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Abstract. The analysis of human activity data is an important research
area in the context of ubiquitous and social environments. Using sensor
data obtained by mobile devices, e. g., utilizing accelerometer sensors
contained in mobile phones, behavioral patterns and models can then be
obtained. However, the utilized models are often not simple to interpret
by humans in order to facilitate assessment, evaluation and validation,
e. g., in computational social science or in medical contexts. In this pa-
per, we propose a novel approach for generating interpretable rule sets
for classi�cation: We present an adaptive framework for mining class
association rules using subgroup discovery, and analyze di�erent tech-
niques for obtaining the �nal classi�er. The approach is investigated in
the context of human activity recognition. For our evaluation, we apply
real-world activity data collected using mobile phone sensors.

1 Introduction

With more and more ubiquitous devices emerging in our daily lives, sensor data
capturing human activities is becoming a universal data source for the analysis
of human behavioral patterns, and for building according models. However, of-
ten such models are either �black-box� models like neural networks, or are rather
complex, e. g., in the case of random forests or large decision trees. Rule-based
models can then often provide simpler models with comparable accuracy, esti-
mated using quality measures [6, 7], in order to facilitate human interpretation.
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In this paper, we propose a novel approach for class association rule mining
using subgroup discovery. We present an adaptive framework for mining such
rules, and demonstrate the e�ectiveness of the proposed approach using real-
world activity data collected using mobile phone sensors. Speci�cally, we focus on
activity recognition, as a prominent research �eld with respect to the classi�cation
of human activities.

Class association rules are special association rules with a �xed class attribute
in the rule consequent. In order to mine such rules, we apply subgroup discov-
ery [4,42] � an exploratory approach for discovering interesting subgroups de�ned
by a description, e. g., a conjunction of attribute�value pairs (i. e., a typical rule
body) with respect to a binary target concept. In the case of class association
rules, the respective class can be de�ned as the target concept (i. e., the rule
head). Then, subgroup discovery can be adapted as a rule generator for class
association rule mining. As we will discuss below, there are further adaptations
for mining the �nal rule set, which we integrate into a comprehensive framework
for adaptive class association rule mining.

Our contribution can be summarized as follows:

1. We adapt subgroup discovery to class association rule mining, and embed
it into an adaptive approach for obtaining a rule set that aims to target a
simple rule base with an adequate level of predictive power, i. e., combining
simplicity and accuracy.

2. For constructing the rule base, we utilize standard methods of rule selection
and evaluation, and demonstrate the integration into our framework.

3. We provide an evaluation using real-world activity data obtained by mobile
phone sensors, and demonstrate the e�ectiveness of our approach by a com-
parison with typical descriptive models, i. e., using Ripper as a rule-based
baseline, and C4.5 as a decision tree classi�er.

The rest of the paper is structured as follows: Section 2 discusses related
work. Then, Section 3 introduces the necessary background. After that, Section 4
introduces the adaptive framework for class association rule mining. In Section 5
we describe the applied dataset. Next, Section 6 presents the results of our
experiments and discusses them in detail. Finally, Section 7 concludes with a
summary and provides interesting options for future work.

2 Related Work

Below, we discuss related work concerning general approaches for the classi�ca-
tion of sensor data, subgroup discovery and associative classi�cation.

2.1 Classi�cation and Sensor Data

Classi�cation of activities based on sensor data is a prominent research area.
Several authors investigated the topic using wearable sensors, e. g., as also inte-
grated into mobile phones. These sensors can be attached to parts of the body
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like arms, legs or the hip. The �rst works in this regard were already done at
the end of the 1990s [30]. In the research of Foerster et. al. [23] 24 participants
wore sensors on sternum, wrist, thigh and the lower leg. Nine activities were
then replicated. Also, Bao and Intille [16] asked 20 subjects to perform some
everyday activities while wearing �ve biaxial accelerometers on di�erent parts
of the body.

Fabian et al. [21] developed a real-time mobile system to recognize six dif-
ferent activities in both standing and sitting positions. Therefore three motion
band devices were attached to the wrist, hip and the dominant ankle of the
participants. These devices contained an accelerometer, a magnetometer and a
gyroscope. While the training was done o�ine on a Desktop PC, the following
recognition process was done in real time with a smartphone collecting the sensor
data from the attached motion bands.

In this paper, we consider the �eld of wearable sensors, speci�cally on those
embedded in mobile phones, focusing on the accelerometer: Kwapisz et al. [29],
for example, collected and labeled data from 29 users and tried to classify six ba-
sic activities (like standing or walking). Reddy et al. [39] considered the problem
of usage of mobile phones to determine transportation mode (such as walking,
biking, or in motorized transport) and used additionally GSM receiver of the
device. Berthold et al. [17] presented ActiServ � an architecture which creates
an evolving activity classi�cation system using feedback from the user commu-
nity. Yang [43] proposed a physical activity diary based on automatic sensor data
classi�cation to use in mobile healthcare and further applications (currently such
applications emerge, e. g., Apple ResearchKit 4).

In contrast to most of the presented works, we concentrate on some special
activities, some of which assume active interaction with mobile phones. We also
de�ne a group of disrupt activities � activities which are similar to a usual
activity � to examine if the presented classi�er may recognize small di�erences
in activities. Furthermore, we consider up to 8 sensors for improving activity
recognition. In contrast, related work discussed above only uses accelerometer
or in a few cases a limited number of two or three sensors.

2.2 Subgroup Discovery

Subgroup discovery [2,4,15,27,42] has been established as a general and broadly
applicable technique for descriptive and exploratory data mining: It aims at
identifying descriptions of subsets of a dataset that show an interesting behavior
with respect to certain interestingness criteria, formalized by a quality function,
e. g., [4, 25,27].

Overall, subgroup discovery and analytics are important tools for descriptive
data mining: They can be applied, for example, for obtaining an overview on the
relations in the data, for automatic hypotheses generation, and for data explo-
ration. Prominent application examples include knowledge discovery in medical,
technical, and social domains, e.g., [3,10,14,15,24,31,37]. Subgroup discovery is

4 http://researchkit.org
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especially suited for identifying local patterns in the data, that is, nuggets that
hold for speci�c subsets: It can uncover hidden relations captured in small sub-
groups, for which variables are only signi�cantly correlated in these subgroups.
Typically, the discovered patterns are especially easy to interpret by the users
and domain experts, cf. [11, 24,25].

Standard subgroup discovery approaches commonly focus on a single target
concept as the property of interest [25,27,31], while the quality function frame-
work also enablesmulti-target concepts, e. g., [12,28]. Furthermore, more complex
target properties [20,32] can be formalized as exceptional models, cf. [32]. In the
case of a binary target variable, the share in a subgroup can be compared to the
share in the dataset in order to detect deviations in (large) subgroups. This is
also the approach considered in this paper, where we focus on a speci�c class
(a set of classes, respectively) as the target concept(s). In addition to basic sub-
group discovery which aims at providing the obtained subgroups in exploratory
and descriptive fashion, we embed subgroup discovery as the basis of our rule
generation approach. We apply an adaptive method that aims to generate rules
with increasing complexity (and accuracy) based on a performance estimate of
the current subgroup set. In addition, we apply a rule selection strategy in order
to obtain the �nal set of class association rules for classi�cation.

2.3 Associative Classi�cation

Associative classi�cation approaches integrate association rule mining and clas-
si�cation strategies. Thabtah [41] provides a survey on the �eld. This includes
the �rst approach by Liu et al. [35] for class association rule mining, which
includes association rule mining and subsequent rule selection in the CBA algo-
rithm. It applies a covering strategy, selecting rules one by one, minimizing the
total error. Alternative approaches include the CMAR algorithm by Li et al. [34]
which also applies covering, but allows for multiple rules to cover an instance.
The CPAR algorithm by Yin and Han [44] integrates rule mining and selection,
and achieves comparable accuracy compared to CBA and CMAR. In addition
to the rule mining and selection techniques, there are several strategies for the
�nal decision of how to combine the rules for the classi�cation (�voting� of the
matching rules), e. g., [40].

Compared to the approaches discussed above, our proposed approach applies
subgroup discovery for class association rule mining, which allows for suitable
selection of a (complex) quality function for mining the rules, in constrast to the
(simple) con�dence/support-based approaches applied by association rule min-
ing approaches. Then, for example, signi�cance criteria can be simply embedded.
Furthermore, the presented approach applies an adaptive strategy for balancing
rule complexity (size) with predictive accuracy by applying a ruleset assessment
function, in addition to the rule selection function. However, our framework is
general in that respect, that we do not enforce a speci�c strategy. Instead, this
decision can be con�gured by the speci�c implementation of the framework. In
our implementation throughout this paper, for example, we follow the rule selec-
tion strategy of CBA; the ruleset assessment is done by a median-based ranking
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of the according con�dences of the rules, i. e., estimated by the respective shares
of the class contained in the subgroups covered by the respective rules. We will
describe these concepts below in more detail.

3 Background

Below, we �rst introduce some basic notation. After that, we summarize basics
on subgroup discovery, before we sketch how to mine class association rules using
subgroup discovery.

3.1 Basic Notation

Formally, a database DB = (I, A) is given by a set of individuals I and a set of
attributes A. A selector or basic pattern selai=vj is a Boolean function I → {0, 1}
that is true if the value of attribute ai ∈ A is equal to vj for the respective
individual. The set of all basic patterns is denoted by S.

For a numeric attribute anum selectors selanum∈[minj ;maxj ] can be de�ned
analogously for each interval [minj ;maxj ] in the domain of anum. The Boolean
function is then set to true if the value of the respective attribute anum is within
the respective interval.

3.2 Patterns and Subgroups

Basic elements used in subgroup discovery are patterns and subgroups. Intu-
itively, a pattern describes a subgroup, i. e., the subgroup consists of instances
that are covered by the respective pattern. It is easy to see, that a pattern de-
scribes a �xed set of instances (subgroup), while a subgroup can also be described
by di�erent patterns, if there are di�erent options for covering the subgroup' in-
stances. In the following, we de�ne these concepts more formally.

De�nition 1. A subgroup description or (complex) pattern sd is given by a set
of basic patterns sd = {sel1, . . . , sell} , where sel i ∈ S, which is interpreted as a
conjunction, i.e., sd(I) = sel1 ∧ . . . ∧ sel l, with length(sd) = l.

Without loss of generality, we focus on a conjunctive pattern language using
nominal attribute�value pairs as de�ned above in this paper; internal disjunc-
tions can also be generated by appropriate attribute�value construction methods,
if necessary.

De�nition 2. A subgroup (extension)

sgsd := ext(sd) := {i ∈ I|sd(i) = true}
is the set of all individuals which are covered by the pattern sd .

As search space for subgroup discovery the set of all possible patterns 2S

is used, that is, all combinations of the basic patterns contained in S. Then,
appropriate e�cient algorithms, e. g., [8, 13,33] can be applied.
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3.3 Interestingness of a Pattern

The interestingness of a pattern is determined by a quality function, which is
selected according to the analysis task.

De�nition 3. A quality function q : 2S → R maps every pattern in the search
space to a real number that re�ects the interestingness of a pattern (or the ex-
tension of the pattern, respectively).

While a large number of quality functions has been proposed in literature,
many quality functions for a single target concept, e. g., in the binary or nu-
merical case, trade-o� the size n = |ext(sd)| of a subgroup and the deviation
tsd − t0, where tsd is the average value of a given target concept in the subgroup
identi�ed by the pattern sd and t0 the average value of the target concept in the
general population. In the binary case, the averages relate to the share of the
target concept. Thus, typical quality functions are of the form

qa(sd) = na · (tsd − t0), a ∈ [0; 1] . (1)

For binary target concepts, this includes, for example, the weighted relative accu-
racy for the size parameter a = 1 or a simpli�ed binomial function, for a = 0.5.
An extension to a target concept de�ned by a set of variables can be de�ned
similarly, by extending common statistical tests.

While a quality function provides a ranking of the discovered subgroup pat-
terns, often also a statistical assessment of the patterns is useful in data explo-
ration. Quality functions that directly apply a statistical test, for example, the
Chi-Square quality function, e. g., [4] provide a p-Value for simple interpretation.
However, the Chi-Square quality function estimates deviations in two directions.
An alternative, which can also be directly mapped to a p-Value is given by the
adjusted residual quality function qr, since the values of qr follow a large standard
normal distribution, cf. [1]:

qr = n(tsd − t0) ·
1√

nt0(1− t0)(1− n
N )

(2)

The result of top-k subgroup discovery is the set of the k patterns sd1, . . . , sdk ,
where sd i ∈ 2S with the highest interestingness according to the applied quality
function. A subgroup discovery task can now be speci�ed by a 5-tuple:

(DB, c, S, q, k) .

We focus on the case of a binary target concept c : I → < specifying the property
of interest: In the context of class assocation rule mining, it maps each instance
in the dataset to a target value c corresponding to the respective class of the
instance. The search space 2S is de�ned by set of basic patterns S.

Furthermore, we consider additional constraints with respect to the complex-
ity of the patterns. We can restrict the length l of these descriptions to a certain
maximal value, e. g., with length l = 1 we only consider subgroup descriptions
containing one selector, with length l = 2 we consider a conjunction of two selec-
tors etc. Then, the complexity of the discovered patterns can also be adaptively
adjusted as described in Section 4.
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3.4 Subgroup Discovery for Mining Class Association Rules

For mining class association rules, we apply subgroup discovery, such that for
every class c ∈ S, we create an according target concept c. Then, we discover a
set of the top-k patterns CARc = {sdc

1, sd
c
2, . . . , sd

c
k} for each target concept. It

is easy to see, that a subgroup pattern directly corresponds to a class association
rule - the head of the rule is given by the target concept, while the body of the rule
is given by the speci�c subgroup description. Then, these rules can be applied
for building the classi�er. For that, a speci�c rule selection strategy needs to
be applied, after the total set of class association rules has been determined. It
usually aims at selecting the subset with the best predictive power, e. g., using
one of the algorithms discussed above in Section 2.

When applying the model, di�erent rule combination strategies can be used,
e. g., taking the best rule, or aggregating the votes of the individual matching
rules, cf. [40]. Basically, for each rule r that matches an instance i ∈ I that we
want to classify, we can combine the di�erent classi�cations of the individual ri
in order to combine the �nal classi�cation. The best rule strategy just selects the
rule with the highest con�dence (and its respective classi�cation). In addition,
we can apply voting methods for obtaining the �nal classi�cation, cf. [40], i. e.,
for combining individual predictions as votes for the individual classi�cation.
Essentially, for classifying an individual (instance) i ∈ I, this works as follows:

class(i) = argmax
ci∈C

∑
r∈Ri

weight(r) , (3)

where Ri is the subset of rules matching instance i ∈ I of class ci, and C ⊆ S
denotes the set of available classes in our dataset.

The weight of a rule weight(r) depends on the chosen weighting method.
Following [40], we applied the unweighted strategy, where weightU (r) = 1 for all
rules r, and the laplacian weight strategy weightL(r) = Laplace(r), where the
laplacian weight is determined according to the Laplace correction [18] to the
estimated class probabilities of the applied dataset:

Laplace(r) =
pri + 1∑

cj∈C p
r
j + |C|

, (4)

where prj (and p
r
i ) are the numbers of covered examples by rule r that belong to

the respective classes cj (and ci of the rule, respectively).

4 An Adaptive Framework for Class Association Rule

Mining

In this section, we provide an overview on the proposed approach presenting our
novel framework Carma, an Adaptive Framework for Class Association Rule
Mining, and provide examples of its instantiation in Section 6. For our adaptive
framework, we distinguish two phases: The learning phase that constructs the
model, and the classi�cation phase that applies the model.
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Learning: Model Construction For the construction of the model, we apply
the steps described in Algorithm 1. Basically, Carma starts with discovering
class association rules for each class c contained in the dataset. Using subgroup
discovery (line 5, calling procedure SubgroupDiscovery that needs to be instan-
tiated with an appropriate subgroup discovery algorithm), we collect a set of
class association rules for the speci�c class, considering a maximal length of the
concerned patterns. After that, we apply a boolean ruleset assessment function
a (line 6) in order to check, if the quality of the ruleset is good enough. If the
outcome of this test is positive, we continue with the next class (line 10). Oth-
erwise, we increase the maximal length of a rule (up to a certain user-de�nable
threshold T , line 12). After the �nal set of all class association rules for all classes
has been determined, we apply the rule selection function r (line 14) in order
to obtain a set of class association rules that optimizes predictive power on the
trainingset. That is, the rule selection function aims to estimate classi�cation
error and should select the rules according to coverage and accuracy of the rules
on the trainingset.

Algorithm 1 CARMA

Require: Set of classes C, k specifying the number of top-k patterns, maxlength T
denoting the maximal possible length of a subgroup pattern, quality function q,
ruleset assessment function a, rule selection function r.

1: Patterns P = ∅
2: for all c ∈ C do

3: Current length threshold length = 1
4: while true do
5: Obtain candidate patterns CP by CP = SubgroupDiscovery(DB , c,S , q , k , T )
6: if Current candidate patterns are good enough, i. e., a(CP) = true then
7: P = P ∪ CP
8: break
9: else if length > T then

10: break
11: else

12: length = length + 1
13: Add a default pattern (rule) for the most frequent class to P
14: Apply rule selection function: P = r(P )
15: return P {Model, consisting of the result set of rules}

Classi�cation For the classi�cation phase, we apply all the rules contained
in the model P . For aggregating the predictions of the (matching) rules for an
individual (instance) i ∈ I, and for obtaining the �nal classi�cation, we apply a
speci�c rule combination strategy, see Section 3 for examples.
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5 Dataset

We collected a dataset containing a diverse set of activities (classes) split into
two categories: (1) Activities which demand the direct usage of the device ,
e. g., holding the device close to the ear, or putting the device in a speci�c
place, and (2) typical walking activities, e. g., walking slowly or normally. We
de�ned �ve scenarios that consist of sets of di�erent activities. While doing
these activities the person used a smartphone with a running application. This
application recorded the sensor data. The persons used the smartphone actively
(e. g., putting device in the pocket) or passively (e. g., while walking). Another
smartphone was used to record the exact start and �nish time of each activity.
39 test persons of di�erent sex and age repeated each scenario six times. The
resulting dataset consists of a total of 3077 valid single activities. Table 1 shows
an overview on the dataset, speci�c activities and class distributions in detail.

Table 1. Activity dataset � Overview: Description of the individual activities (classes),
body position, device context, number of instances (samples) for each activity/class.

ID Description Body Device No. of

Activity/Class Position Usage Samples
1 Put device in right trousers pocket Sit Yes 54
2 Put device in right trousers pocket Stand Yes 290
3 Put device in shirt pocket Sit Yes 54
4 Put device in shirt pocket Stand Yes 162
5 Take device from right trousers pocket Sit Yes 54
6 Take device from right trousers pocket Stand Yes 290
7 Take device from shirt pocket Sit Yes 54
8 Take device from shirt pocket Stand Yes 162
9 Put device on the table Sit Yes 55
10 Put device on the table Stand Yes 272
11 Take device from the table Sit Yes 55
12 Take device from the table Stand Yes 272
13 Give device to another person Sit Yes 109
14 Give device to another person Stand Yes 163
15 Take device from another person Sit Yes 55
16 Take device from another person Stand Yes 217
17 Hold device near the ear Stand Yes 217
18 Take device away from the ear Stand Yes 54
19 Walk slowly (device in hand) � No 54
20 Walk slowly (device near ear) � No 54
21 Walk normally (device in shirt pocket) � No 54
22 Walk normally (device in hand) � No 54
23 Walk normally (device near ear) � No 55
24 Walk normally (device in right trousers pocket) � No 55
25 Walk fast (device in hand) � No 54
26 Walk fast (device near ear) � No 54
27 Walk fast (device in right trousers pocket) � No 54
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Table 2. Overview on the features generated using the collected sensor data.

Feature Sensor

Average/Minimum/Maximum Value All
Standard Deviation All
Zero-Crossings All Without Light and Proximity Sensors
75th Percentile All Without Light and Proximity Sensors

Overall, we recorded data from eight di�erent sensors, installed on Sam-
sung Galaxy Nexus Device, particularly: (1) Accelerometer, (2) Magnetome-
ter, (3) Gyroscope, (4) Light sensor, (5) Proximity sensor, (6) Rotation vector,
(7) Gravity sensor, and (8) Linear acceleration. Using these, we created a set
of features applying window-based techniques. A �xed window size of 1 second
was used. This size was already proven to be e�cient for walking activities [26].
We created 6 features per window and per sensor as described in Table 2. Zero-
crossings describes the number of changes from positive to negative and negative
to positive values, respectively. The 75th percentile represents the lowest value
that is greater than or equal to 75% of the values. Other features were the calcu-
lated mean, min/max and standard deviation for the given window. The features
were extracted for every axis of every sensor. The only exception were light and
proximity sensors. Zero-crossings and the 75th percentile were not calculated for
these sensors because of the nature of their returning values. Thus 4 features
were obtained for both the light and proximity sensor and 18 for each of the
others, resulting in a total set of 116 features. In order to use the features for
class association rule mining, we employed the discretization technique by Fayad
& Irani [22] for deriving according selectors.

6 Evaluation

Below, we compare an instantiation of the proposed Carma framework against
two baselines: The Ripper algorithm [19] as a rule-based learner, and the C4.5
algorithm [38] for learning decision trees. For the subgroup discovery step in the
Carma framework, we apply the BSD algorithm [33] using the implementation
provided by the VIKAMINE system [9]. Further details are described below
when we discuss the experimental setup and results.

As the basic evaluation measures, we consider (multi-class) model accuracy
and model complexity with respect to activity recognition on the 116 features
and 27 classes (shown in Table 1), cf. Section 5. Accuracy is de�ned as a portion
of samples that were classi�ed correctly. Furthermore, complexity relates to the
size of a model using two parameters: the total number of rules contained in a
rule-based model (also corresponding to the number of leaves in a decision tree),
and its average complexity (i. e., for a decision tree the average length of path
from a root to a leaf of a tree). All experiments were performed in a standard
10-fold cross-validation setting.
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6.1 Baselines Results

We applied both JRip and J48 algorithms as baseline methods. We compare
results with the described approach and explore the in�uence of di�erent pa-
rameters in terms of accuracy and model complexity.

Table 3. Baseline results using C4.5 (J48) and Ripper (JRip).

Algorithm Accuracy
Complexity

No. of Rules Avg. Complexity

J48 69.02% 1394 6.76
JRip 66.87% 176 3.40

Table 3 shows performance and complexity of the baseline algorithms. J48
showed a better performance but built a more complex model with 1394 rules
and average rule complexity of 6.76. JRip's accuracy is 2% lower but the model
is much smaller with only 176 rules and an average rule length of 3.40.

6.2 Results and Discussion

When applying the Carma framework, we need to instantiate several compo-
nents according to the analytical question. In the context of our experiments we
instantiate these elements as follows:

� For the subgroup discovery algorithm, we selected the BSD algorithm [33].
� For the ruleset assesssment function, we just check, if the median of the rules'
con�dences is above a certain threshold τc. In our experiments, we applied
a threshold τc = 0.5.

� Furthermore, for the rule selection function, we apply an adaptation of the
CBA algorithm [35].

� In addition to the basic CBA algorithm, we also implemented a variant,
which we call CBA*. This algorithm ensures, that there is at least one rule
for each class in the derived model, i. e., when estimating classi�cation per-
formance on the training set, it is checked that at least one rule for each
class exists in the �nal classi�er. We default to the rule with the highest
con�dence, if there is none contained in the initial model.

� Since we are interested in easily interpretable rules, we also selected the
quality function qr (adjusted residuals, described above) which directly maps
to signi�cance criteria.

� We opted for interpretable patterns with a maximal length of 7 conditions,
and set the respective threshold T = 7 accordingly.

� In the evaluation, we used three di�erent TopK values: 100, 200 and 500.
� For the rule combination strategy, we experimented with four strategies: tak-
ing the best rule according to con�dence and Laplace value, the unweighted
voting strategy, and the weighted voting (Laplace) method (see Section 3).
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Table 4. Evaluation results: The table shows accuracy and complexity of Carma
depending on di�erent choices of k, the rule selection techniques CBA and CBA*,
and the following rule combination strategies: UnweightedVote (unweighted voting),
LaplaceVote (voting using laplacian weights), BestLaplace (best rule using Laplace
value), and BestCon�dence (best rule according to rule con�dence), cf. Section 3 for a
detailed discussion.

TopK CBA CBA*

Accuracy
No. of Avg.

Accuracy
No. of Avg.

Rules Complexity Rules Complexity

100

UnweightedVote 67.14 % 347.2 2.79 ± 1.00 67.31 % 345.3 2.82 ± 1.04
LaplaceVote 66.47 % 347.1 2.80 ± 1.00 66.96 % 345.0 2.81 ± 1.04
BestLaplace 59.60 % 349.4 2.81 ± 1.00 59.10 % 345.4 2.79 ± 0.98
BestCon�dence 63.31 % 349.8 2.82 ± 1.03 62.22 % 346.5 2.81 ± 1.01

200

UnweightedVote 67.82 % 424.9 2.91 ± 1.01 67.99 % 422.5 2.88 ± 1.00
LaplaceVote 68.20 % 426.7 2.91 ± 1.02 69.09 % 424.8 2.89 ± 1.00
BestLaplace 59.45 % 421.8 2.90 ± 1.01 59.63 % 423.1 2.88 ± 1.01
BestCon�dence 64.75 % 424.7 2.87 ±1.01 64.93 % 422.8 2.89 ± 1.04

500

UnweightedVote 69.38 % 517.3 3.05 ± 0.97 70.52 % 522.3 3.05 ± 0.98
LaplaceVote 69.95 % 518.4 3.05 ± 0.95 69.96 % 522.1 3.05 ± 0.96
BestLaplace 60.95 % 518.3 3.06 ± 1.01 60.60 % 521.7 3.04 ± 0.97
BestCon�dence 66.80 % 525.4 3.06 ± 0.98 66.80 % 520.6 3.06 ± 0.97

Table 4 shows the results of our experiments. Overall, it is easy to see that
the proposed approach outperforms the baselines both in accuracy as well as in
complexity, i. e., an instantiation with the UnweightedVote or LaplaceVote func-
tions and k = 500 outperforms even the C4.5 baseline clearly. If we especially
concentrate on the complexity (or simplicity) of the model, we can observe that
Carma demonstrates its advantages since it clearly generates less complex mod-
els than the baselines with a comparable accuracy, e. g., C4.5. If we consider the
Ripper algorithm, we can observe that it still has a better average complexity
(i. e., lower average complexity of a rule) while it outperforms Ripper in terms
of accuracy clearly.

Considering the voting functions, we observe that the functions (unweighted
voting, and weighted Laplace) always outperform the rest. In our experiments,
using larger values of k indicates a higher accuracy � here also the compexity (in
the number of rules) can be tuned. We observe a slight trade-o� between accuracy
and complexity here. Basically, the parameter k seems to have an in�uence on
the complexity, while the remaining instantiations do not seem to have a strong
in�uence. This can be explained by the fact, that the model generation phase is
mainly dependent on k (and the maximum length of the patterns) but not on the
applied voting method. CBA and CBA* seem quite close in terms of accuracy and
complexity, while we can observe a slight improvement for CBA*. In empirical
evaluations it turned out that the di�erence between CBA* and CBA was even
more pronounced for lower numbers of k, leading to slightly better models for
CBA*. However, for our parameter selection, we do not see strong improvements
of CBA* compared to CBA.
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In summary, the proposed framework always provides a more compact model
than the baseline algorithms concerning rule complexity, with simple rules such
as: IF minProx = (0.5− 3]∧minMagnetY > 34∧ zeroCrossAccelX = (0.5− 1.5]
THEN Class =Hold device near the ear. In our experiments, it is at least in the
same range or even better than the baselines concerning accuracy. In particular,
considering the best parameter instantiations, the proposed approach is able to
outperform both baselines concerning the accuracy (see Figures 1-2).
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Fig. 1. Comparison of the accuracy of Carma using the standard CBA method for
rule selection, with di�erent rule combination strategies to the baselines.

7 Conclusions

Human activity recognition, and interpretable models for classi�cation are promi-
nent research directions, especially considering the ever-increasing amount of
available sensor data and social media. In this paper, we presented a unifying
view on these topics, proposing a novel approach adaptive class association rule
mining using subgroup discovery. We successfully applied and evaluated this
approach in the �eld of human activity recognition.
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Fig. 2. Comparison of the accuracy of Carma using the (improved) CBA* method for
rule selection, with di�erent rule combination strategies to the baselines.

The proposed Carma framework is especially suited for generating inter-
pretable rule sets for classi�cation, with a low model complexity. We discussed
and analyzed di�erent instantiations of Carma, e. g., for parameter selection
and for obtaining the �nal classi�er. For our evaluation, we applied real-world
data collected for di�erent activities using mobile phone sensors. Our experi-
ments showed, that the proposed approach can outperform the baselines clearly,
both in terms of accuracy and complexity of the resulting predictive model.

For future work, we aim to consider more datasets, in order to extend the
evaluation further. In addition, we aim to analyze the performance of Carma
in further domains, e. g., in the medical domain, or for classifying social media.
Furthermore, we plan to investigate further rule assessment and rule selection
strategies in detail, e. g., [36], in order to perform further algorithmic comparison
and assessment. Based on these, we aim to provide guidelines for instantiating
the Carma framework for speci�c contexts, also in semi-automatic scenarios [5].
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