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Adaptive chaotic particle swarm algorithm for isogeometric
multi-objective size optimization of FG plates

Chao Wang1,2 
& Tiantang Yu1 

& Jose L. Curiel-Sosa3 
& Nenggang Xie2 

& Tinh Quoc Bui4,5

Abstract

An effective multi-objective optimization methodology that combines the isogeometric analysis (IGA) and adaptive 

chaotic particle swarm algorithm is presented for optimizing ceramic volume fraction (CVF) distribution of functionally 

graded plates (FGPs) under eigenfrequencies. The CVF distribution is represented by the B-spline basis function. 

Mechanical behaviors of FGPs are obtained with NURBS-based IGA and the recently developed simple first-order shear 

theory. The design variables are the CVFs at control points in the thickness direction, and the optimization objective is to 

minimize the mass of structure and maximize the first natural frequency. A recently developed multi-objective adaptive 

chaotic particle swarm algorithm with high efficiency is employed as an optimizer. All desirable features of the developed 

approach will be illustrated through four numerical examples, confirming its effectiveness and reliability.

Keywords Functionally graded plates . Material distribution . Multi-objective optimization . IGA . Free vibration . Adaptive
chaos particle swarm algorithm

1 Introduction

Material properties of functionally graded plates (FGPs) vary 

continuously and smoothly through the plate thickness; thus, 

the delamination problems which often exist in the conven-

tional layered composites could be eliminated. Owing to the 

outstanding mechanical features, FGPs have been extensively

used in many engineering fields including civil, mechanical,

aeronautical, and marine. The ceramic-metal FGP is one typ-

ical FGP, and its volume fraction distribution is often de-

scribed with a mathematical function with gradient factors

such as the power function (Moita et al. 2018), exponential

function (Woodward and Kashtalyan 2011), trigonometric

function (Magnucka-Blandzi 2011), and polynomial function

(Nair et al. 2006). The desired material properties can be

achieved by changing the gradient factors. In order to consider

individual properties of practical problems and meet the de-

sired implementation, it is necessary to determine the optimal

volume fraction distribution in a FGP under certain con-

straints. In the foregoing work of optimizing the volume frac-

tion distribution, which is also known as size optimization, the

parameters of the distribution function are often taken as var-

iables, and the objective function is defined according to the

working conditions; the optimal volume fraction distribution

can be obtained using an optimization method (Na and Kim

2009; Roque et al. 2016; Daynes et al. 2017; Shi and Shimoda

2015; Kou et al. 2012). The optimization result depends on the

selected distribution function; thus, this approach limits the

material variability (Lieu and Lee 2017; Lieu et al. 2018).

Hence, it is necessary to develop a new means which can

create complex and smooth material profiles with least possi-

ble numbers of design variables (Taheri and Hassani 2014).
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Isogeometric analysis (IGA) (Hughes et al. 2005) takes

CAD spline functions (e.g., NURBS) as the shape functions

of finite element analysis; it thus shows many good properties

such as the exact computational geometry, simple mesh re-

finement, higher-order continuity, and without the aid of con-

ventional mesh generators. The IGA has been used to solve a

large number of engineering problems (see, e.g., (Fantuzzi and

Tornabene 2016; Lezgy-Nazargah et al. 2015; Klinkel et al.

2015; Farzam-Rad et al. 2017; Yu et al. 2015, 2016a, b, 2017;

Liu et al. 2017a, b; Lai et al. 2017; Sun et al. 2018) and

references therein). Recently, several researchers studied the

volume fraction distribution of FG structures using IGA.

Optimizing eigenfrequencies of FG structures using a full

IGA for the simultaneous material composition and shape

design was analyzed by Taheri and Hassani (Taheri and

Hassani 2014). The graded material distributions are captured

using the parameterization based on the NURBS functions.

The in-plane coordinates of control points which define the

design boundary surfaces and the vertical coordinates of all

control points which describe the variations of material prop-

erties are considered as design variables. The obtained results

are much better dynamic performance compared with the op-

timal results of the simple shape or material composition de-

sign. Taheri et al. (Taheri et al. 2014) used B-spline basis

functions to construct volume fraction distribution of FG

structures for thermo-mechanical optimization under the

framework of IGA. An effective numerical optimization

method for ceramic volume fraction (CVF) distribution of

FGPs in the thermo-mechanical environment was proposed

by Lieu and Lee (Lieu and Lee 2017). The material distribu-

tion is described with control points along the plate thickness

using the B-spline basis functions. An IGA model based on

NURBS and the third-order shear deformation plate theory

was developed for calculating static response of the FGPs,

and an adaptive hybrid evolutionary firefly algorithm was

employed to solve compliance minimization problems with

volume constraints. Later, Lieu et al. (Lieu et al. 2018) used

the same method to optimize the CVF distribution and layer

thicknesses of the functional sandwich plates under

eigenfrequencies. The single objective is often used in the

above optimization. The optimization objective may be the

stress minimization (Taheri et al. 2014), the mass minimiza-

tion (Taheri and Hassani 2014), or the first natural frequency

minimization (Lieu and Lee 2017; Lieu et al. 2018). In engi-

neering applications, the multi-objective optimization howev-

er is often required; for example, we need to minimize the

stress and the mass for the FGPs used in the aeronautical

structure.

In this study, the multi-objective size optimization of FGPs

is performed based on the IGA. The CVFs at control points

along the thickness of plates are utilized to represent material

distribution via the B-spline functions. Owing to the high-

order continuity of B-spline functions, the material properties

along the thickness direction vary continuously and smoothly.

The B-spline functions are always positive, so the interpolated

volume fraction at one point always strictly satisfies the con-

straint between 0 and 1 without any additional conditions.

Kirchhoff theory and first-order shear deformation theory

(FSDT) are two widely accepted plate theories. While the

Kirchhoff theory (Liew et al. 2011) is suitable for thin plates

only, the FSDT (Reissner 1976), on the contrary, captures well

the shear deformation effects for thick plates. One downside

of the conventional FSDT is the shear-locking issue once

dealing with thin plates. Recently, a simple first-order shear

theory (S-FSDT) (see, e.g., (Yu et al. 2015, 2016b; Vu et al.

2017) and references therein) was developed, with its key idea

is to decompose the transverse displacement into bending part

and shear part, and express the rotations with the partial de-

rivatives of the transverse bending displacement. Compared

with the conventional FSDT, the S-FSDT inherently owns

some superior features: (1) free from shear locking, (2) cap-

turing the shear deformation effect, and (3) less one unknown.

Although the C1-continuity is required in the S-FSDT, it is

automatically satisfied thanks to the higher-order continuity

feature of the IGA. This issue was already addressed in (Yu

et al. 2015; Liu et al. 2017a; Yin et al. 2014), where the IGA

associated with the S-FSDTwas used to study the mechanical

behaviors of FGPs.

Multi-objective evolutionary algorithms (Schaffer 1985)

can provide multiple optimal solution sets; thus, decision-

makers can select the final scheme according to their own

needs. At present, multi-objective evolutionary algorithms

have become a major means to solve the multi-objective op-

timization problem. The multi-objective evolutionary algo-

rithms are generally developed based on the swarm intelli-

gence algorithm. Compared with the traditional method of

moving asymptote (MMA) (Svanberg 1987), although evolu-

tionary algorithms will spend more computation time, the

evolutionary algorithm has two key advantages: (1) it does

not need the derivation of complex partial derivatives and

(2) the optimization process can be closed-loop adjusted by

the objective value in each iteration. In this way, the optimal

results are less affected by initial values. There are many

multi-objective evolutionary algorithms so far, such as the

non-dominated sorting genetic algorithm (NSGA) (Deb et al.

2002; Srinivas and Deb 1994), the multi-objective particle

swarm optimization algorithm (MOPSO) (Coello and

Lechuga 2002), the multi-objective artificial bee colony algo-

rithm (MOABC) (Akbari et al. 2012), the multi-objective dif-

ferential evolution (MODE) (Zakaria et al. 2014), the multi-

objective immune system algorithm (MOIS) (Coello and

Cortes 2002), the multi-objective group search optimizer

(MOGSO) (Wang et al. 2012), and the multi-objective game

theory (MOGT) (Wang et al. 2010; Xie et al. 2013). The

MOPSO algorithm is one of the most effective multi-

objective evolutionary algorithms and it has been applied to
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a wide range of fields (Qasem and Shamsuddin 2011; Briza

and Naval 2010; Kulkarni et al. 2015). The MOPSO algo-

rithm is thus adopted for the analysis in this study. Alatas

and Akin (2009) developed a multi-objective chaotic particle

swarm optimization (MOCPSO) algorithm as a search strate-

gy to mine classification rules within datasets, and chaotic

sequence was introduced to obtain particle diversity. In order

to further improve the efficiency of optimization, we develop

the MOCPSO algorithm in the sense that takes into account

the following issues: (1) the adaptive strategy is proposed for

fitness selection to take account of the optimization process of

the algorithm and (2) some directional perturbation mecha-

nisms of elite solutions are added to expand the coverage of

the Pareto frontier. We name this revised method as multi-

objective adaptive chaotic particle swarm optimization algo-

rithm (MOACPSO).

In engineering application, it is an urgent problem to

find a reasonable material distribution for any shape of

functionally graded plates, considering different working

conditions and requirements. This paper aims to address

the scientific question and the specific measures. Firstly,

the IGA in association with S-FSDT, which serves as a

high-precision numerical algorithm, is employed to ana-

lyze the mechanical problems of functionally graded

plates. Secondly, the multi-objective evolutionary algo-

rithm is used in the effective optimization technique, so

that the decision-maker can select the final optimization

scheme of functional gradient board according to his own

needs. The major motivation of the present paper is to

develop the size optimization of arbitrary shape FGPs by

using IGA in combination with multi-objective evolution-

ary algorithm which is rather rare in the literature. In

addition, B-spline basic function is used to replace the

traditional function to describe material distribution, un-

der which the corresponding control points are taken as

design variables. This method further enhances the design

space of materials and is more conducive to optimization.

The main objective of this paper is to develop a com-

putational framework that combines the MOACPSO algo-

rithm and IGA for the size optimization of FGPs. The

major characteristics of the present approach are summa-

rized as follows: (a) any CVF distribution can be obtain-

ed, and it is not limited to a predefined function; (b) the

sensitivity analysis is avoided compared with the conven-

tional gradient methods, but it consumes more computa-

tion time; (c) the approach rapidly extends the coverage of

the Pareto frontier; and (d) a series of optimal solutions

are obtained, and the designer can select one optimal so-

lution to meet the desired implementation. This combined

method is presented here for the first time that is used to

optimize the material distribution of FGPs. The MOCPSO

has been improved and that forms a novel method, i.e.,

MOACPSO. In this study, we mainly focus our attention

on the multi-objective size optimization of FGPs using the

optimization algorithm, and evaluating the MOACPSO in

an all-round way according to some classical mathemati-

cal test functions and algorithm indexes is left for our

further development.

The paper is organized as follows. Section 2 describes

basic equations of free vibration for FGPs. The IGA mod-

el of natural frequency analysis of FGPs is presented in

Section 3. Optimization problem is described in Section 4.

Section 5 presents multi-objective adaptive chaotic parti-

cle swarm algorithm. Section 6 verifies the accuracy of B-

spline functions for representing material distribution. In

Section 7, the accuracy and performance of the proposed

approach are demonstrated through four numerical exam-

ples. Finally, Section 8 describes some major conclusions

arisen from the study.

2 Fundamental formulations

2.1 The FGPs

A ceramic-metal FGP with thickness h as schematically

shown in Fig. 1 is considered. Material properties of FGP vary

in the volume fractions through the plate thickness. We as-

sume the bottom and top faces of plates to be fully metallic

and ceramic, respectively.

In this study, Young’s modulus E and the density ρ vary

through the plate thickness. According to the simple rule of

mixture (Vel and Batra 2002), Young’s modulus and the den-

sity are given as

E zð Þ ¼ EcVc zð Þ þ Em 1−Vc zð Þð Þ ð1Þ

ρ zð Þ ¼ ρcV c zð Þ þ ρm 1−Vc zð Þð Þ ð2Þ

where Vc(z) represents the CVF, and subscripts c andm denote

the ceramic and metal constituents, respectively.

There are some available models to descript the variation of

the CVF, such as power function, exponential function, and

three-parameter function.

(1) Power function (Moita et al. 2018)

V1
c ¼

1

2
þ z

h

� �n

ð3Þ

where n is the material gradient index.

(2) Exponential function (Woodward and Kashtalyan 2011)

V2
c ¼

ϑme
1
h
ln ϑc

ϑm
ð Þ zþh=2ð Þð Þ−ϑm

ϑc−ϑm

ð4Þ
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where ϑc and ϑm represent the properties of ceramic and metal

materials, respectively. The material properties of each of the

constituents consist of Young’s modulus, Poisson’s ratio, or

density (Lieu et al. 2018).

(3) Three-parameter function (Zhu and Sankar 2007)

V3
c ¼

1

2
þ z

h
þ b

1

2
−
z

h

� �n� �γ

ð5Þ

where n, b, and γ are the material gradient indexes.

The variation of the CVF can greatly alter the material

properties, so the optimization of the CVF distribution of

FGPs is investigated in this study.

2.2 The theory of S-FSDT

According to the S-FSDT (Yu et al. 2015; Liu et al. 2017a; Vu

et al. 2017; Yin et al. 2014), the displacement fields can be

expressed as

u x; y; zð Þ ¼ u0 x; yð Þ−zwb;x ð6aÞ

v x; y; zð Þ ¼ v0 x; yð Þ−zwb;y ð6bÞ

w x; y; zð Þ ¼ wb x; yð Þ þ ws x; yð Þ ð6cÞ

where u0 and v0 respectively represent the displacements at the

mid-plane of the plate in the x and y directions; wb and ws

respectively represent the bending component and the shear

component of the transverse displacement at the mid-plane of

the plate.

The expression of the strain-displacement relation is

ε ¼ ε0

0

� �

þ −zκ
γ

� �

ð7Þ

with

ε ¼ εx εx γxy γxz γyz

h iT

ð8aÞ

ε0 ¼ u0;x v0;y u0;y þ v0;x½ �T ð8bÞ

κ ¼ wb;xx wb;yy 2wb;xy½ �T ð8cÞ

γ ¼ ws;x ws;y½ �T ð8dÞ

According to Hooke’s law, the stress can be expressed as

σ ¼ Dε; τ ¼ Gγ ð9Þ

with

σ ¼ σx σy τ xy½ �T ð10aÞ

D ¼ E zð Þ
1þ υ

1

1−υ
υ

1−υ
0

υ

1−υ
1

1−υ
0

0 0
1

2

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð10bÞ

τ ¼ τ xz τyz½ �T ð10cÞ

G ¼ kE zð Þ
2 1þ υð Þ

1 0

0 1

� �

ð10dÞ

where υ is the Poisson’s ratio and the shear correction factor,

k = 5/6, is taken for the analysis. It is well reported in the

literature that (also see the previous studies, see refs. (Yu

et al. 2015; Liu et al. 2017a; Vu et al. 2017; Yin et al. 2014))

the shear correction factor, k = 5/6, is reasonable for the anal-

ysis of FGM (functionally graded material) plates. However,

this shear correction factor is no longer required when the

high-order shear deformation theories are used.

2.3 Weak form of free vibration

The weak-form for natural frequency analysis of plate is de-

rived using Hamilton’s principle (Reddy 2004).

∫
T

0 δU−δKð Þdt ¼ 0 ð11Þ

where δU and δK are the variation of strain energy and kinetic

energy, respectively.

δU ¼ ∫Ω δε0 δκf g D
m

B
m

B
m

D
b

� �

ε0

κ

� �

þ δγT
Dsγ

� �

dΩ

ð12Þ

whereDm ¼ ∫
h=2

−h=2Ddz,B
m ¼ ∫

h=2

−h=2zDdz,D
b ¼ ∫

h=2

−h=2z
2
Ddz and

Ds ¼ ∫
h=2

−h=2Gdz.

δK ¼ ∫Ωδu
T
m€udΩ ð13Þ

where u ¼ u1 u2f gT , u1 ¼ u0 v0 wb þ wsf gT ,

u2 ¼ wb;x wb;y 0
� 	T

, m ¼ I0 I1
I1 I2

� �

, and the mass in-

ertias are defined as

I0; I1; I2ð Þ ¼ ∫
h=2

−h=2ρ zð Þ 1; z; z2

 �

dz ð14Þ
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3.1 A brief on the NURBS basis functions

For the sake of completeness, the basic knowledge of the

NURBS basis functions is presented here. In the parametric

space ξ ∈ [0, 1], a knot vector is defined as a set of non-

decreasing numbers, i.e., k(ξ) = {ξ1 = 0, ..., ξi, ..., ξn + p + 1 =

1}T, where i is the knot index and ξi is the ith knot, and

ξi ≤ ξi + 1; n is the number of basis functions. For the two-

dimensional problem, the NURBS basis function is made up

of a tensor product of one dimension B-spline basis function

in two directions:

R
p;q
i; j ξ; ηð Þ ¼ N i;p ξð ÞN j;q ηð Þwi; j

∑
n

i¼1

∑
m

j¼1

N i;p ξð ÞN j;q ηð Þwi; j

ð15Þ

where wi, j is the weight,Ni, p(ξ) is the B-spline basis functions

of order p in the ξ direction, and Nj, q(η) is the B-spline basis

functions of order q in the η direction.

According to refs. (Hughes et al. 2005; Tornabene et al.

2016), the B-spline basis functionNi, p(ξ) is defined recursive-

ly for a given knot vector k(ξ):

N i;0 ξð Þ ¼ 1 ξi≤ξ < ξiþ1

0 ξ≥ξiþ1 or ξ < ξi
forp ¼ 0

�

ð16aÞ

and

N i;p ξð Þ ¼ ξ−ξi
ξiþp−ξi

N i;p−1 ξð Þ þ
ξiþpþ1−ξ

ξiþpþ1−ξiþ1

N iþ1;p−1 ξð Þ for p≥1

ð16bÞ

Nj, q(η) follows the same recursive formula in (16) with the

knot vector k(η), and the definition of k(η) is the same as that

of k(ξ).

3.2 Finite element model based on NURBS basis
functions

Based on refs. (Yu et al. 2015; Liu et al. 2017a; Yin et al.

2014), the approximation of the generalized displacements

in the mid-plane is expressed as

u
h ¼ ∑

NC

I¼1

RIuI ð17Þ

with

uI ¼ u0 v0 wb ws½ �T ð18Þ

where NC = (p + 1)(q + 1) is the number of control points per

element, RI is the shape functions, and uI is the unknown

displacement vector at control point I.

Substituting (17) into (8b)–(8d) yields

ε0 κ γf gT ¼ ∑
NC

I¼1
Βm
I Βb

I Βs
I

� 	T
uI ð19Þ

with

Β
m
I ¼

RI ;x 0 0 0

0 RI ;y 0 0

RI ;y RI ;x 0 0

2

4

3

5 ð20aÞ

Βb
I ¼

0 0 RI ;xx 0

0 0 RI ;yy 0

0 0 2RI ;xy 0

2

4

3

5 ð20bÞ

Βs
I ¼

0 0 0 RI ;x

0 0 0 RI ;y

� �

ð20cÞ

Table 1 The values of parameters

Function type Color Number of control points

Blue Red Black

V1
c n = 0.5 n = 2 n = 4 8

V2
c ϑm = 7, ϑc = 38 ϑm = 3, ϑc = 51 ϑm = 1.44, ϑc = 14.4 8

V3
c b = 1, n = 1.1,γ = 1.7 b = 1, n = 2,γ = 1.7 b = 1, n = 2, γ = 0.9 13

z
y

x

FGM

h

Ceramic surface

Metal surface

Fig. 1 Schematic of a classical ceramic-metal FGP
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Substituting (17) and (19) into (11), the discrete equation

for free vibration problem holds

K−ω2
M


 �

u ¼ 0 ð21Þ

where K and M are the global stiffness matrix and the mass

matrix, respectively.

The element contributions to K and M are:

k
e ¼ ∫Ωe

∑
NC

I¼1

B
m
I

B
b
I

� �T
D

m Bm

B
m

D
b

� �

B
m
I

B
b
I

� �

þ B
s
I


 �T
DsB

s
I

" #

dΩ

ð22aÞ

m
e ¼ ∫Ωe

∑
NC

I¼1

N
T
mNdxdy ð22bÞ

with

N ¼ N1 N2½ �T ð23aÞ

Ν1 ¼
RI 0 0 0

0 RI 0 0

0 0 RI RI

2

4

3

5 ð23bÞ

Table 2 Parameter settings in optimization algorithms

Parameter

setting

Optimization algorithm

NSGA-II MOPSO MOACPSO

Common

parameters

N=100, Tmax = 300, npf =500, c1 = c2 = 1.4955.

Personality

parameters

Other parameters are referred by

ref. (Deb et al. 2002)

Other parameters are referred by ref.

(Bosman and Thierens 2003)

ws = 0.9, wf = 0.4, αs = 0.1, σs = 0.3, u0 = 0.5,

y0 = 0.5, Tc = 200, ϑ = 0.1, γs = 3, Ns = 20.

(a) Power function distribution (b) Exponential function distribution

(c)Three-parameter function distribution

Fig. 2 Comparison of the CVF

distribution between the general

function description and the B-

spline function description. a

Power function distribution. b

Exponential function distribution.

c Three-parameter function

distribution
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Ν2 ¼
0 0 RI ;x 0

0 0 RI ;y 0

0 0 0 0

2

4

3

5 ð23cÞ

4 Optimization problem

According to ref. (Miettinem 1999), the general mathematical

formulation of a multi-objective optimization problem is de-

scribed as

min
xk

F xð Þ ¼ f 1 xð Þ; f 2 xð Þ;⋯; f n xð Þð ÞT ð24Þ

subject to

hi xð Þ ¼ 0 i ¼ 1; 2; :::; nh ð25aÞ

g j xð Þ≤0 j ¼ 1; 2; :::; ng ð25bÞ

xk;min≤xk ≤xk;max k ¼ 1; 2; :::; nx ð25cÞ

where fi is the ith objective, which depends on the design

variables x; the functions hi and gj represent the equality con-

straints and inequality constraints, respectively; nh, ng, and nx
are the number of equality constraints, inequality constraints,

and design variables, respectively. In (25c), xk, max and xk, min

are the upper and lower bounds of the design variable xk,

respectively.

In a multi-objective optimization problem, conflicts often

occur among the objective functions; this means that there is

no optimal solution for multi-objective optimization problem.

In general, we only can obtain a non-inferior optimal solution

of the multi-objective optimization model, which is called

Pareto optimal solution. According to ref. (Bosman and

Thierens 2003), the Pareto optimal solution is defined by:

(1) xv and xu are two feasible solutions, and they meet the

relationships as follows:

∀i ¼ 1; 2;⋯; n : f i xvð Þ≤ f j xuð Þ
� 


∧ ∃ j ¼ 1; 2;⋯; nð
: f j xvð Þ≤ f i xuð ÞÞ, then xv is called to dominate xu(-

denoted x
v
< xu);

(2) xv is called a Pareto optimal solution if :∃xu : xu > xv.

In order to represent the CVF distribution, the CVFs

at control points along the plate thickness are interpo-

lated with the B-spline basis functions. The B-spline

basis functions possess the feature of high-order conti-

nuity, so the material properties in the thickness direc-

tion can alter continuously and smoothly. In this study,

the CVF distribution can be expressed as

V c ξð Þ ¼ ∑np
i¼1N i;p ξð ÞV i

c zð Þ ð26Þ

where np is the number of control points and V i
c zð Þ is

the CVF at the ith control point. According to the prop-

erties of B-spline basis function, it is obvious that the

volume fraction interpolated with (26) always strictly

satisfies the constraint 0 ≤ Vc ≤ 1 without any additional

conditions.

In this analysis, two objectives are considered, i.e., mini-

mize the mass of the FGP and maximize the first natural fre-

quency. The optimization problem can be mathematically

expressed as follows

Table 4 First normalized natural

frequency of Al/Al2O3 square

plates

Number of control points a/h = 10 a/h = 4

n = 0.5 n = 1 n = 5 n = 0.5 n = 1 n = 5

6 × 6 4.8982 4.4149 3.7831 26.713 24.102 20.242

8 × 8 4.8960 4.4126 3.7811 26.702 24.092 20.233

10 × 10 4.8957 4.4124 3.7809 26.701 24.091 20.232

12 × 12 4.8957 4.4124 3.7809 26.701 24.091 20.232

z

y

x

L

h
Ceramic surface

Metal surface

Fig. 3 A square FGP model

Table 3 Parameters of material

E (GPa) v ρ (kg/m3)

Metal (Al) 70 0.3 2707

Ceramic (Al2O3) 380 0.3 3800
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Minimize f 1 Vcð Þ ¼ 1

ω1

and f 2 Vcð Þ ¼ ∫Ω∫
h=2

−h=2ρdzdΩ

ð27Þ

subject to

0≤V i
c≤1; i ¼ 1; 2;⋯; np ð28Þ

where Vc ¼ V1
c ;V

2
c ;⋯;Vnp

c

� �

is the optimization variable

vector and np is the number of variables, f1 and f2 are the

corresponding objective functions, and ω1 is the first natural

frequency.

5 Multi-objective adaptive chaotic particle
swarm algorithm

5.1 Particle swarm optimization algorithm

In 1995, Kennedy and Eberhart (1995) designed a new evo-

lutionary optimization algorithm based on the bird predator

behavior, i.e., particle swarm optimization (PSO) algorithm.

The algorithm is simple and easy to implement. Furthermore,

the speed of convergence by PSO is relatively fast, especially

in the early stage of evolution. Compared with genetic algo-

rithm (GA), there is no cross mutation process in the PSO

scheme, but uses the random speed of individuals in space

to change their position. Moreover, the information sharing

mechanism is different among them. The information of GA

is shared in a small scope, and chromosomes do a crossover

operation one-to-one to exchange information. But PSO is

global information sharing since the information sharing

mechanism is a one-to-many relationship. On the one hand,

each particle in PSO adjusts its search direction according to

all previous flight experiences. On the other hand, all particles

move towards the optimal value of the whole population, and

all particles share the search experience of the whole popula-

tion together.

Obviously, the PSO algorithm adjusts its evolutionary

direction according to the optimal solution of the population

history and the optimal solution of each particle itself.

According to ref. (Kennedy and Eberhart 1995), the veloc-

ity and the position of the ith particle in the tth iteration are

updated as

Fig. 5 The Pareto frontier of multi-objective design for the simply supported square FGP

Fig. 4 Control points and physical mesh
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Table 5 The relevant statistical charts corresponding for the first mode shapes of the simply supported square FGP by representative elites

minuend

1 1

2 1

3 3

NO. The first mode shapes Numerical difference NO. of the

4 3

5 1

6 3
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V
tþ1
i ¼ V

t
i þ c1r1 P

t
i;best−X

t
i

� 


þ c2r2 G
t
best−X

t
i


 �

ð29Þ

X
tþ1
i ¼ X

t
i þ V

tþ1
i ð30Þ

where Vt
i and X

t
i are the velocity vector and position of the ith

particle in the tth iteration, respectively; Pt
ibest is the best posi-

tion of the ith particle which is up to the tth iteration; Gt
best is

the best position of the whole particles up to the tth iteration;

c1 and c2 are the learning factors; and r1 and r2 are random

numbers from 0 to 1.

5.2 Multi-objective PSO algorithm

In 2004, Coello et al. (2004) proposed a multi-objective particle

swarm optimization (MOPSO) algorithm by extending PSO to

solve multi-objective optimization problems. The choice of

G
t
best and P

t
ibest is a very important step in the MOPSO algo-

rithm. Comparing the dominating relationship between P
t−1
i;best

and X
t
i, P

t
i;best is updated with the corresponding dominating

solution. If no dominance relation between Pt−1
i;best andX

t
i exists,

one of them is randomly selected as Pt
i;best. In the MOPSO, a

particle is selected asGt
best based on the density information of

particles in the external archive set.

In the MOPSO, the objective space is uniformly divided

into some grids, and the number of particles contained in a

grid is defined as the density information of the particle. The

estimation method of the density information is as follows

(Coello et al. 2004): (1) compute the size of grid Δ f ti with Δ

f ti ¼
max f tið Þ−min f tið Þ

M
for i = 1,2,…,n, where f ti is the ith objec-

tive function in the tth iteration,M is the number of grids, and

n is the number of objective functions; (2) compute the num-

bering of grid containing particle j with

Int
f
j

1
−min f t1ð Þ
Δ f t1

� �

; :::; Int
f
j

i
−min f tið Þ
Δ f ti

� �� �

; and (3) compute the

grid information and the density value of each particle.

5.3 Multi-objective adaptive chaotic PSO algorithm

5.3.1 Chaos strategy updating of velocity

For multiple hump optimization problems, the bionic algo-

rithm (e.g., particle swarm optimization algorithm, genetic

algorithm, ant colony algorithm), which is a large class of

heuristic algorithms, is easy to fall into local optimum

(Alatas et al. 2009). In those algorithms, the quality of initial

population directly determines the quality of optimization re-

sults. AlthoughMOPSO algorithm has done some simple ran-

dom disturbances at velocity updating, the effect of optimiza-

tion is still imperfect. Therefore, it is necessary to design a

strategy to jump out of local solutions.

The chaotic system is a random irregular motion produced

by the non-linear deterministic system. The chaotic sequence

generated by the chaotic function has the characteristics of

uncertainty, unrepeatability, and unpredictability. Therefore,

embedding the chaotic system into the optimization algorithm

can make the candidate solution set more diversified, and thus

avoid the local optimal solution (Alatas et al. 2009). There are

many types of chaotic functions (Singh and Sinha 2010) such

as Hénon map and Ikeda map. In this study, the chaotic se-

quence generated by Zaslavskii map (Zaslavskii 1978) is

z
y

x

R

h
Ceramic surface

Metal surface

Fig. 6 Schematic of a circular FGP model

Table 7 Comparison of the solutions with different algorithms

Method Crowding

variance (CV)

Frontier

spread (FS)

Set coverage (SC)

NSGA-II 0.0043 0.5453 0 / 0

MOPSO 0.0077 0.7254 0.9000 / 0.1106

MOACPSO 0.0040 1.0913 1 / 0.4600

Table 6 The result of representative elites

The

objective

function

No. of representative elite

1 2 3 4 5 6

f1 0.5370 (3.478 × 107) 0.5500 (3.306 × 107) 0.5892 (2.880 × 107) 0.6850 (2.131 × 107) 0.8073 (1.535 × 107) 1.0142 (9.722 × 106)

f2 0.6604 (3.429 × 102) 0.4770 (3.228 × 102) 0.3286 (3.066 × 102) 0.1768 (2.900 × 102) 0.0879 (2.803 × 102) 0.0132 (2.721 × 102)

*The value in the bracket is the corresponding actual frequency (unit: Hz) or weight (unit: kg)
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defined as follows:

ykþ1 ¼ cos 2πukð Þ þ yke
−3 ð31Þ

ukþ1 ¼ uk þ 400þ 12ykþ1


 �

mod 1ð Þ ð32Þ

where k is chaotic index and u0 and y0 are randomly generated

from (0, 1).

In this study, chaos randomization is applied to update can-

didate velocity, and (29) is rewritten as

V
tþ1
i ¼ wVt

i þ c1S
t
1 P

t
i;best−X

t
i

� 


þ c2S
t
2 G

t
best−X

t
i


 �

ð33Þ

where St1 and St2 are randomly selected from the sequence

{uk}, the size of {uk} is two times of the maximum iteration

number Tmax, and w is the inertia weight, which is defined as

(Eberhart and Shi 2002):

w ¼ ws−
ws−w f


 �

t

Tmax

ð34Þ

where ws and wf are the inertial weights of the first and the last

times, respectively; t is the current iteration or generation number.

5.3.2 Adaptive strategy for fitness selection

From the structure of algorithm, the MOPSO algorithm has an

additional construction and maintenance of the external ar-

chive compared with the PSO algorithm, so how to effectively

make use of the limited space of the external archive is one of

the key problems for the MOPSO algorithm. To avoid the

crowding and distortion of the external archive, the sharing

niche technique is used in theMOACPSO algorithm (Srinivas

and Deb 1994), instead of the adaptive grid method in the

MOPSO algorithm. The fitness function is defined as

Fit ið Þ ¼ 1

∑
j¼1

npf

s dis i; jð Þð Þ
ð35Þ

where npf is the size of the current external archive, Xi and Xj

belong to the external archive, and s(dis(i, j)) is the sharing

function between the particles i and the particles j in the ex-

ternal archive, which is defined as

Fig. 8 The Pareto frontier of multi-objective design for the clamped circular FGP

Fig. 7 A circular FGP with 11 × 11 control points and 8 × 8 cubic

elements
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Table 8 The relevant statistical charts corresponding for the first mode shapes of the clamped circular FGP by representative elites

NO. The first mode shapes Numerical difference
NO. of the 

minuend

1 1

2 2

3 1

4 2

5 1

6 2
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s dis i; jð Þð Þ ¼ 1−
dis i; jð Þ

σs

� �αs

dis i; jð Þ < σs

0 dis i; jð Þ≥σs

8

<

:

ð36Þ

where σs is the allowed maximum phenotypic distance be-

tween two particles becoming members of a niche in the ex-

ternal archive, αs is the modified parameter of the sharing

function, dis(i, j) = ‖F(xi) − F(xj)‖, F(Xi), and F(Xj) are the

multi-objective functions of Xi and Xj, respectively, and Xi

and Xj belong to the external archive.

In order to accelerate the optimization process, the adaptive

strategy for fitness selection is introduced, and the adaptation

of (35) is described as

FitC ið Þ ¼ Fit ið Þ−min Fit jð Þf g
max Fit jð Þf g−min Fit jð Þf g

� �γs

for j ¼ 1; 2;⋯; npf ð37Þ

where γs is the adaptive parameter, which is generally greater

than 0, and the larger the value of γs is, the greater the prob-

ability of the selected particle with maximum fitness is.

5.3.3 Directional perturbation mechanism of elite solutions

In order to expand the coverage of the Pareto frontier, the

directional perturbation mechanism is made to the elite solu-

tions located at both ends of the Pareto frontier. In the external

archive of FGP optimization, the multi-objective functions of

the ith elite solution Xsi ¼ xsi1; xs
i
2;⋯xsid

� 	

are FSi ¼
f si1; f s

i
2

� 	

subjected to f si1≤ f s
iþ1
1 ∧ f si2≥ f s

iþ1
2 , i ≤ npf. The

miniature particles are randomly generated from (Xs1 − ϑ,

Xs
1 + ϑ) and Xs

npf −ϑ;Xsnpf þ ϑð Þ at Ns times, and ϑ is the

perturbation radius whose value is small. Finally, the non-

inferior solutions are selected from those particles and added

to the external archive. Obviously, the directional perturbation

mechanism by MOCAPSO is equivalent to the directional

“mutation,” which is more targeted than the mutation in

MOPSO. That is to say, each particle is mutated and the fitness

is calculated again in MOPSO and number of function evalu-

ations is 2N ⋅ Tmax. But the directional perturbation ofNs times

is carried out in each iteration in MOACPSO, so the number

of function evaluations is N ⋅ Tmax +Ns.

In the MOACPSO algorithm, Gbest is selected from the

external archive by the roulette wheel selection method using

(37), and Pi, best is updated to be the nearest elite solution from

the external archive. Then, the particle position is updated

according to (30) and (33), and non-inferiority solutions from

the population are added to the external archive. If the size of

the external archive exceeds the specified capacity, some elite

solutions with worse fitness are eliminated until the reason-

able capacity of the external archive is obtained.

5.3.4 Numerical implementation

The main solution procedure of the MOACPSO is summa-

rized as follows:

(1) Randomly initialize particle swarm and generate the cha-

otic sequences {uk}.

(2) Loop over the number of iterations.

a. Update the inertia weight value with (34).

b. Loop over the number of particles.

Update the chaotic S1 and S2 value from {uk}.

Update the position of particles with (33) and (30).

y

x

z

xh

Ceramic surface

Metal surface

Fig. 9 A quarter model of a circular FGP

Table 10 Comparison of the solutions with different algorithms

Method Crowding variance

(CV)

Frontier spread

(FS)

Set coverage

(SC)

NSGA-II 0.0033 0.6154 0 / 0

MOPSO 0.0071 0.7757 1 / 0.0127

MOACPSO 0.0041 1.2351 1 / 0.8132

Table 9 The result of representative elites

The

objective

function

No. of representative elite

1 2 3 4 5 6

f1 0.8573 (1.361 × 105) 0.8879 (1.268 × 105) 0.9886 (1.023 × 105) 1.1516 (7.541 × 104) 1.3721 (5.312 × 104) 1.6000 (3.906 × 104)

f2 0.5060 (1.024 × 102) 0.3827 (9.818 × 101) 0.2493 (9.360 × 101) 0.1363 (8.972 × 101) 0.0616 (8.716 × 101) 0.0143 (8.553 × 101)

*The value in the bracket is the corresponding actual frequency (unit: Hz) or weight (unit: kg)
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Calculate the fitness of each individual by (37).

c. Repeat the loop until the maximum number of

particles.

d. Find non-inferior solutions and put them into the ex-

ternal archive.

e. Do the directional perturbation about the elite solu-

tions at the two ends of the Pareto frontier.

f. Update the external archive.

g. Find Pi, best and Gbest.

(3) Repeat the loop until the maximum iteration step is

reached.

6 Accuracy analysis of B-spline functions
for representing material distribution

In this study, the material distribution is represented with the

B-spline functions. To verify the accuracy of this method,

CVF distribution described with function is compared with

that represented with B-spline functions. Three functions in-

cluding the power function (Moita et al. 2018), the exponen-

tial function (Woodward and Kashtalyan 2011), and the three-

parameter function (Roque et al. 2016) are adopted to describe

the CVF distribution. The thickness of the FGP is 0.1 units,

and the quadratic B-spline basis functions are used. The

values of parameters in distribution function are shown in

Table 1. Figure 2 presents the comparison of the CVF distri-

bution between the general function description and the B-

spline function description. In the figures, the spots are the

control points. The solid lines are drawn with the given func-

tions, while the dash lines are B-spline curves. The solid line

almost coincides with the dash line, and the partial enlarged

details are presented to show the difference. The good agree-

ment of CVF distribution from the given function distribution

and the B-spline function can be found. It is noted that the

material properties along the thickness direction vary contin-

uously and smoothly using the quadratic B-spline functions.

7 Numerical examples and discussion

In this section, four numerical examples are considered to

validate the accuracy and performance of the present

method. Some simulations are described in the first

Fig. 11 The Pareto frontier of multi-objective design for the quarter of a circular FGP

Fig. 10 Control points and physical mesh
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Table 11 The relevant statistical charts corresponding for the first mode shapes of the quarter of circular FGP by representative elites

NO. The first mode shapes Numerical difference
NO. of the 

minuend

1 1

2 2

3 1

4 2

5 1

6 1
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example, and other numerical examples are consistent

with the relevant definition in the first example if no spe-

cial explanation is given. The NSGA-II, MOPSO, and

MOACPSO algorithms are used. The parameter setting

of the three algorithms is summarized in Table 2, where

N represents the size of the population, Tmax is the max-

imum iteration number, npf is the maximum size of the

external archive, and Tc is the size of {uk}. Moreover, the

quadratic B-spline functions are used to describe the CVF

distribution and the cubic NURBS basis functions are

used in the IGA. Table 3 presents relevant material

parameters.

Two objectives are considered, i.e., minimize the mass and

maximize the first natural frequency. The design variables are

the CVFs at control points in the thickness direction, and their

values are between 0 and 1.

In general, the real Pareto frontier is unknown in the multi-

objective optimization problems; so the traditional indicators

cannot be used in optimization of FGPs. Fortunately, there

exist some indicators to measure the performance of a multi-

objective optimization algorithm. Three indicators are adopted

in this study, and they are defined as follows:

(1) Crowding variance (CV) (Schott 1995). CV shows the

measure of uniformity about the distribution of all elite

solutions on the Pareto frontier, and the smaller the value

of CV is, the better the performance of the algorithm is.

The CV is defined as

CV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
l

i¼1

d−di
� 
2

l−1

v

u

u

u

t

ð38Þ

where di represents the distance between the ith elite solution

and the jth elite solution in external archiving, d is the mean of

all di., and l = npf − 1. For two objectives, di can be expressed

as

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 1 Xsið Þ− f 1 Xs jð Þj j2 þ f 2 Xsið Þ− f 2 Xs jð Þj j2
q

for j ¼ iþ 1

ð39Þ

(2) Frontier spread (FS). FS is the coverage of the optimal

solution set at the Pareto frontier, and the larger the value

of FS is, the wider the coverage is. FS can be given as

Ta
b
le
1
2

T
h
e
re
su
lt
o
f
re
p
re
se
n
ta
ti
v
e
el
it
es

T
h
e
o
b
je
ct
iv
e
fu
n
ct
io
n

N
o
.
o
f
re
p
re
se
n
ta
ti
v
e
el
it
e

1
2

3
4

5
6

f
1

0
.7
2
3
7
(1
.9
1
0
×
1
0
7
)

0
.7
6
6
0
(1
.7
0
4
×
1
0
7
)

0
.8
6
9
3
(1
.3
2
3
×
1
0
7
)

1
.0
1
0
1
(9
.8
0
2
×
1
0
6
)

1
.1
6
2
3
(7
.4
0
2
×
1
0
6
)

1
.3
4
1
7
(5
.5
5
5
×
1
0
6
)

f
2

0
.5
1
4
3
(1
.6
4
3
×
1
0
1
)

0
.3
4
4
6
(1
.5
5
0
×
1
0
1
)

0
.2
1
3
0
(1
.4
7
8
×
1
0
1
)

0
.1
1
8
0
(1
.4
2
6
×
1
0
1
)

0
.0
5
6
5
(1
.3
9
2
×
1
0
1
)

0
.0
1
5
0
(1
.3
6
9
×
1
0
1
)

*
T
h
e
v
al
u
e
in

th
e
b
ra
ck
et
is
th
e
co
rr
es
p
o
n
d
in
g
ac
tu
al
fr
eq
u
en
cy

(u
n
it
:
H
z)

o
r
w
ei
g
h
t
(u
n
it
:
k
g
)



A
cc

ep
te

d 
ve

rs
io
n

Dnf ¼ ∑
i

npf

di ð40Þ

(3) Set coverage (SC) (Zitzler and Thiele 1999). SC provides

an intuitive comparison of the performance of two algo-

rithms, as follows:

SC Ks;Koð Þ ¼ j k0∈K0j∃ks∈Ks : ks < kof gj=jKoj ð41Þ

where Ks and Ko are the external archiving of the two algo-

rithms, respectively. The general situation of 0 < SC(Ks,Ko) <

1 is said that Ko is partially covered by Ks, SC(Ks,Ko) = 1

represents all solutions in Ko are strictly dominated by Ks,

while SC(Ks,Ko) = 0 means none of the solutions in K0 are

covered byKs. In the sameway, SC(K0,Ks) is similar to that of

(41). Generally speaking, it can be explained that Ks is better

than K0 in the case of SC(Ks,Ko) = 1.

The convergence study of the S-FDST-based IGA is first

investigated before testing numerical optimization examples.

A fully simply supported Al/Al2O3 square plate with length-

thickness ratio of a/h is considered. The volume fraction of the

material satisfies the power function shown in (3). The first

normalized natural frequency ω ¼ 100ωh
ffiffiffiffiffiffiffiffiffiffiffiffi

ρc=Ec

p

obtained

with different numbers of control points is listed in Table 4.

It can be seen that it is fast to obtain the convergent results, so

the S-FDST-based IGA has high accuracy and fast

convergence speed, and the convergent results are obtained

with the control points of 10 × 10.

7.1 A simply supported square FGP

The first example deals with a simply supported square FGP

shown in Fig. 3. The width of the plate is L = 1 m and the

thickness is h = 0.1 m. The control mesh with 13 × 13 cubic

elements is shown in Fig. 4. The number of design variables is

16 for the CVFs at control points in the thickness direction.

For the convenience of optimization, the mass and the first

natural frequency of the FGP are normalized with Vc Vcð Þ

¼ ∫
h=2

−h=2V cdz

h
and ω Vcð Þ ¼ ωL2

h
ffiffiffiffiffiffiffiffiffi

1=109
p , respectively.

Fig. 14 The Pareto frontier of MOP design for the gear FGP with one

hole

Fig. 13 Control mesh with 80 × 5 control points and 77 × 2 cubic

elements

y

x

Fig. 12 A gear FGP with one circular hole

Table 13 Comparison of the solutions with different algorithms

Method Crowding

variance (CV)

Frontier

spread (FS)

Set

coverage (SC)

NSGA-II 0.0029 0.4573 0 / 0

MOPSO 0.0097 0.8385 1 / 0.2190

MOACPSO 0.0038 1.1090 1 / 0.2598
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Table 14 Relevant statistical charts corresponding for the first mode shapes of the gear FGP by representative elites

NO. The first mode shapes Numerical difference
NO. of the 

minuend

1 1

2 2

3 2

4 1

5 2

6 2
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Figure 5 shows the Pareto frontier of the multi-objective

optimization problem for the simply supported square FGP. In

addition, the sub-figures in Fig. 5 represent the ceramic distri-

bution corresponding to the partial elite solution. The first

mode shapes of representative elites are shown in Table 5; it

can be seen that their values are almost the same or opposite.

The difference between the first mode shapes is used to dis-

tinguish them and the corresponding number of the minuend

can be referred to Table 5. Table 6 reports the result of repre-

sentative elites. Table 7 gives the performance statistics of the

three algorithms, and it can be seen that all aspects of

MOACPSO are superior to those of MOPSO and NSGA-II.

7.2 A clamped circular FGP

As shown in Fig. 6, a clamped circular FGP with a radius of R

and a thickness of h is considered. h = 0.01 m, R = 1 m. The

normalized frequency is ω Vcð Þ ¼ ωR2=h
ffiffiffiffiffiffiffiffiffiffiffiffi

1=109
p

. The circu-

lar FGP is divided into 11 × 11 control points and 8 × 8 cubic

elements for IGA as sketched in Fig. 7, and the number of

design variables is 16 for the CVFs at control points in the

thickness direction.

Similar to the first numerical example, the Pareto fron-

tier of the multi-objective optimization problem for the

clamped circular FGP is shown in Fig. 8, while Table 8

depicts the first mode shapes of representative elites. The

result of representative elites is given in Table 9. Table 10

gives the performance statistics of the three algorithms,

and it can be seen that the value of CV for NSGA-II is

smaller, but its solutions is completely dominated by

MOACPSO, which means that the solution of NSGA-II

is meaningless. Moreover, all aspects of MOACPSO are

better than those of MOPSO.

7.3 A quarter of circular FGP with complex boundaries

Consider a quarter of circular FGP with clamped inner and

outer boundaries and simply supported at left and bottom

sides, as shown in Fig. 9. The outer radius is R = 1m and inner

radius is r = 0.6 m and the thickness is h = 0.01 m. Figure 10

presents the control points and physical mesh for IGA, and the

number of design variables is 16 for the CVFs at control points

in the th ickness . The normal i zed f requency i s

ω Vcð Þ ¼ ωR2=h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=1011
p

.

The Pareto frontier of the multi-objective optimization

problem for the quarter of a circular FGP is shown in Fig.

11, while Table 11 presents the first mode shapes of represen-

tative elites. And the result of representative elites is given in

Table 12. The performance statistics of the two algorithms is

shown in Table 13, and it is obvious that MOACPSO is supe-

rior to MOPSO and covered the solution set of NSGA-II. T
ab
le
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7.4 A gear FGP with one circular hole

The last numerical example deals with an FGP with one cir-

cular hole and 20 gear teeth as shown in Fig. 12. The main

purpose of considering this gear teeth example having com-

plicated geometries is to demonstrate the applicability of the

developed approach. In particular, the geometry parameters of

the example are set as follows. The radius of the hole is r =

0.6 m, and the thickness h is 0.1 m. The outer boundary Γ can

be expressed by a mathematical formula as

Γ ¼ Rcos θð Þ Rsin θð Þf g ð42Þ

with

R ¼ n2 þ 2nþ 2−2 nþ 1ð Þcos nθð Þ

 �

=n2 ð43Þ

where n is the number of gear teeth, and the range of θ is 0 to 2π.

The hole boundary is clamped when the gear is fixed to the

shaft in mechanical engineering. As shown in Fig. 13, the

computation domain is divided into 80 × 5 control points

and 77 × 2 cubic elements for IGA. The number of design

variables is 16 for the CVFs at control points in the thickness.

The normalized frequency is ω Vcð Þ ¼ ω=h
ffiffiffiffiffiffiffiffiffiffiffiffi

1=109
p

.

Figure 14 illustrates the Pareto frontier of MOP design for

the gear FGP with one hole, and the first mode shapes of the

representative elites are visualized in Table 14. The obtained

result of representative elites is given in Table 15, while

Table 16 reports the performance statistics of the three algo-

rithms. And the simulation results prove that MOACPSO is

better than MOPSO and NSGA-II in all aspects as the previ-

ous results.

8 Conclusions

We have developed an effective multi-objective optimization

methodology that combines the IGAwith S-FSDT and adap-

tive chaos particle swarm algorithm for optimizing CVF dis-

tribution of FGPs under free vibration. The CVF distribution

is described with the B-spline basis functions via control

points along the thickness direction. The plate free vibration

analysis is conducted by using NURBS-based IGA and an

effective plate theory, the S-FSDT. Minimizing the mass of

the structure and maximizing the first natural frequency are

two optimization objectives. The adaptive chaotic particle

swarm algorithm is used as an optimizer. From the results of

four representative numerical examples, several major conclu-

sions are drawn as follows:

& The B-spline-based volume fraction representation has

few design variables, and the material properties in FGPs

with any complex distribution profile can alter continu-

ously and smoothly.

& Compared with MOPSO and NSGA-II, the performance

of the adaptive chaotic particle swarm algorithm has been

improved in CV, FS, and SC.

& The optimal CVF distributions can be entirely different

from those described by the certain mathematical func-

tion, broadening the material variability.

& It is possible to select one optimal solution by designers to

meet the desired implementation according to a series of

optimal solutions.

& From physical interpretation of the optimization results,

when choosing the best solution with higher quality, the

proportion of ceramics on the top and bottom of FGPs will

be higher while the proportion of ceramics on the middle

of FGPs will be lower. In addition, the smaller the ceramic

fraction, the smaller the corresponding mass and

frequency.
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