
Mobile Networks and Applications (2006) 11: 779–797
DOI 10.1007/s11036-006-0049-y

Adaptive Channel Allocation Spectrum Etiquette
for Cognitive Radio Networks

Nie Nie · Cristina Comaniciu

© Springer Science + Business Media, LLC 2006

Abstract In this work, we propose a game theoretic
framework to analyze the behavior of cognitive radios
for distributed adaptive channel allocation. We define
two different objective functions for the spectrum shar-
ing games, which capture the utility of selfish users and
cooperative users, respectively. Based on the utility de-
finition for cooperative users, we show that the channel
allocation problem can be formulated as a potential
game, and thus converges to a deterministic channel
allocation Nash equilibrium point. Alternatively, a no-
regret learning implementation is proposed for both
scenarios and it is shown to have similar performance
with the potential game when cooperation is enforced,
but with a higher variability across users. The no-
regret learning formulation is particularly useful to
accommodate selfish users. Non-cooperative learning
games have the advantage of a very low overhead for
information exchange in the network. We show that
cooperation based spectrum sharing etiquette improves
the overall network performance at the expense of an
increased overhead required for information exchange.
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1 Introduction

The explosive growth of wireless services and the in-
creased users’ population density call for intelligent
ways of managing the scarce spectrum resources. In
the same time, recent measurements of the spectrum
utilization show very limited usage of certain licensed
frequency bands, for certain geographical regions. With
not much spectrum available to be licensed for new
wireless services, the solution proposed marks a new
paradigm shift in the FCC’s spectrum management
policy [1] that creates opportunities for new, more
aggressive, spectrum reuse. The cognitive radio tech-
nology lays the foundation for the deployment of smart
flexible networks that cooperatively adapt to increase
the overall network performance.

The cognitive radio terminology was coined by
Mitola [11], and refers to a smart radio which has the
ability to sense the external environment, learn from
the history, and make intelligent decisions to adjust
its transmission parameters according to the current
state of the environment. In a cognition cycle, a radio
receives stimuli (information about its operating envi-
ronment) from the external environment through direct
observation or signaling information exchanges and
then reacts to these stimuli in four steps: orientation,
planning, decision and acting. The radio’s action will
influence the outside world and will in turn be received
as stimuli by the other radios. Compared to a traditional
radio node, a cognitive radio node has a more flexible
physical platform based on Software Defined Radio
(SDR) technology, which enables it to interact with
the external environment by dynamically reconfiguring
its physical transmission parameters. Some examples
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of the application of cognitive radios can be found in
[2, 7, 15].

The potential contributions of cognitive radios to
spectrum sharing and an initial framework for formal
radio etiquette have been discussed in [10]. According
to the proposed etiquette, the users should listen to the
environment, determine the radio temperature of the
channels and estimate their interference contributions
on their neighbors. Based on these measurements, the
users should react by changing their transmission para-
meters if some other users may need to use the channel.

While it is clear that this etiquette promotes coopera-
tion between cognitive radios, the behavior of networks
of cognitive radios that implement distributed resource
allocation algorithms is less well understood.

As the cognitive radios are essentially autonomous
agents that are learning their environment and are
optimizing their performance by modifying their trans-
mission parameters, their interactions can be modeled
using a game theoretic framework. In this framework,
the cognitive radios are the players and their actions are
the selection of new transmission parameters and new
transmission frequencies, etc., which influence their
own performance, as well as the performance of the
neighboring players.

Game theory has been extensively applied in micro-
economics, and only more recently has received atten-
tion as a useful tool to design and analyze distributed
resource allocation algorithms (e.g., [4, 9]). Some game
theoretic models for cognitive radio networks were
presented in [13], which has identified potential game
formulations for power control, call admission control
and interference avoidance in cognitive radio networks.
The convergence conditions for various game models in
cognitive radio networks are investigated in [14].

In this work, we propose a game theoretic formu-
lation of the adaptive channel allocation problem for
cognitive radios. Our current work assumes that the
radios can measure the local interference temperature
on different frequencies and can adjust by optimizing
the information transmission rate for a given chan-
nel quality (using adaptive channel coding) and by
possibly switching to a different frequency channel.
The cognitive radios’ decisions are based on their per-
ceived utility associated with each possible action. We
propose two different utility definitions, which reflect
the amount of cooperation enforced by the spectrum
sharing etiquette. We then design adaptation protocols
based on both a potential game formulation, as well
as no-regret learning algorithms. We study the con-
vergence properties of the proposed adaptation algo-
rithms, as well as the tradeoffs involved.

2 System model

The cognitive radio network we consider consists of
a set of N transmitting-receiving pairs of nodes, uni-
formly distributed in a square region of dimension
D∗ × D∗. We assume that the nodes are either fixed, or
are moving slowly (slower than the convergence time
for the proposed algorithms). Figure 1 shows an ex-
ample of a network realization, where we used dashed
lines to connect the transmitting node to its intended
receiving node. The nodes measure the spectrum avail-
ability and decide on the transmission channel. We as-
sume that there are K frequency channels available for
transmission, with K < N. By distributively selecting a
transmitting frequency, the radios effectively construct
a channel reuse distribution map with reduced co-
channel interference.

The transmission link quality can be characterized
by a required Bit Error Rate target (BER), which is
specific for the given application. An equivalent SIR
target requirement can be determined, based on the
modulation type and the amount of channel coding.

The Signal-to-Interference Ratio (SIR) measured
at the receiver j associated with transmitter i can be
expressed as:

SI Rij = piGij
∑N

k=1,k�=i pkGkjI(k, j)
, (1)

where pi is the transmission power at transmitter i, Gij

is the link gain between transmitter i and receiver j.
I(i, j) is the interference function characterizing the
interference created by node i to node j and is
defined as

I(i, j) =
⎧
⎨

⎩

1 if transmitters i and j are transmitting
over the same channel

0 otherwise
(2)

Analyzing Eq. 1 we see that in order to maintain a
certain BER constraint the nodes can adjust at both
the physical and the network layer level. At the net-
work level, the nodes can minimize the interference
by appropriately selecting the transmission channel fre-
quency. At the physical layer, power control can reduce
interference and, for a feasible system, results in all
users meeting their SIR constraints. Alternatively, the
target SIR requirements can be changed (reduced or
increased) by using different modulation levels and
various channel coding rates. As an example of adap-
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Figure 1 A snapshot of the
nodes’ positions and network
topology
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tation at the physical layer, we have assumed that for a
fixed transmission power level, software defined radios
enable the nodes to adjust their transmission rates and
consequently the required SIR targets by varying the
amount of channel coding for a data packet.

For our simulations we have assumed that all users
have packets to transmit at all times (worst case sce-
nario). Multiple users are allowed to transmit at the
same time over a shared channel. We assume that users
in the network are identical, which means they have
an identical action set and identical utility functions
associated with the possible actions.

Table 1 Code rates of Reed-Muller code RM (1, m) and corre-
sponding SIR requirement for target BER=10−3

m Code Rate SIR (dB)

2 0.75 6
3 0.5 5.15
4 0.3125 4.6
5 0.1875 4.1
6 0.1094 3.75
7 0.0625 3.45
8 0.0352 3.2
9 0.0195 3.1
10 0.0107 2.8

The BER requirement selected for simulations is
10−3, and we assume the use of a Reed-Muller chan-
nel code RM (1, m). In Table 1 we show the coding
rate combinations and the corresponding SIR target
requirements used for our simulations [8].

3 A game theoretic framework

Game theory represents a set of mathematical tools
developed for the purpose of analyzing the interactions
in decision processes. Particularly, we can model our
channel allocation problem as the outcome of a game,
in which the players are the cognitive radios, their
actions (strategies), are the choice of a transmitting
channel and their preferences are associated with the
quality of the channels. The quality of channels is de-
termined by the cognitive radios by measurements on
different radio frequencies.

We model our channel allocation problem as a nor-
mal form game, which can be mathematically defined
as � = {N, {Si}i∈N, {Ui}i∈N}, where N is the finite set of
players (decision makers), and Si is the set of strategies
associated with player i. We define S = ×Si, i ∈ N as
the strategy space, and Ui: S → R as the set of utility
functions that the players associate with their strategies.



782 Mobile Networks and Applications (2006) 11: 779–797

For every player i in game �, the utility function, Ui, is
a function of si, the strategy selected by player i, and of
the current strategy profile of its opponents: s−i.

In analyzing the outcome of the game, as the players
make decisions independently and are influenced by
the other players’ decisions, we are interested to deter-
mine if there exist a convergence point for the adap-
tive channel selection algorithm, from which no player
would deviate anymore, i.e., a Nash equilibrium (NE).
A strategy profile for the players, S = [s1, s2, ..., sN], is
a NE if and only if

Ui(S) ≥ Ui(s
′
i, s−i), ∀i ∈ N, s′

i ∈ Si. (3)

If the equilibrium strategy profile in Eq. 3 is deter-
ministic, a pure strategy Nash equilibrium exists. For
finite games, even if a pure strategy Nash equilibrium
does not exist, a mixed strategy Nash equilibrium can
be found (equilibrium is characterized by a set of prob-
abilities assigned to the pure strategies).

As becomes apparent from the above discussion,
the performance of the adaptation algorithm depends
significantly on the choice of the utility function which
characterizes the preference of a user for a particular
channel. The choice of a utility function is not unique.
It must be selected to have physical meaning for the
particular application, and also to have appealing math-
ematical properties that will guarantee equilibrium con-
vergence for the adaptation algorithm. We have studied
and proposed two different utility functions, that cap-
ture the channel quality, as well as the level of cooper-
ation and fairness in sharing the network resources.

3.1 Utility functions

The first utility function (U1) we propose accounts for
the case of a “selfish” user, which values a channel
based on the level of interference perceived on that
particular channel:

U1i(si, s−i) = −
N∑

j�=i, j=1

pjGij f (s j, si).

∀i = 1, 2, ..., N (4)

For the above definition, we denoted P=[p1, p2, ...,
pN] as the transmission powers for the N radios, S=[s1,
s2, ..., sN] as the strategy profile and f (si, s j) as an
interference function:

f (si, s j) =
⎧
⎨

⎩

1 if s j = si, transmitter j and i choose
the same strategy (same channel)

0 otherwise

This choice of the utility function requires a minimal
amount of information for the adaptation algorithm,

namely the interference measurement of a particular
user on different channels.

The second utility function we propose accounts for
the interference seen by a user on a particular channel,
as well as for the interference this particular choice will
create to neighboring nodes. Mathematically we can
define U2 as:

U2i(si, s−i) = −
N∑

j�=i, j=1

pjGij f (s j, si)

−
N∑

j�=i, j=1

piG ji f (si, s j)

∀i = 1, 2, ..., N (5)

The complexity of the algorithm implementation will
increase for this particular case, as the algorithm will
require probing packets on a common access channel
for measuring and estimating the interference a user
will create to neighboring radios.

The above defined utility functions, characterize a
user’s level of cooperation and support a selfish and a
cooperative spectrum sharing etiquette, respectively.

3.2 A potential game formulation

In the previous section we have discussed the choice
of the utility functions based on the physical meaning
criterion. However, in order to have good convergence
properties for the adaptation algorithm we need to
impose some mathematical properties on these func-
tions. There are certain classes of games that have
been shown to converge to a Nash equilibrium when
a best response adaptive strategy is employed. In what
follows, we show that for the U2 utility function, we can
formulate an exact potential game, which converges to
a pure strategy Nash equilibrium solution.

Characteristic for a potential game is the existence of
a potential function that exactly reflects any unilateral
change in the utility function of any player. The po-
tential function models the information associated with
the improvement paths of a game instead of the exact
utility of the game [12].

An exact potential function is defined as a function

Pot : S → R, if for all i, and si, s′
i ∈ Si,

with the property that

Ui(si, s−i) − Ui(s′
i, s−i) = Pot(si, s−i) − Pot(s′

i, s−i). (6)

If a potential function can be defined for a game, the
game is an exact potential game. In an exact potential
game, for a change in actions of a single player the
change in the potential function is equal to the value
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of the improvement deviation. Any potential game in
which players take actions sequentially converges to
a pure strategy Nash equilibrium that maximizes the
potential function.

For our previously formulated channel allocation
game with utility function U2, we can define an exact
potential function to be

Pot(S) = Pot(si, s−i)

=
N∑

i=1

⎛

⎝−1

2

N∑

j�=i, j=1

pjGij f (s j, si) − 1

2

N∑

j�=i, j=1

piG ji f (si, s j)

⎞

⎠

∀i = 1, 2, ..., N. (7)

The function in Eq. 7 essentially reflects the network
utility. It can be seen thus that the potential game
property Eq. 6 ensures that an increase in individual
users’ utilities contributes to the increase of the overall
network utility. We note that this property holds only
if users take actions sequentially, following a best re-
sponse strategy.

The proof that Eq. 7 is an exact potential function is
given in the Appendix.

Consequently, to ensure convergence for the spec-
trum allocation game, either a centralized or a dis-
tributed scheduler should be deployed. In an ad hoc
network, the latter solution is preferable. To this end,
we propose a random access for decision making in
which each user is successful with probability pa =
1/N. More specifically, at the beginning of each time
slot, each user flips a coin with probability pa, and, if
successful, makes a new decision based on the current
values for the utility functions for each channel; oth-
erwise takes no new action. We note that the number
of users that attempt to share each channel, can be
determined from channel listening as we will detail
shortly. The proposed random access ensures that on
average exactly one user makes decisions at a time, but
of course has a nonzero probability to have two or more
users taking actions simultaneously. We have deter-
mined experimentally that the convergence of the game
is robust to this phenomenon: when two or more users
simultaneously choose channels, the potential function
may temporarily decrease (decreasing the overall net-
work performance) but then the upward monotonic
trend is re-established.

The proposed potential game formulation requires
that users should be able to evaluate the candidate
channels’ utility function U2. To provide all the infor-
mation necessary to determine U2, we propose a signal-
ing protocol based on a three way handshake protocol.

The signaling protocol is somewhat similar to the RTS-
CTS packet exchange for the IEEE 802.11 protocol,
but intended as a call admission reservation protocol,
rather than packet access reservation protocol. When
a user needs to make a decision on selecting the best
transmission frequency (a new call is initiated or termi-
nated, and user is successful in the Bernoulli trial), such
a handshaking is initiated. In contrast to the RTS-CTS
reservation mechanism, the signaling packets, START,
START_CH, ACK_START_CH (END, ACK_END)
in our protocol, are not used for deferring transmis-
sion for the colliding users, but rather to measure the
interference components of the utility functions for
different frequencies and to assist in computing the
utility function. The signaling packets have a double
role: to announce the action of the current user to select
a particular channel for transmission, and to serve as
probing packets for interference measurements on the
selected channel. The signaling packets are transmitted
with a fixed transmission power on a common control
channel. To simplify the analysis, we assume that no
collisions occur on the common control channel. As we
mentioned before, the convergence of the adaptation
algorithm was experimentally shown to be robust to
collision situations. For a better frequency planning,
it is desirable to use a higher transmission power for
the signaling packets than for the transmitted pack-
ets. This will permit the users to learn the potential
interferers over a larger area. For our simulations, we
have selected the ratio of transmitted powers between
signaling and data packets to be equal to two.

We note that the U2 utility function has two parts:
a) a measure of the interference created by others on
the desired user Id; b) a measure of the interference
created by the user on its neighbors’ transmissions Io.
The first part of U2 can be estimated at the receiving
node, while the second part can only be estimated at
the transmitter node. Therefore, the protocol requires
that both transmitter and receiver listen to the control
channel, and each maintain an information table on all
frequencies, similar to the NAV table in 802.11. In what
follows, we outline the steps of the protocol.

Protocol steps:

1. Bernoulli trial with pa

if 0, listen to the common control channel; break.
if 1, go to 2.

2. Transmitter sends START packet: includes current
estimates for the interference created to neighbor-
ing users on all possible frequencies, Io( f ) (this in-
formation is computed based on information saved
in the Channel Status Table);
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3. Receiver computes current interference estimate
for the user Id( f ), determines U2( f ) = −Id( f ) −
Io( f ) for all channels, and decides on the chan-
nel with the highest U2 (in case of equality, the
selection is randomized, with equal probability of
selecting the channels);

4. Receiver includes the newly selected channel infor-
mation on a signaling packet START_CH which is
transmitted on the common channel;

5. Transmitter sends ACK_START_CH which ac-
knowledges the decision of transmitting on the
newly selected frequency, and starts transmitting
on the newly selected channel;

6. All the other users (transmitters and receivers) that
heard the START_CH and ACK_START_CH
packets update their Channel Status Tables (CST)
accordingly.

We note that when a call ends, only a two-way
handshake is required: END, ACK_END to announce
the release of the channel for that particular user. Upon
hearing these end-of-call signaling packets, all transmit-
ters and receivers, update their CSTs accordingly.

We can see that a different copy of the CST should
be kept at both the transmitter and the receivers
(CST_t and CST_r, respectively). The entries of each
table will contain the neighboring users that have re-
quested a channel, the channel frequency, and the
estimated link gain to the transmitter/receiver of that
particular user (for CST_r and CST_t, respectively).

The proposed potential game framework has the ad-
vantage that an equilibrium is reached very fast follow-
ing a best response dynamic, but requires substantial
information on the interference created to other users
and additional coordination for sequential updates. We
note however, that the sequential updates procedure
also resolves the potential conflicts on accessing the
common control channel.

The potential game formulation is suitable for de-
signing a cooperative spectrum sharing etiquette, but
cannot be used to analyze scenarios involving selfish
users, or scenarios involving heterogeneous users (with
various utility functions corresponding to different QoS
requirements). In the following section, we present
a more general design approach, based on no-regret
learning techniques, which alleviates the above men-
tioned problems.

3.3 �-no-regret learning for dynamic channel
allocation

While we showed in the previous section that the game
with the U2 utility function fits the framework of an ex-

act potential game, the U1 function lacks the necessary
symmetry properties that will ensure the existence of
a potential function. In order to analyze the behavior
of the selfish users game, we resort to the implementa-
tion of adaptation protocols using regret minimization
learning algorithms. No regret learning algorithms are
probabilistic learning strategies that specify that play-
ers explore the space of actions by playing all actions
with some non-zero probability, and exploit success-
ful strategies by increasing their selection probability.
While traditionally, these types of learning algorithms
have been characterized using a regret measure (e.g.,
external regret is defined as the difference between the
payoffs achieved by the strategies prescribed by the
given algorithm, and the payoffs obtained by playing
any other fixed sequence of decisions in the worst case),
more recently, their performance have been related to
game theoretic equilibria.

A general class of no-regret learning algorithms
called �-no-regret learning algorithm are shown in [5]
to relate to a class of equilibria named �-equilibria.
No-external-regret and no-internal regret learning al-
gorithms are specific cases of �-no-regret learning al-
gorithm. � describes the set of strategies to which the
play of a learning algorithm is compared. A learn-
ing algorithm is said to be �-no-regret if and only if
no regret is experienced for playing as the algorithm
prescribes, instead of playing according to any of the
transformations of the algorithm’s play prescribed by
elements of �. It is shown in [5] that the empirical dis-
tribution of play of �-no-regret algorithms converges
to a set of �-equilibria. It is also shown that no-regret
learning algorithms have the potential to learn mixed
strategy (probabilistic) equilibria. We note that Nash
equilibrium is not a necessary outcome of any �-no
regret learning algorithm [5].

We propose an alternate solution for our spec-
trum sharing problem, based on a no-external-regret
learning algorithm with exponential updates, proposed
in [3].

Let Ut
i (si) denote the cumulative utility obtained by

user i through time t by choosing strategy si: Ut
i (si) =∑t

st=1 Ui(si, Sst
−i). For β > 0, the weight (probability)

assigned to strategy si at time t + 1, is given by:

wt+1
i (si) = (1 + β)Ut

i (si)

∑
s′

i∈Si
(1 + β)Ut

i (s
′
i)
. (8)

In [6], based on simulation results, it is shown that
the above learning algorithm converges to Nash equi-
librium in games for which pure strategy Nash equi-
librium exists. We also show by simulations that the



Mobile Networks and Applications (2006) 11: 779–797 785

proposed channel allocation no-regret algorithm con-
verges to a pure strategy Nash equilibrium for co-
operative users (utility U2), and to a mixed strategy
equilibrium for selfish users (utility U1).

By following our proposed learning adaptation
process, the users learn how to choose the frequency
channels to maximize their rewards through repeated
play of the game.

For the case of selfish users, the amount of infor-
mation required by this spectrum sharing algorithm is
minimal: users need to measure the interference tem-
perature at their intended receivers (function U1) and
to update their weights for channel selection accord-
ingly, to favor the channel with minimum interference
temperature (equal transmitted powers are assumed).
We note that the no-regret algorithm in Eq. 8 requires
that the weights are updated for all possible strategies,
including the ones that were not currently played. The
reward obtained if other actions were played can be
easily estimated by measuring the interference temper-
ature for all channels.

For the case of cooperative users, the information
needed to compute U2 is similar to the case of potential
game formulation. We note that, while the learning
algorithm does not require sequential updates to con-
verge to an equilibrium, the amount of information
exchange on the common control channel requires co-

ordination to avoid collisions. One possible approach to
reduce the amount of signaling, would be to maintain
the access scheme proposed in the previous section,
which would ensure that on average only one user at
the time will signal changes in channel allocation.

4 Simulation results

In this section, we present some numerical results to
illustrate the performance of the proposed channel allo-
cation algorithms for both cooperative and selfish users’
scenarios. For simulation purposes, we consider a fixed
wireless ad hoc network (as described in the system
model section) with N = 30 and D = 200 (30 transmit-
ters and their receivers are randomly distributed over a
200 m × 200 m square area). The adaptation algorithms
are illustrated for a network of 30 transmitting radios,
sharing K = 4 available channels. A random channel
assignment is selected as the initial assignment and for a
fair comparison, all the simulations start from the same
initial channel allocation.

We first illustrate the convergence properties of the
proposed spectrum sharing algorithms. We can see that
for cooperative games, both the potential game formu-
lation, as well as the learning solution converge to a
pure strategy Nash equilibrium (Figs. 2, 4, 10 and 11).

Figure 2 Potential game:
convergence of users’
strategies
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Figure 3 Evolution of
potential function
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Figure 4 Potential game:
strategy evolution for
selected arbitrary users
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In Fig. 3, we illustrate the changes in the potential func-
tion as the potential game evolves, and it can be seen
that indeed by distributively improving their utility, the
users positively affect the overall utility of the network,
which is approximated by the potential function.

By contrast, the selfish users’ learning strategy con-
verges to a mixed strategy equilibrium, as it can be seen
in Figs. 13 and 14.

As performance measures for the proposed algo-
rithms we consider the achieved SIRs and throughputs
(adaptive coding is used to ensure a certain BER target,
as previously explained in Section 2). We consider the
average performance per user as well as the variability
in the achieved performance (fairness), measured in
terms of variance and CDF.

We first give results for the potential game based
algorithm.

The choice of the utility function for this game en-
forces a certain degree of fairness in distributing the
network resources, as it can be seen in Figs. 5, 6, 7, and
8. Figures 5 and 6 illustrate the SIR achieved by the
users on each of the four different channels for initial
and final assignments, respectively. An SIR improve-
ment for the users that initially had a low performance
can be noticed, at the expense of a slight penalty in

performance for users with initially high SIR. It can be
seen in Fig. 7 that at the Nash equilibrium point, the
number of users having an SIR below 0 dB has been
reduced. Furthermore, Fig. 8 shows that the percentage
of the users who have an SIR below 5 dB decreases
from 60% to about 24%, at the expense of a slight SIR
decrease for users with an SIR greater than 12.5 dB.

The advantage of the potential game is illustrated in
Fig. 9, in terms of the normalized achievable through-
put at each receiver. For the initial channel assignment,
62% of the users have a throughput less than 0.75. At
the equilibrium, this fraction is reduced to 38%. Ag-
gregate normalized throughput improvements for the
potential game forzmulation are illustrated in Table 2.

Our simulation results show very similar perfor-
mance for the learning algorithm in cooperative sce-
narios, with the potential game formulation. Figures 7
and 12, show the initial and final assignment for this
algorithm, as well as the achieved SIRs after conver-
gence for all users in the network. In terms of fairness,
the learning algorithm performs slighly worse than the
potential game formulation (Fig. 9). However, even
though the equilibrium point for learning is different
than that of the potential game, the two algorithms
achieve very close throughput performance (Table 2).

Figure 5 SIRs for initial
channel assignment channels
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Figure 6 Potential game:
SIRs at final channel
assignment
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Figure 7 SIRs histogram.
Initial channel assignment vs.
final channel assignment
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Figure 8 CDF for the
achieved SIRs. Initial channel
assignment vs. final channel
assignment
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As we previously mentioned, the learning algorithm
for selfish users does not lead to a pure strategy Nash
equilibrium channel allocation. In Fig. 13 we illustrate
the convergence properties for an arbitrarily chosen
user, which converges to a mixed strategy allocation:
selects channel 1 with probability 0.575 or channel 3
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Figure 9 CDF for the achieved throughputs. Initial channel as-
signment vs. final channel assignment

with probability 0.425. The evolutions of the weights for
all the users in the network are shown in Fig. 14.

We compare the performance of the proposed algo-
rithms for both cooperative and non-cooperative sce-
narios. The performance measures considered are the
average SIR, average throughput per user, and total
average throughput for the network. At the beginning
of each time slot, every user will either choose the same
equilibrium channel for transmission (in cooperative
games with pure strategy Nash equilibrium solutions),
or will choose a channel to transmit with some prob-
ability given by the mixed strategy equilibrium (i.e.,
learning using U1). In the random channel allocation
scheme, every user chooses a channel with equal prob-
ability from a pool of four channels.

Figure 15 shows the CDF of Time Average SIR in
different games. All learning games and the poten-
tial game outperform the random channel allocation

Table 2 SIR and normalized throughput of all users at initial and
final channel assignment

Total normalized throughput

Initial 9.4
Final (Potential Game) 16.5
Final (Learning U2) 15.3
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Figure 10 No-regret learning
for cooperative users: weights
distribution evolution for an
arbitrary user
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Figure 11 No-regret learning
for cooperative users: weights
distribution evolution for all
users
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Figure 12 No-regret learning
for cooperative users: SIR of
users in different channels at
Nash equilibrium
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Figure 13 No-regret learning
for selfish users: weights
evolution for an arbitrary
user
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Figure 14 No-regret learning
for selfish users: evolution of
weights for all users
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Figure 15 The CDF of time
average SIRs
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Figure 16 The CDF of
average throughput

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of Average Throughput

F
(x

)

The CDF of Average Throuhgput in different game

learning with U1
learning with U2
 
Potential Game
Randomly Allocation

Figure 17 Total average-
throughput, the mean and the
variance of the throughput
per user
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scheme. The potential game has the best throughput
performance, followed closely by the cooperative learn-
ing scheme. It can be seen in Fig. 16 that half of the
users have an average throughput below 0.3 in the ran-
dom allocation scheme. The percentage of users whose
average throughput is below 0.3 is 23% in potential
game, 27% for learning using U2 and 34% for learning
using U1, while the fraction is 51% for the random
selection.

In Fig. 17 we summarize the performance com-
parisons among the proposed schemes: total average
throughput, average throughput per user, and variance
of the throughput per user. The variance performance
measure quantifies the fairness, with the fairest scheme
achieving the lowest variance. Among all the proposed
schemes, potential channel allocation game has the best
performance. It is interesting to note that in terms
of average obtained throughput per user, the three
schemes perform very similar, but differ in the per-
formance variability across users. It seems that even
when cooperation is enforced by appropriately defining
the utility, the potential game formulation provides a
fairness advantage over the no-regret learning scheme.

5 Conclusion

In this work, we have investigated the design of chan-
nel sharing etiquette for cognitive radio networks for
both cooperative and non-cooperative scenarios. Two
different formulations for the channel allocation game
were proposed: potential game formulation, and no-
regret learning. We showed that all the proposed spec-
trum sharing policies converge to a channel allocation
equilibrium, although a pure strategy allocation can
be achieved only for cooperative scenarios. Our sim-
ulation results have showed that the average perfor-
mance in terms of SIR or achievable throughput is
very similar for both learning and potential game for-
mulation, even for the case of selfish users. However,
in terms of fairness, we showed that both cooperation
and allocation strategy play an important role. While
the proposed potential game formulation yields the
best performance, its applicability is limited to coop-
erative environments and significant knowledge about
neighboring users is required for the implementation.
By contrast, the proposed no-regret learning algorithm
is suitable for non-cooperative scenarios and requires
only a minimal amount of information exchange.

In this work, our focus was on implementing dynamic
frequency channel allocation in a distributed fashion,
by considering frequency reuse strategies based on SIR
measurements. The channel allocation is implemented

at a call level time scale, and cannot respond to lower
time scale variations, for example caused by traffic
burstiness. While in this work we have considered a
worst case scenario for which all users continuosly
transmit packets, a more realistic traffic model may
prompt to further spectral efficiency gains for the chan-
nel allocation if properly combined with an efficient
MAC scheme. This is subject of future work.

Appendix

Proof Suppose there is a potential function of
game � :

Pot′(S) =
N∑

i=1

⎛

⎝−a
N∑

j�=i, j=1

pjGij f (s j, si) − (1 − a)

N∑

j�=i, j=1

piG ji f (si, s j)

⎞

⎠ (9)

where 0 < a < 1. Then for all i ∈ {1, 2, ..., N},

Pot′(si, s−i) =
N∑

i=1

⎛

⎝−a
N∑

j�=i, j=1

pjGij f (s j, si)

−(1 − a)

N∑

j�=i, j=1

piG ji f (si, s j)

⎞

⎠

= −a
N∑

j�=i, j=1

pjGij f (s j, si)

−(1 − a)

N∑

j�=i, j=1

piG ji f (si, s j)

+
N∑

k�=i,k=1

⎡

⎣−a
N∑

j�=k, j=1

pjGkj f (s j, sk)

−(1 − a)

N∑

j�=k, j=1

pkG jk f (sk, s j)

⎤

⎦

= −a
N∑

j�=ij=1

pjGij f (s j, si)
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−(1 − a)

N∑

j�=ij=1

piG ji f (si, s j)

+
N∑

k�=i,k=1

[

− apiGki f (si, sk)

−a
N∑

j�=k, j�=ij=1

pjGkj f (s j, sk)

−(1 − a)pkGik f (sk, si)

−(1 − a)

N∑

j�=k, j�=i, j=1

pkG jk f (sk, s j)

]

= −a
N∑

j�=i, j=1

pjGij f (s j, si)

−(1 − a)

N∑

j�=i, j=1

piG ji f (si, s j)

+
N∑

k�=i,k=1

(−apiGki f (si, sk))

+
N∑

k�=i,k=1

(−(1 − a)pkGik f (sk, si))

+
N∑

k�=i,k=1

⎛

⎝−a
N∑

j�=k, j�=i, j=1

pjGkj f (s j, sk)

−(1 − a)

N∑

j�=k, j�=i, j=1

pkG jk f (sk, s j)

⎞

⎠

= −a
N∑

j�=i, j=1

pjGij f (s j, si)

−(1 − a)

N∑

j�=i, j=1

piG ji f (si, s j)

−a
N∑

k�=i,k=1

piGki f (si, sk)

−(1 − a)

N∑

k�=i,k=1

pkGik f (sk, si)

+
N∑

k�=i,k=1

⎛

⎝−a
N∑

j�=k, j�=ij=1

pjGkj f (s j, sk)

−(1 − a)

N∑

j�=k, j�=ij=1

pkG jk f (sk, s j)

⎞

⎠

Let

Q(s−i) =
N∑

k�=i, k=1

⎛

⎝−a
N∑

j�=k j�=i j=1

pjGkj f (s j, sk)

−(1 − a)

N∑

j�=k j�=i j=1

pkG jk f (sk, s j)

⎞

⎠ ,

Then,

Pot′(si, s−i) = −a
N∑

j�=i, j=1

pjGij f (s j, si)

−(1 − a)

N∑

j�=i, j=1

piG ji f (si, s j)

−a
N∑

k�=i,k=1

piGki f (si, sk)

−(1 − a)

N∑

k�=i,k=1

pkGik f (sk, si) + Q(s−i)

= −(a + (1 − a))

N∑

j�=i, j=1

pjGij f (s j, si)

−(a + (1 − a))

N∑

j�=i, j=1

piG ji f (si, s j)

+Q(s−i)

If user i changes its strategy from si to s′
i, we can get:

Pot′(s′
i, s−i) = −a

N∑

j�=i, j=1

pjGij f (s j, s′
i)

−(1 − a)

N∑

j�=i, j=1

piG ji f (s′
i, s j)

−a
N∑

k�=i,k=1

piGki f (s′
i, sk)

−(1 − a)

N∑

k�=i,k=1

pkGik f (sk, s′
i) + Q(s−i)

= −(a + (1 − a))

N∑

j�=i, j=1

pjGij f (s j, s′
i)

−(a + (1 − a))

N∑

j�=i, j=1

piG ji f (s′
i, s j)

+Q(s−i)
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Here Q(s−i) is not affected by the strategy changing of
user i. Hence,

Pot′(s′
i, s−i) − Pot′(si, s−i) = −(a + (1 − a))

N∑

j�=i, j=1

pjGij f (s j, s′
i) − (a + (1 − a))

N∑

j�=i, j=1

piG ji f (s′
i, s j)

−
⎛

⎝−(a + (1 − a))

N∑

j�=i, j=1

pjGij f (s j, si) − (a + (1 − a))

N∑

j�=i, j=1

piG ji f (si, s j)

⎞

⎠

= −
N∑

j�=i, j=1

pjGij f (s j, s′
i)−

N∑

j�=ij=1

piG ji f (s′
i, s j) −

⎛

⎝−
N∑

j�=ij=1

pjGij f (s j, si)−
N∑

j�=i, j=1

piG ji f (si, s j)

⎞

⎠

From Eq. 5,

Ui(s′
i, s−i) − Ui(si, s−i) = −

N∑

j�=ij=1

pjGij f (s j, s′
i) −

N∑

j�=ij=1

piG ji f (s′
i, s j)

−
⎛

⎝−
N∑

j�=ij=1

pjGij f (s j, si) −
N∑

j�=ij=1

piG ji f (si, s j)

⎞

⎠ ∀i = 1, 2, ..., N,

Ui(s′
i, s−i) − Ui(si, s−i) = Pot′(s′

i, s−i) − Pot′(si, s−i)∀i = 1, 2, ..., N,

So, Pot′(S) in Eq. 9 is an exact potential function of
game �. If we set a to 1

2 in Eq. 9, Pot′(S) is the same as
Pot(S) defined in Eq. 7, and we prove that Eq. 7 is an
exact potential function of game �.
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