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*is paper proposes a novel hybrid algorithm named Adaptive Cat Swarm Optimization (ACSO). It combines the benefits of two
swarm intelligence algorithms, CSO and APSO, and presents better search results. Firstly, some strategies are implemented to
improve the performance of the proposed hybrid algorithm.*e tracing radius of the cat group is limited, and the randomnumber
parameter r is adaptive adjusted. In addition, a scaling factor update method, called a memory factor y, is introduced into the
proposed algorithm. *ey can be learnt very well so as to jump out of local optimums and speed up the global convergence.
Secondly, by comparing the proposed algorithm with PSO, APSO, and CSO, 23 benchmark functions are verified by simulation
experiments, which consists of unimodal, multimodal, and fixed-dimension multimodal. *e results show the effectiveness and
efficiency of the innovative hybrid algorithm. Lastly, the proposed ACSO is utilized to solve the Vehicle Routing Problem (VRP).
Experimental findings also reveal the practicability of the ACSO through a comparison with certain existing methods.

1. Introduction

In recent decades, Evolutionary Computation (EC) has be-
come a very popular research topic, and great progress has
been made in both theory and practice. Swarm Intelligence is
a part of Evolutionary Computation, which is also one of the
research hotspots in the field of evolutionary computing.
Many metaheuristic algorithms have been proposed, in-
cluding but not limited to Differential Evolution (DE) [1–3]
Algorithm, Genetic Algorithm (GA) [4, 5], Particle Swarm
Optimization (PSO) [6–8], Cat Swarm Optimization (CSO)
[9–11], Ant Colony Optimization (ACO) [12–15], and Bat
Algorithm (BA) [16, 17]. Some intelligent computing tech-
nologies show great promise in many practical application
scenarios, for example, wind power [18, 19], vehicle routing
problem [20–23], and wireless sensors [24–31]. All above
have been successfully in applied evolutionary calculations to

improve their performance, and it is also one of the effective
methods to solve traffic problems. However, the diversity of
algorithms is affected by the “no free lunch” theorem, which
has inspired people to propose more valuable algorithms.

PSO is considered to have the following advantages: few
control times, easy to implement, and convenient to use.
However, it is simple to fall into a local maximum stagnation
in terms of convergence and search earlier than anticipated.
*erefore, avoiding local optimal solutions and accelerating
the rate of convergence are two important issues for in-
telligent algorithms. Later, many variants of PSO were de-
rived. One of them is proposed by Zhan et al. [32], which sets
four states according to the distance between particles, and
adaptive adjusts parameters.

CSO has two submodes which are only suitable for
small-scale population optimization. When the population
size increases, the convergence rate will be slower. In order
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to alleviate the previously mentioned disadvantages, it is a
crucial balance between population diversity and conver-
gence speed. *rough the improved cat swarm algorithm,
the parameter adaptability of ACSO can increase the di-
versity and flexibility of the population.

ACSO is an optimization algorithm which aims to im-
prove their convergence and search capabilities for cat swarm
and particle swarm algorithms. According to the experi-
mental results, based on the benefits and disadvantages of the
APSO and the CSO, ACSO has improved. *e CSO is ap-
plicable to smaller populations. Due to the evolutionary state
strategy, the APSO is suitable to avoid getting trapped in a
local optimum. Compared with other evolutionary algo-
rithms, the ACSO shows unparalleled advantages.

*e paper’s structure is detailed below. Section 2 in-
troduces related research works: PSO, APSO, and CSO.
ACSO’s adaptive parameter settings are discussed in Section
3. *en, the performances of ACSO, PSO, APSO, and CSO
algorithms are verified by using typical 23 benchmark
functions. *is is shown in Section 4 while applying the
algorithm to VRP as described in Section 5. Finally, Section 6
summarizes the work of this paper, and the suggestions are
described for future work.

2. Related Research Works

In this section, the basic theory of many traditional algo-
rithms will be reviewed briefly, namely, Cat Swarm Opti-
mization (CSO) and Particle Swarm Optimization (PSO)
and the deformation of PSO, named Adaptive Particle
Swarm Optimization (APSO). APSO has greatly improved
convergence speed and search capabilities. By reviewing the
APSO and CSO algorithms, we wondered if we could
combine the two algorithms to upgrade CSO.

2.1. Particle SwarmOptimization. Originally devised in 1995
by Kennedy and Eberhart [6, 33], PSO is inspired by the
behaviour socially of swarms of fish and flocks of birds. It has
been widely concerned by people and has good development
prospects. In the PSO algorithm, the solution in each op-
timization space is considered as “particles” with neither
volume nor mass. All the particles are based on their own
cognitive learning, solo flight experience, and companion
flight experience. *erefore, when particles seek the best
position in the optimized space, their flights are adjusted
through information exchange.

Population is randomly initialized at first, and then each
particle follows the current individual local optimum and the
group global optimum to succeed in finding the optimal solution
space. While the program is running, each particle implies a
point in the decision space and contains two basic information,
position and velocity. Particles update velocity and displacement
through the following state transition equations:

vdi (t + 1) � ω · vdi (t) + c1 · r1 p
d
best(t) − x

d
i (t)( )

+ c2 · r2 g
d
best(t) − x

d
i (t)( ),

xdi (t + 1) � xdi (t) + v
d
i (t + 1).

(1)

*e primary PSO is effortless with simply a few adjusted
parameters: vdi (t) indicates the velocity value of the ith

particle in the D-dimension before update; xdi (t) denotes the
position of the ith particle before the update; pdbest(t) rep-
resents the position of the particle in the particle swarm that
currently has a locally optimal solution; gdbest(t) is the global
optimal position of the ith particle; ω is the inertial weight of
the particle; c1 and c2 also called the acceleration coefficients,
for extending the velocity of the cat to move in the solution
space and usually set to 2.05; r1 and r2 are two uniform
random values uniformly generated in the range of [0, 1].

2.2. Adaptive Particle SwarmOptimization. Traditional PSO
still has some shortcomings in global search and conver-
gence. *e algorithm has attracted the strong interest of
many scholars and is committed to improving the perfor-
mance of the algorithm. APSO, which is suggested by Zhan
et al. [32], accelerates the convergence speed even more. *e
population distribution state of the algorithm includes four
evolutionary states, namely, detection, development, con-
vergence, and bounce. In the process of operation, the inertia
weight, acceleration factor, and other parameters can be
automatically controlled. *erefore, the search efficiency
and the convergence speed are effectively improved. As the
evolution progresses, particles may cluster together and
converge to a local optimum. At this time, an elite learning
strategy guides the global optimal particles to escape from
local optimum. *is algorithm breaks through the PSO, by
detecting the distribution information of different pop-
ulations and using this information to evaluate the evolu-
tionary state, and the steps are shown below:

Step 1: the distribution information can use Euclidean
distance to describe the average distance between each
particle i and other particles:

dist � 1

n − 1
∑n

j�1,j≠i

��������∑d
k�1

xki − xkj( )2√
, (2)

where n and d, respectively, represent the population
size and dimension.

Step 2: compare the distances of globally optimal
particles dg to other particles and calculate the maxi-
mum dmax and minimum dmin distances. *e “evolu-
tionary factor” f is denoted as follows:

f �
dg − dmin

dmax − dmin

∈ [0, 1]. (3)

In the exploration phase, the f value is large; in the
exploitation phase, the f value decreases rapidly; after
the environment changes, it will reach the convergence
phase; as the number of iterations continues to in-
crease, the particles will jump out, causing the f value to
become larger. *e cycle then repeats itself.

Step 3: the four states S1, S2, S3, and S4 are divided by f.
With regard to the order, they represent the circumstances
of exploration, exploitation, convergence, and jumping-
out, respectively. Generally, a larger adaptive weight ω
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value is set in exploration, and a smaller value is set in
exploitation. However, the evolution factor f also shares
some characteristics of the inertial weight ω, so ω can
follow f change. Four strategies are summarized in Table 1.

At the same time, when the denominator is greater than
3.0, the values of c1 and c2 are standardized:

ci �
ci

c1 + c2
3.0, i � 1, 2. (4)

2.3. Cat Swarm Optimization. CSO is a heuristic global
optimization method which was first presented by Taiwan
scholar Chu et al. in 2006 [9]. CSO was proposed based on
imitating the behaviour of cat. It has been analyzed that cats
always spend most of their time to observe the surrounding
environments first instead of hunting. Before the hunt, they
alternate between moving slowly and staying at a location in
a stationary state. *is is called the seeking mode. Another
submode is called the tracing mode. *e CSO algorithm
relies on the cooperation of these two states to obtain the
optimal solution. Similar to PSO, every cat has its own
velocity and position. MR defines how many cats in the
overall cat group enter the seeking mode and how many cats
enter the tracing mode. Flag is identifying which mode the
cat is in. *e optimal solution is a fitness value FS, repre-
senting the cat’s accommodation to the function of fitness
and the best position of the cat that has been obtained. *e
algorithm’s specific stages are as follows:

(i) Initial population, each cat has D-dimensional co-
ordinate values

(ii) Initialize the speed for randomizing the position of
each dimension

(iii) According to the mixture ratio MR, the population
is randomly divided into seeking and tracing modes

(iv) On the basis of the cat’s flag bit, perform the cor-
responding position update on the cat

(v) Evaluate and record the fitness function value of
each cat and keep the cat with the best fitness

(vi) Terminate the algorithm if the conditions are met;
otherwise, return to step three

2.3.1. SeekingModel. *emode in which cats look around to
find targets is called the seeking mode. *ere are four key
parameters:

Seeking Memory Pool (SMP) defines the search
memory size of each cat, which is representative of the
position features that the cat has sought out.

Seeking Range of the Selected Dimension (SRD) rep-
resents the change rate of the selected area, and the
change range of each dimension is determined by the
SRD change domain.

Counts of Dimension to Change (CDC) refers to the
number of dimensions that a single cat will mutate in

the future. Its value is a random value between 0 and the
maximum dimension.

Self-Position Consideration (SPC) is a Boolean valued
variable, which indicates whether the position of the cat
is about to move includes the position that has passed.

*e process is described below:

(i) Make j� SMP, which represents copy the cat’s
current position. In case, the value of SPC is true, let
j� SMP− 1, and then return to the current position
as a candidate solution.

(ii) For each individual copy in the memory pool,
according to the size of the CDC, randomly add or
subtract SRD percentage to the current value, and
the old value is replaced by the updated value.

(iii) Calculate the values of the fitness function FS of all
solutions that are candidates in the memory pool.

(iv) If all fitness function values FS are not completely
equal, calculate the selection probability of each
candidate solution by equation (5).

(v) *e candidate point with the highest fitness value is
selected from the memory pool to replace the
current cat position, thereby completing the cat
position update:

Pi �
FSi − FSb
∣∣∣∣ ∣∣∣∣
FSmax − FSmin

, where 0< i< j. (5)

If the fitness function finds the minimum solution of the
problem, let FSb� FSmax; otherwise, FSb� FSmin.

2.3.2. TracingModel. *e state mode when tracing the target
after finding it is called the tracing mode. *is action can be
briefly described in three steps.

*e process is as follows:

(i) Update the velocities of each dimension according
to (6), the best position that the entire cat group
passes, that is, the optimal solution currently found:

vdi (t + 1) � vdi (t) + r · c · x
d
best(t) − x

d
i (t)( ),

d � 1, 2, 3, . . . , m.
(6)

(ii) Check whether the velocities are within the maxi-
mum velocity range.

(iii) According to (7), update the cat’s position:

xdi (t + 1) � xdi (t) + v
d
i (t + 1). (7)

Table 1: Control strategies for c1 and c2 in four states.

State Strategy c1 c2

Exploration Strategy 1 Increase Decrease
Exploitation Strategy 2 Increase slightly Decrease slightly
Convergence Strategy 3 Increase slightly Increase slightly
Jumping-out Strategy 4 Decrease Increase
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3. Adaptive Cat Swarm Optimization

*is paper proposes a new cat swarm algorithm with
adaptive strategy based on the traditional APSO and CSO
algorithms. *is improvement does not only advance the
efficiency and convergence of the algorithm but also
maintains an understanding of the uniformity of the dis-
tribution. *e specific content and innovations can be
summarized as follows.

3.1. Increase Adaptive Parameters. Based on the parameter
self-adaptation, the operation process of random numbers is
adjust, and an adaptive strategy is add. In the early stage of
iteration, the cat swarm can obtain strong global optimi-
zation ability:

rk �
1 − ��

ck
√ + 1( ) · rand · i
ck ·MaxIter

, k � 1, 2, i<MaxIter

2
. (8)

Make the particle swarm converge to the optimal po-
sition later in the iteration:

rk �
1 − ��

ck
√ + 1( ) · (1 + rand) · i

ck ·MaxIter
, k � 1, 2, i≥MaxIter

2
.

(9)
When the initial values of c1 and c2 are set relatively

small, add them to limit the generation of negative values, in
order to avoid negative numbers:

r1 � r2 � rand, r1 ≤ 0, r2 ≤ 0. (10)

Change equations (8)–(10) are beneficial to the global
search ability at the early stage of particle iteration, local
refinement in later iterations, and to improve the accuracy of
the solution.

3.2. A Radius Range is Added to the Search Position.
When the distance between xdi and gdbest is less than the
radius, then toward the individual xdi to gdbest. However,
when the distance between xdi and pdbest is less than the
radius, just deviate it from pdbest. *e value of the elements is
defined by the following equations:

vdi (t + 1) � ω · vdi (t) + c1 · r1 · p
d
best(t) − x

d
i (t)( )

+ c2 · r2 · g
d
best(t) − x

d
i (t)( ) + f · Fi + e · Ei,

(11)

f � 0.1 − i · 0.2

MaxIter
( ),

e � 2 · rand,

Fi � gdbest(t) − xdi (t), dist2gbest≤ radius,

Ei � pdbest(t) + xdi (t), dist2pbest ≤ radius,


(12)

where f and e show the weights attracted toward the global
optimal solution and the weights away from the local optimal

solution, respectively. Fi and Ei indicate the food sources of the
ith individual and the enemy of the ith individual.

3.3. Increase Memory Factor y. Particles learn from each
other to obtain the most informative information in their
respective fields. For each searcher, a memory factor y is
added, and each particle gives a lower memory weight to the
previous position. For the purpose of updating the historical
best position of each searcher, higher memory weight is
referenced to update the current position:

xdi (t + 1) � 1

2
y · xdi (t) +(1 − y) · x

d
i (t − 1)(

+ y · vdi (t + 1) +(1 − y) · vdi (t)).
(13)

To better explain the process of ACSO, the complete flow
chart is shown in Figure 1. Firstly, randomly initialize each
cat. *en, calculate the fitness value. Finally, make its pa-
rameters adaptive adjusted in the tracing mode.

*e pseudocode of ACSO seeking mode function is
exhibited in Algorithm 1.

*e pseudocode of ACSO tracing mode function is
exhibited in Algorithm 2.

4. Experiment and Result Analysis

*is segment is predominantly to verify the efficient per-
formance of the projected algorithm, and 23 mathematical
optimization functions were performed for the purpose of
comparing the ACSO with PSO, APSO, and CSO. *ese
typical test equations are listed in Tables 2–4 used by many
scholars [34]. *ree of these elements need to be declared,
Space, Dim, and Fmin, which denotes the boundary of
function’s search space, the dimension of the function, and
the optimal solution, respectively.

4.1. Experimental Results. For verifying the results, CSO,
APSO, and PSO are used to compare with the proposed
ACSO algorithm. 23 benchmark functions are used to
evaluate the performance of ACSO for real-parameter op-
timization. Usually, the benchmark function is also de-
scribed as a mathematical test function. *e mathematical
test function used illustrates its 2D version in Figures 2–4.
*e relevant test parameters are listed in Table 5. In order to
achieve a fair competition, for each test function, we tested
10 times for each optimization algorithm to get the average
and standard deviation. *e population size of each algo-
rithm is set to 100, and the maximum number of iterations is
500. Subsequently, Table 6 illustrates the comparison of four
algorithms on average (Ave) and standard deviation (Std).

4.2. ExperimentAnalysis. From Figures 5–7, solution quality
and speed of PSO, APSO, CSO, and ACSO under 23
benchmark functions can be obtained.*e horizontal axis in
the figures stand for the maximum number of iterations
during program execution and along the vertical axis are the
corresponding fitness values. *ey are the simulation results
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of unimodal, multimodal, and fixed-dimensional multi-
modal mathematical test functions.

*e unimodal function is a continuous function with
only one extreme point in the domain; in other words, it has
only one global optimum and no local optimum, so these
algorithms are used to benchmark it. *e performance of
ACSO is superior to PSO, APSO, and ACSO. From Figure 5,
because they contain only one global optimal solution, they
have faster search convergence in the function.

*e multimodal function is a function that contains
multiple locally or globally optimal solutions, the purpose of
which is to detect whether the test algorithm avoids local

Start

Create N cats

Initialize the position, velocity, and 
the flag of every cat

Evaluate the cats according to the 
fitness function and keep the position 
of the cat, which has the best fitness 

value

Cat is in the seeking mode?

Seeking mode 
processing

Tracing mode 
processing

Repick number of cats and set them 
into tracing mode according to 

MR, and set the others into seeking 
mode

Set pbesti = Xi and calculate gbest

Estimate the evolutionary states of 
the algorithm and adaptively control 

the parameters and set radius ≤ 50

it ≤ Maxiteration

Update the position and velocity of the 
cat and make sure they are within range

it = it + 1

End

Yes No

Yes

Output gbest

No

Figure 1: *e complete flow chart of ACSO.

Create N cats
Initialize related parameters
Calculate the fitness of each cat
Divides cats into two mode based on flag
SMP� the search memory pool size
if flag�� 0 then

for i� 1 to SMP do

fitness� fobj(catCopy(i).Posi)
end for

else

for i� 2 to SMP do

fitness� fobj(catCopy(i).Posi)
end for

end if

ALGORITHM 1: ACSO seeking mode.

while t<�Maxiteration do
Adaptive adjustment parameter r by
equations (8)∼(10)
Compare the distance between Cat.Posi and
cat’s gbest.Posi and pbest.Posi
Dist2gbest� distances (Cat.Posi, gbest.Posi)
if Dist2gbest<� radius then

F� gbest.Posi − Cat.Posi
else

F� 0
end if

Dist2pbest� distances (Cat.Posi, pbest.Posi)
if Dist2pbest<� radius then

E� pbest.Posi +Cat.Posi
else

E� 0
end if

Update the position and velocity by
equations (11) and (12)

end while

return gbest

ALGORITHM 2: ACSO tracing mode.
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optimums. Relatively speaking, the improved algorithm is
better than other algorithms, as shown in Figure 6. Pre-
mature stagnation of the optimal solution appears in F9 and
F11. ACSO is better than other algorithms in the benchmark
function of F10 and F13. However, the PSO algorithm is
known to have the shortcoming of premature convergence
in dealing with multimodal optimization problems, owing to
the lack of enough momentum for particles to do explo-
ration or exploitation when the algorithm is nearing its end,
so it is the worst solution curve.

In the fixed-dimensional multimodal function, Figure 7
shows the curves of simulation results by all four algorithms,
where the curves of APSO, CSO, and ACSO are almost
overlapped in F17. From Table 6 and Figures 5–7, observing

ACSO, not only can they avoid getting trapped in a local
optimum but they can also converge quickly and eventually
finding a global optimal solution. *erefore, we conclude
that the proposed algorithms are noticeably superior to
other comparison algorithms.

5. Adaptive Cat Swarm Algorithm
Application in Vehicle Routing Problem

In this segment, the projected algorithm is connected to
Vehicle Routing Problem (VRP). One of the fundamental
problems in logistics has always been VRP, with the core link
being cargo distribution. It was originally proposed by
Dantzig and Ramser in 1959 [35]. Traditionally, VRP refers

Table 2: Unimodal benchmark functions.

Function Space Dim Fmin

F1(x) � ∑ni�1 x2i [− 100, 100] 30 0

F2(x) � ∑ni�1 |xi| +∏n
i�1 |xi| [− 10, 10] 30 0

F3(x) � ∑ni�1 (∑ij− 1 xj)2 [− 100, 100] 30 0
F4(x) � max i |xi|, 1≤ i≤ n{ } [− 100, 100] 30 0
F5(x) � ∑n− 1i�1 [100(xi+1 − x2i )

2 + (xi − 1)2] [− 30, 30] 30 0
F6(x) � ∑ni�1 ([xi + 0.5])2 [− 100, 100] 30 0
F7(x) � ∑ni�1 ix4i + random[0, 1) [− 1.28, 1.28] 30 0

Table 3: Multimodal benchmark functions.

Function Space Dim Fmin

F8(x) � ∑ni�1 − xi sin( ���
|xi|
√

) [− 500, 500] 30 − 12569
F9(x) � ∑ni�1[x2i − 10 cos(2πxi) + 10] [− 5.12, 5.12] 30 0

F10(x) � − 20 exp(− 0.2
�����������
(1/n)∑ni�1 x2i√

)
− exp((1/n)∑ni�1 cos(2πxi)) + 20 + e

[− 32, 32] 30 0

F11(x) � (1/4000)∑ni�1 x2i − ∏n
i�1 cos(xi/

�
i

√
) + 1 [− 600, 600] 30 0

F12(x) � (π/n) 10 sin(πy1) +∑n− 1i�1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2{ }
+∑ni�1 u(xi, 10, 100, 4)yi � 1 + ((xi + 1)/4)u(xi, a, k,m) �

k(xi − a)m xi > a
0 − a<xi < a
k(− xi − a)m xi < − a


[− 50, 50]

30 0

F13(x) � 0.1 sin2(3πx1) + ∑ni�1 (xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]{ }
+∑ni�1 u(xi, 10, 100, 4) [− 50, 50] 30 0

Table 4: Fixed-dimension multimodal benchmark functions.

Function Space Dim Fmin

F14(x) � ((1/500)∑25
j�11/(j +∑2

i�1 (xi − aij)
6))− 1 [− 65, 65] 2 1

F15(x) � ∑11
i�1ai − (x1(b2i + bix2)/(b2i + bix3 + x4))

2 [− 5, 5] 4 0.00030

F16(x) � 4x21 − 2.1x41 + (1/3)x61 + x1x2 − 4x22 + 4x42 [− 5, 5] 2 − 1.0316
F17(x) � (x2 − (5.1/4π2)x21 + (5/π)x1 − 6)2 + 10(1 − 1/8π)cos x1 + 10 [− 5, 5] 2 0.398

F18(x) � [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)]
×[30 + (2x1 − 3x2)2 × (18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

[− 2, 2] 2 3

F19(x) � − ∑4
i�1 ci exp(− ∑3

j�1 aij(xj − pij)
2) [1, 3] 3 − 3.86

F20(x) � − ∑4
i�1 ci exp(− ∑6

j�1 aij(xj − pij)
2) [0, 1] 6 − 3.32

F21(x) � − ∑5
i�1[(X − ai)((X − ai)

T)] + ci]− 1 [0, 10] 4 − 10.1532
F22(x) � − ∑7

i�1[(X − ai)](X − ai)
T + c− 1i [0, 10] 4 − 10.4028

F23(x) � − ∑10
i�1[(X − ai)(X − ai)

T + c− 1i ] [0, 10] 4 − 10.5363
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to the location of the distribution center that is known, the
coordinate requirements and position of every customer,
and finding the best route under precise constraints for
visiting each customer, with the requirement of the lowest
cost in transportation. *e VRP has been studied for many
years in the fields of mathematics and computer science. It
also has the characteristics of nonlinearity, nonconvexity,
complexity, and constraints and is difficult to coordinate
with each other. In reality, its procedure of solution is quite
complicated; therefore, there are certain advantages to
solving the issue using an intelligent heuristic algorithm.
Many scholars have devoted themselves to solving this

problem and its derivative problems. *e best known results
for VRP have been obtained using Tabu Search (TS) [36, 37]
or Simulated Annealing (SA) [38, 39]. In the present paper,
VRP is chosen as the application objective of the ACSO
algorithm to validate the algorithm’s practicability further.

5.1. Description of Constraints

(i) *e total cargo carried by each vehicle must meet its
maximum load limit

(ii) Each vehicle may serve multiple customers, but each
customer can only be served by one vehicle

× 10
4

2

1.5

1

0.5

0
100

10050

500
0

–50 –50
–100 –100

(a)

100

10050

500
0

–50 –50
–100 –100

10000

8000

6000

4000

2000

0

(b)

× 10
4

100

10050

500
0

–50 –50
–100 –100

5

4

3

2

1

0

(c)

100

10050

500
0

–50 –50
–100 –100

100

80

60

40

20

0

(d)

× 10
10

15

10

5

0

200

–200

100

–100

0
0

–100

100

–200

200

(e)

3

2

1

0

0.5

0

–0.5

–1

0.5
0

–0.5
–1

(f )

Figure 2: 2D versions of unimodal benchmark functions: (a) F1; (b) F2; (c) F3; (d) F4; (e) F5; (f ) F7.

Mathematical Problems in Engineering 7



80

60

40

20

0
5

5

0
0

–5 –5

(a)

20

15

10

5

0
20

20
10

100
0–10

–10
–20 –20

(b)

120

100

80

60

40

20

0
500

500

0
0

–500 –500

(c)

5

5

0
0

–5 –5

12

10

8

6

4

2

0

(d)

Figure 3: 2D versions of multimodal benchmark functions: (a) F9; (b) F10; (c) F11; (d) F13.
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(iii) Vehicle k should go to the next customer i or returns
to the distribution center immediately after serving
customer j

5.2. Definition of Parameters. *e vehicle routing problem is
defined on a directed network G � (V, E) with a vertex set
V � vi | i � 0, 1, 2, 3, . . . , n{ }, where v0 represents a distri-
bution center, v1, v2, v3, . . . , vn{ } indicates the set of cus-
tomers in a directed graph, E � (vi, vj) | vi, vj ∈ V, i≠ j{ } is
an edge set, and cij represents the attribute value of each
edge.

(i) N � 1, 2, 3, . . . , n{ } is the collection of all
customers

(ii) K � 1, 2, 3, . . . , k{ } is the collection of all delivery
vehicles

(iii) c0 is the unit distance cost

(iv) dij is the distance between the two points i and j

(v) cij is the transportation cost from point i to point j
and cij� c0dij

(vi) ri is the customer demands for goods

(vii) W is the maximum load capacity

(viii) Sk is the set of customer points for vehicle k service

xijk �
1, if vehiclekdepart from i to j, i, j ∈N,
0, otherwise,
{

xik �
1, if customer i is servedby vehiclek, i ∈N, k ∈ K,
0, otherwise.
{

(14)

*e objectives and restrictions of the VRP are then
described as follows:

min c �∑N
i�0
∑N
j�0
∑K
k�1
cijxijk , (15)

∑N
i�0
∑K
k�1
xijk � 1, j ∈ N, (16)

∑N
i�1
∑N
j�0
rixijk ≤W, k ∈ K, (17)

Table 6: *e statistical results of the algorithms.

Function

PSO APSO CSO ACSO

Average
Standard
deviation

Average
Standard
deviation

Average
Standard
deviation

Average
Standard
deviation

F1 4.66×104 3.94×103 1.46×101 7.28×100 2.43×10− 33 3.80×10− 33 1.62×10− 48 2.76×10− 48
F2 3.74×1033 6.42×1033 4.55×101 1.60×101 1.50×10− 19 2.59×10− 19 4.40×10− 24 6.61× 10− 24
F3 7.92×104 2.85×104 5.29×103 3.68×102 6.36×10− 27 1.10×10− 26 45.04×10− 46 8.73×10− 46
F4 6.91× 101 6.46×100 3.74×100 4.14×10− 1 2.92×10− 16 5.06×10− 16 1.33×10− 25 2.31× 10− 25
F5 1.83×1010 3.53×109 7.23×103 2.91× 103 2.88×101 3.86×10− 2 2.84×101 1.70×10− 5
F6 3.89×104 1.03×104 2.59×101 1.52×101 2.51× 100 1.14×10− 1 3.65×100 2.08×10− 1
F7 2.16×109 5.53×108 1.09×103 4.58×102 8.37×10− 6 6.77×10− 6 1.58×10− 6 1.71× 10− 6
F8 − 5.69×102 4.06×101 − 1.17×103 8.78×101 1.22×1039 2.12×1039 − 6.88×102 5.27×102
F9 4.91× 104 2.63×103 3.19×102 4.51× 101 0 0 0 0
F10 2.12×101 6.89×10− 2 1.77×101 4.12×100 8.88×10− 16 0 8.88×10− 16 0
F11 1.09×101 1.31× 100 4.87×10− 1 1.09×10− 1 0 0 0 0
F12 5.97×109 2.74×109 5.88×100 3.74×100 2.04×10− 1 1.67×10− 1 4.24×10− 1 5.79×10− 2
F13 1.13×1010 3.68×109 2.33×101 1.45×101 1.30×100 5.53×10− 1 2.68×10− 4 1.74×10− 6
F14 1.26×101 4.37×100 1.33×100 5.74×10− 1 4.33×100 2.33×100 1.12×100 1.38×10− 1
F15 1.79×10− 2 1.64×10− 2 1.01× 10− 3 4.60×10− 5 8.14×10− 4 3.56×10− 4 3.51× 10− 4 2.22×10− 6
F16 1.53×104 2.61× 104 − 1.03×100 0 − 1.03×101 7.17×10− 4 − 1.02×100 9.85×10− 3
F17 1.83×100 2.34×100 3.98×10− 1 0 4.02×10− 1 7.39×10− 3 3.98×10− 1 2.97×10− 5
F18 1.27×108 2.06×108 3.00 5.44×10− 16 3.00×100 8.84×10− 4 3.43×100 5.22×10− 1
F19 − 2.07×10− 33 3.58×10− 33 − 3.86×100 3.14×10− 16 − 3.72×100 1.07×10− 1 − 2.99×100 5.14×10− 1
F20 0 0 − 6.59×10− 1 5.79×10− 1 − 1.85×100 7.13×10− 1 − 1.33×100 1.54×10− 1
F21 − 3.59×10− 2 2.85×10− 2 − 3.47×100 1.41× 100 − 2.14×100 8.35×10− 1 − 1.02×101 6.80×10− 9
F22 − 1.91× 10− 2 1.40×10− 2 − 1.04×101 1.78×10− 15 − 3.66×100 1.04×100 − 1.04×101 3.90×10− 7
F23 − 1.10×10− 2 1.89×10− 3 − 7.83×100 4.69×100 − 3.00×100 7.05×10− 1 − 1.05×101 1.38×10− 7

Table 5: Parameter setting of each algorithm.

Algorithm Main parameter setting

PSO VelMin� − 6, VelMax� 6, c� 2.5, w� 0.9
APSO VelMin� − 6, VelMax� 6, c1� c2� 2.5, w� 0.9, status� “S1”
CSO SRD� 0.9, MR� 0.3, RangeMin� − 30, RangeMax� 30, VelMin� − 6, VelMax� 6, c� 1.05, w� 0.6
ACSO

SRD� 0.9, MR� 0.3, RangeMin� − 30, RangeMax� 30, VelMin� − 6, VelMax� 6, c1� c2�1.05, w� 0.6, status� “S1,”
radius� 50
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Figure 5: Simulation results for unimodal benchmark functions: (a) F1; (b) F2; (c) F3; (d) F4; (e) F5; (f ) F7.
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∑N
i�1
xijk �∑N

j�1
xjik, k ∈ K, (18)

∑
i,j∈N

xijk � Sk
∣∣∣∣ ∣∣∣∣ − 1, k ∈ K. (19)

In VRP problems, as can be seen from the above model,
equation (15) is a multimode function that belongs to the test
function, aiming to minimize the objective function with
least vehicle distribution cost. *e level of distribution costs
is the basic requirement for whether the economic benefits
of the distribution process are maximized.

In a process with supply and demand in existence,
formulas (16)–(19) denote the following: equation (16)
demonstrates that this condition of constraint ensures a visit
to the customer. Only one vehicle is allowed to supply each
customer; equation (17) is a cargo flow constraint, requiring
the load of the vehicle that cannot exceed the maximum
load; equation (18) indicates that the continuity of the

vehicle allocation process is constrained; that is, it must start
from this point after serving customer i; equation (19)
represents that each vehicle is restricted from having no
subloops in the path.

5.3. Analysis of Experimental Results. In order to verify the
effectiveness of ACSO algorithm to solve VRP, experiments
were performed using MATLAB R2018b software. *e
simulation environment is the processor Inter (R) Core
(TM) i7-8550U CPU @1.80GHz 2.00GHz, PC with Win10
operating system. *e iteration is set as 300, and the sta-
tistical results of the algorithms used to solve VRP and the
three algorithms of CSO, APSO, and PSO are recorded in
Table 7.

*e case column denotes various calculation examples,
the Best Cost column represents the optimal value solution,
and the Time/s column is representative of the whole time of
the running of the algorithm.*rough the comparison of the
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Figure 6: Simulation results for multimodal benchmark functions: (a) F9; (b) F10; (c) F11; (d) F13.
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above experiments, it can be seen intuitively, compared with
CSO, APSO, and PSO algorithms, the ACSO algorithm has
achieved better results and has certain advantages.
According to the results of this ACSO algorithm, however, as
the number of nodes in the transmission network increases,
it will lead to an increase in the time consumed during
operation. To a certain extent, it shows that the algorithm
still has room for improvement.

Table 8 presents the optimal consequence of ACSO
according to the case n20-k7. Seven vehicles set off from the
distribution center, each of them found an optimal path
under specific constraints, traversing twenty customers to
meet the customer’s cargo needs. Here, zero point represents
the distribution center, and numbers from one to twenty
denote the customer number. Simultaneously, the optimal
path graph is shown in Figure 8. “Star” in the figure
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Figure 7: Simulation results for fixed-dimension multimodal benchmark functions: (a) F14; (b) F15; (c) F17; (d) F21.

Table 7: Comparison of optimal value and running time.

Case
ACSO CSO APSO PSO

Best cost Time (s) Best cost Time (s) Best cost Time (s) Best cost Time (s)

n14-k4 327.0238 105.9069 350.1766 91.4349 366.7308 93.6879 484.7995 93.8249
n20-k7 356.696 120.8684 374.5871 94.1607 383.2518 97.4590 554.6471 97.5232
n25-k5 489.5978 115.6802 527.2954 91.9872 543.6339 95.5831 695.325 95.8131
n30-k5 612.4174 121.0953 702.9065 94.8490 658.8413 100.1747 960.6692 93.3821
n40-k6 691.7631 137.0174 989.472 98.0159 917.9026 109.4481 1537.5096 94.3153
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represents the distribution center, and “Point” indicates the
coordinates of the location of the customer point.

6. Conclusions

In the study, based on the benefits of CSO and APSO, an
Adaptive Cat Swarm Optimization (ACSO) algorithm is
proposed. *rough the cat swarm behaviour in the tracing
mode, there is an adaptive adjustment to its parameters. *e
effectiveness of it has been tested through 23 benchmark
functions. *is experimental result indicates that ACSO has
excellent performance than other existing heuristics in the
process of exploration and exploitation.

In the end, ACSO is applied to VRP. Numerical as-
sessments on four algorithms (ACSO, CSO, APSO, and
PSO) reveal that the best result comes from the proposed
ACSO algorithm, which further confirms the practicability
and effectiveness of the algorithm. However, during the
course of the algorithm, because the evolutionary state needs
to be evaluated based on the distance to adjust the adaptive
parameters in the tracing mode, it requires much more
processing time to make related parameter adjustments.
*erefore, the future work is to reduce the running time of
the algorithm more reasonably without affecting the group
to find the optimal solution.
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