hit for A, hit for adaptive: C
′

A = CA,

C
′

B = CB + 1, d
′

A = dA, d
′

B ≤ dB

(b) miss for B, hit for A, miss for adaptive: C
′

A = CA,

C
′

B = CB + 1, d
′

A ≤ dA, d
′

B ≤ dB

(c) miss for B, miss for A, miss for adaptive: C
′

A = CA+

1, C
′

B = CB + 1, d
′

A ≤ dA + 1, d
′

B ≤ dB

(d) miss for B, miss for A, hit for adaptive: C
′

A = CA+1,

C
′

B = CB + 1, d
′

A ≤ dA, d
′

B ≤ dB

(e) hit for B, miss for A, hit for adaptive: C
′

A = CA + 1,

C
′

B = CB , d
′

A ≤ dA, d
′

B = dB

(f) hit for B, miss for A, miss for adaptive: C
′

A = CA+1,

C
′

B = CB , d
′

A ≤ dA + 1, d
′

B < dB

2. if CA ≤ CB

(a) miss for B, hit for A, hit for adaptive: C
′

A = CA,

C
′

B = CB + 1, d
′

A = dA, d
′

B ≤ dB

(b) miss for B, hit for A, miss for adaptive: C
′

A = CA,

C
′

B = CB + 1, d
′

A < dA, d
′

B ≤ dB + 1

(c) miss for B, miss for A, miss for adaptive: C
′

A = CA+

1, C
′

B = CB + 1, d
′

A ≤ dA, d
′

B ≤ dB + 1

(d) miss for B, miss for A, hit for adaptive: C
′

A = CA+1,

C
′

B = CB + 1, d
′

A ≤ dA, d
′

B ≤ dB

(e) hit for B, miss for A, hit for adaptive: C
′

A = CA + 1,

C
′

B = CB , d
′

A ≤ dA, d
′

B = dB

(f) hit for B, miss for A, miss for adaptive: C
′

A = CA+1,

C
′

B = CB , d
′

A ≤ dA, d
′

B ≤ dB

We do not show all the case-by-case reasoning needed to derive

the above values. As a single example, consider, for instance, case

1.e. In this case, there is a miss for A but none for B, which is

reflected in the update of miss counts. Since the reference is a

hit for the adaptive cache, one extra common block will exist in

both tag structures (for A and for adaptive) after this reference is

processed. At the same time, however, A can evict a block that is

in the adaptive cache, so dA (the number of blocks in the adaptive

cache’s tag structure that are not in A’s tag structure) may decrease

or stay the same (hence the d
′

A ≤ dA). dB stays the same since the

reference was a hit both for the adaptive cache and for algorithm

B.

Now we are ready to show our result. Assume, without loss

of generality, that the algorithm with the fewest total misses is B.

(The case where A is the better algorithm for the current execution



is handled practically identically.) Consider the point in the execu-

tion when CA was last equal to CB—we will call this the “turning

point”. This was the last time the adaptive cache ever emulated

policy A. (This point, of course, could be the very beginning of

the execution.) The main theorem will be broken up to two parts:

first we show that the adaptive policy cannot have suffered more

than twice as many misses as B until the turning point, and then

we show that the adaptive policy cannot have suffered more than a

more misses than B after the turning point. The two bounds have

a total of 2x + a.

It is easy to see that the adaptive cache never suffered more

than twice as many misses as policy B until the turning point: The

adaptive cache suffers a miss that is not a miss for B only in cases

1.f and 2.f, above. But each of these cases increases the metric

CA − CB . Since CA − CB is zero initially and also zero at the

turning point (by definition), the number of times cases 1.f and 2.f

could have occurred is at most as many as the number of times the

difference CA − CB has decreased. But this only occurs in cases

1.a, 1.b, 2.a, and 2.b, and in all of those policy B suffers a miss. In

other words, the number of misses for the adaptive cache that are

not misses for policy B are at most as many as the misses of B.

That is, the adaptive cache can only suffer up to twice the misses

of cache B up until the turning point.

At the turning point (and, in fact, at any point) the value of

quantity dB is at most equal to the associativity, a—since dB re-

flects how many blocks in the set are different in the adaptive cache

and in cache B. After the turning point, the adaptive cache imitates

policy B. Thus, the only case where the adaptive cache suffers a

miss that is not a miss for B is case 1.f. But in this case, dB gets

decremented and it can never fall below zero. Thus, the adaptive

cache suffers at most dB misses over those of B after the turning

point, which is at most equal to a.

To summarize, for any given set, the number of misses of the

adaptive cache are at most 2x + a, where x is the number of

misses of the better of the two policies for that set. If we sum

over all sets in the cache, we see that the adaptive policy never

suffers more than twice plus w the misses of the better of the two

component policies. �

Consider now the version of adaptivity where the miss history

buffer consists of m bits recording the last m misses for either

policy A or policy B but not for both. We have not been able to

prove a 2x bound in this case, but proving a 3x bound is simple

by appealing directly to a theorem in our earlier work for fully-

associative memory [22]. If we treat each set as a separate fully

associative memory, our m-bit miss history buffer is identical to

the data structure kept in that work, for which we proved a 3x

bound of the adaptive policy [22].


