
 Open access Proceedings Article DOI:10.1145/984622.984672

Adaptive clock synchronization in sensor networks — Source link

Santashil PalChaudhuri, Amit Kumar Saha, D.B. Johnsin

Institutions: Rice University

Published on: 26 Apr 2004 - Information Processing in Sensor Networks

Topics: Clock synchronization, Self-clocking signal, Data synchronization, Digital clock manager and Synchronization

Related papers:

 Fine-grained network time synchronization using reference broadcasts

 Timing-sync protocol for sensor networks

 The flooding time synchronization protocol

 Internet time synchronization: the network time protocol

 Lightweight time synchronization for sensor networks

Share this paper:

View more about this paper here: https://typeset.io/papers/adaptive-clock-synchronization-in-sensor-networks-
5776hvo8ai

https://typeset.io/
https://www.doi.org/10.1145/984622.984672
https://typeset.io/papers/adaptive-clock-synchronization-in-sensor-networks-5776hvo8ai
https://typeset.io/authors/santashil-palchaudhuri-2xl4hvpwub
https://typeset.io/authors/amit-kumar-saha-30b4jah2n8
https://typeset.io/authors/d-b-johnsin-3ma94l0og6
https://typeset.io/institutions/rice-university-2wkk7zxp
https://typeset.io/conferences/information-processing-in-sensor-networks-2jniy2ry
https://typeset.io/topics/clock-synchronization-3desr3y5
https://typeset.io/topics/self-clocking-signal-t6aqbfk3
https://typeset.io/topics/data-synchronization-ldwki6kn
https://typeset.io/topics/digital-clock-manager-g2i8ierr
https://typeset.io/topics/synchronization-2wu61gqg
https://typeset.io/papers/fine-grained-network-time-synchronization-using-reference-3go0i1u94g
https://typeset.io/papers/timing-sync-protocol-for-sensor-networks-53aov77qpj
https://typeset.io/papers/the-flooding-time-synchronization-protocol-2j5x8h86k4
https://typeset.io/papers/internet-time-synchronization-the-network-time-protocol-3b6kqc4t85
https://typeset.io/papers/lightweight-time-synchronization-for-sensor-networks-2hi0b0dfpe
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/adaptive-clock-synchronization-in-sensor-networks-5776hvo8ai
https://twitter.com/intent/tweet?text=Adaptive%20clock%20synchronization%20in%20sensor%20networks&url=https://typeset.io/papers/adaptive-clock-synchronization-in-sensor-networks-5776hvo8ai
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/adaptive-clock-synchronization-in-sensor-networks-5776hvo8ai
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/adaptive-clock-synchronization-in-sensor-networks-5776hvo8ai
https://typeset.io/papers/adaptive-clock-synchronization-in-sensor-networks-5776hvo8ai

Adaptive Clock Synchronization in Sensor Networks

Santashil PalChaudhuri

santa@cs.rice.edu

Amit Kumar Saha

amsaha@cs.rice.edu

David B. Johnson

dbj@cs.rice.edu

Department of Computer Science
Rice University

Houston, TX 77005

ABSTRACT

Recent advances in technology have made low cost, low
power wireless sensors a reality. Clock synchronization is an
important service in any distributed system, including sen-
sor network systems. Applications of clock synchronization
in sensor networks include data integration in sensors, sen-
sor reading fusion, TDMA medium access scheduling, and
power mode energy saving. However, for a number of rea-
sons, standard clock synchronization protocols are unsuit-
able for direct application in sensor networks.

In this paper, we introduce the concept of adaptive clock
synchronization based on the need of the application and
the resource constraint in the sensor networks. We describe
a probabilistic method for clock synchronization that uses
the higher precision of receiver-to-receiver synchronization,
as described in Reference Broadcast Synchronization (RBS)
protocol. This deterministic protocol is extended to pro-
vide a probabilistic bound on the accuracy of the clock syn-
chronization, allowing for a tradeoff between accuracy and
resource requirement. Expressions to convert service spec-
ifications (maximum clock synchronization error and confi-
dence probability) to actual protocol parameters (minimum
number of messages and synchronization overhead) are de-
rived. Further, we extend this protocol for maintaining clock
synchronization in a multihop network.

Categories and Subject Descriptors

C.2 [COMPUTER-COMMUNICATION NETWORKS]:
[Network Protocols, Applications]; G.3 [PROBABILITY

AND STATISTIC]: [Probabilistic algorithms]

General Terms

Algorithms, Design

Keywords

Clock synchronization, Sensor Networks, Probabilistic Al-
gorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’04, April 26–27, 2004, Berkeley, California, USA.
Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

1. INTRODUCTION
Recent advances in technology have made low-cost, low-

power wireless sensors a reality. Sensor networks formed
from such sensors can be deployed in an ad hoc fashion and
cooperate to sense and process a physical phenomenon. As
each sensor has a finite battery source, an important feature
of sensor network is energy efficiency to extend the network’s
lifetime.

As in any distributing computer system, clock synchro-
nization is an important service in sensor networks. Sensor
network applications can use synchronization for data inte-
gration and sensor reading fusion. A sensor network may
also use synchronization for TDMA medium access schedul-
ing, power mode energy savings, and scheduling for direc-
tional antenna reception. Sensor networks show some unique
characteristics that make it difficult to directly apply tradi-
tional network clock synchronization approaches.

The error in clock synchronization comes mainly from the
non-deterministic random time delay for a message transfer
between two nodes. Kopetz et al. [1] first characterized this
message delay. In some recent work, this non-determinism
has been reduced to provide tighter bounds on the clock
synchronization error [2, 3]. Our work, which is based on the
Reference Broadcast Synchronization (RBS) [3], provides an
analytical way to convert service specifications to protocol
parameters.

The need in sensor networks is to provide the best possible
clock synchronization under existing circumstances, given
the limited resources of the nodes and the network in the
system. Highly accurate clock synchronization typically re-
quires more message transfers and processing as part of the
synchronization protocol. In situations where the system
energy is extremely low, it might not be possible to provide
high accuracy. The accuracy needed in clock synchroniza-
tion is variable, depending on the higher layer application
requirements. If the need for determinism can be relaxed,
probabilistic guarantees often suffice for the needs of an ap-
plication, while allowing for optimal use of resources. Prob-
abilistic guarantees provide better accuracy in most cases as
compared to deterministic accuracy in all cases. Also the
failure probability of achieving a certain accuracy can be
bounded. Quality of Service (QoS) in networks make exten-
sive use of this concept to give probabilistic guarantees by
allowing resources to be allocated on the basis of expected
aggregate demand. Previous work [4, 5] uses this concept for
providing probabilistic clock synchronization in distributed
systems.

Clock synchronization might not be necessary at all times,

340

except during sensor reading integration. In such a case,
providing clock synchronization all the time will be a waste
on the limited available resources of sensors. The sensor
clocks can be allowed to go out of sync, and then re-synchronize
only when there is a need for synchronization, thereby sav-
ing resources.

We design our adaptive clock synchronization protocol
keeping in mind the concepts discussed above. The remain-
der of this paper is organized as follows. In Section 2, we
describe the various concepts of clock synchronization in de-
tail and motivate the design principles used in building our
algorithm. In Section 3, we survey the related work in this
area. Section 4 describes the RBS protocol, along with our
improvements. Section 6 evaluates the performance of the
protocol. Section 5 extends this protocol for multihop sensor
networks. Finally, we discuss our conclusions in Section 7.

2. DESIGN PRINCIPLES
In the paper describing the Network Time Protocol (NTP),

Mills [6] defines the various terms used in clock synchro-
nization. The stability of a clock is how well the physical
clock can maintain a constant frequency. Accuracy refers
to how well the maintained time is true to the standard
time. The offset of two clocks is the actual time difference
between them, and the skew is the frequency difference be-
tween them. To synchronize frequency means to adjust the
clocks to run at the same frequency, and to synchronize time

means to set their time at a particular epoch to be exactly
the same. To synchronize clock means to synchronize the
clocks in both frequency and time. In this paper, our algo-
rithm will synchronize clocks, i.e., it will synchronize both
frequency and time.

2.1 Traditional versus Sensor Network
Synchronization

NTP is scalable, robust to failures, self-configuring, and
has various properties that are needed in the sensor network
world. However, wireless sensor networks pose a number of
challenges beyond traditional network systems. Elson and
Romer [7] describe the differences quite exhaustively. We
state the design principles that are used in the design of the
protocol.

• Energy Constraint: Energy efficiency is very im-
portant for sensor networks as opposed to traditional
networks.

• Tunable Accuracy: Traditional synchronization
protocols try to achieve the highest degree of accuracy
possible. The higher the level of accuracy required,
the higher the resource requirement. The accuracy of
required synchronization depends on the application
requirement. Therefore, there is a need for a trade-
off between resource requirements and accuracy, de-
pending on the need of the application and resource
availability of the system.

• Non-determinism: Sensor networks are dynamic
systems with considerably higher rate of failures and
non-determinism of the individual nodes than in tra-
dition networks. Thus the synchronization protocol
needs to be more robust to failures and also to the
greater variability in communication delay.

• Multihop: Most of the typical synchronization pro-
tocols have a highly accurate clock present in the LAN,
such that all the nodes in the system can directly ex-
change messages. Sensor networks span many hops,
with higher jitter. So the algorithms for sensor net-
work clock synchronization need to have some sort of
localization to reduce this error, as well as some other
means of achieving multihop synchronization even in
the presence of high jitter.

• Server-less: Traditional protocols have specified
servers, with multiple accuracy levels which are sources
of accurate time. Sensor networks do not have any ex-
ternal infrastructure present and can be large in scale.
Maintaining global time scale in this network is thus
harder, if no external broadcast source of global time
such as GPS is present. Elson et al. [7] proposed that
each node maintain an undisciplined clock, augmented
with the relative frequency and phase information of
its neighbors. We also use this approach in our work.

2.2 Theoretical Bounds on Clock Synchroniza-
tion

There have been various theoretical results that have been
proven regarding clock synchronization. These analytical
results and their consequences are useful when designing a
clock synchronization protocol:

From the causality property in a system, the ordering of
events can be formally stated. If an event a occurs before
another event b, then a should happen at an earlier time
than b. Let Ci(a) be the clock value of process i when event
a occurs. Then it can be formally stated that:

If a and b are events in process i, and event a

occurs before event b, then Ci(a) < Ci(b) .

Lamport [8] showed that, when the value of a clock needs to
be adjusted, it always has to be set forward and never back.
Setting the clock back could cause the above condition to be
violated. Hence, in an ideal system, the slower clocks needs
to be adjusted to the value of the fastest clock, for all clocks
to be synchronized. This restriction will also maintain the
partial ordering of the events.

It is useful to have a bound on the best accuracy achiev-
able in any system, such that no bound lower than that is
specified. Srikanth et al. [9] have shown that for any syn-
chronization algorithm, even in the absence of faults, the
bound on the rate of drift of logical clocks from real time
is greater than the bound on the rate of drift of physical
clocks. In the presence of faults —such as message losses
and node failures —the accuracy of logical clocks becomes
even worse.

Most clock synchronization algorithms proposed in liter-
ature try to guarantee a deterministic upper bound on the
clock skew. Lundelius et al. [10] derived a theoretical limit
on the best achievable clock skew that deterministic algo-
rithms can guarantee. They show that the upper bound
on clock skew that can be deterministically guaranteed by
any clock synchronization algorithm can be no smaller than
(dmax−dmin)(1−1/n), where n is the number of nodes in the
system, and dmax and dmin are the maximum and minimum
value of message delays in the system, respectively. Signifi-
cantly smaller bounds on the upper bound of clock skew can
be achieved if the condition of determinism is loosened. If

341

the deterministic guarantee is replaced with a probabilistic
guarantee, where the probability of failing can be bounded,
it might suffice for many applications.

This probabilistic guarantee is specially significant for sen-
sor networks, as sensor networks inherently assume a level
of redundancy present in the number of nodes and are fairly
robust to failures. This approach might entail saving a sig-
nificant amount of resources in the sensor network, while
giving some guarantees. We thus develop a probabilistic
clock synchronization protocol for sensor networks, basing
our work done previously by Christian [5] and Arvind [4].

2.3 Sources of Clock Synchronization Error
The biggest source of error in synchronization algorithms

stems from non-determinism in message delivery latency.
In an effort to reduce this non-determinism, we review the
sources of this latency. Kopetz et al. [1] have characterized
the message delivery latency into four distinct components:

• Send Time: The time spent at the sender to build
the message.

• Access Time: This is the delay incurred when wait-
ing in the network interface for access to the transmis-
sion channel.

• Propagation Time: This is the time needed for the
message to propagate from sender to receiver over the
wireless medium.

• Receive Time: This is the time needed for process-
ing at the receiver’s network interface.

Most clock synchronization algorithms go to great lengths
to reduce the above non-determinism in message delivery.
A significantly different approach has been taken in the Ce-
siumSpray system [2]. CesiumSpray takes advantage of the
inherent broadcast nature of the wireless medium. The Send
Time and Access Time are unknown and highly variable.
However, for a set of receivers listening to a common sender,
those times are identical for all of the receivers. The only
variable time is the Propagation Time and Receive Time,
which are much smaller in value. This approach entails syn-
chronizing a set of receivers with each other, in contrast to
synchronizing with the sender. We use this idea to signifi-
cantly reduce the sources of error in our clock synchroniza-
tion protocol.

2.4 Models of Clock Synchronization
There are many different types of clock synchronization.

Each type has its usage. They are as follows:

• Global clock: There is a precise global time, UTC,
which is maintained by atomic clocks in standard lab-
oratories. Traditional Internet clock synchronization
algorithms try to maintain this global time in all com-
puter systems. Maintaining this time in sensor net-
works is significantly harder. Sensor networks also do
not typically need this strict clock synchronization. In
this paper, we can provide this service with a certain
degraded accuracy if a GPS is available. But, main-
taining this time is not the thrust of this work.

• Relative clock: This is the relative notion of time
within the sensor network. Each node is synchronized
with every other node with a time which might be
totally different from UTC. This suffices for most of
the applications of clock synchronization that we have
described earlier. In this work, we provide this syn-
chronization with an accuracy which is bounded with
a tunable confidence probability.

• Relative notion of time: Time can also be main-
tained between nodes, not with real time, but with
some logical notion. This logical notion need not match
with physical clock. For example, two nodes might
need to trigger an alarm 10 time units after some event
has occurred (time unit might not be seconds). This
sort of time is very often enough for a variety of ap-
plications. But, providing the previous type of clock
synchronization also automatically provides this type
of clock synchronization. So, we indeed provide this
notion of clock synchronization.

• Physical ordering: In many cases precise times
might not be important, but what is important is the
ordering of events. If the system can state whether an
event occurred before or after another, that is enough.
This type of synchronization simply involves ordering
of events in some partial or total order. Having previ-
ous clock synchronization types automatically provide
this type. However, we note that this might be signif-
icantly cheaper in terms of resources to achieve. So,
if application need only this type of synchronization,
alternate means should be used to preserve scarce re-
sources.

Another classification is in terms of the initiator of synchro-
nization procedure. In this work, we provide all three types
of synchronization below, depending on the system need.
They are as follows:

• Always On: In this model, clock synchronization
between nodes is always present. Many applications
like TDMA scheduling might need this model. This
model is the model of traditional clock synchronization
protocols. But, maintaining this model might present
a significantly higher overhead, if the applications re-
quire clock synchronization rarely.

• Sensor Initiated: In this model the sensor nodes
decide whether to have synchronization or not. They
synchronize between themselves or a subset of the nodes,
whenever necessary. This is useful when the need for
synchronization is not required frequently. But it might
entail a certain degree of latency before synchroniza-
tion can be achieved. So the applications will need to
tolerate this latency.

• Outsider Initiated: This is similar to the previous
model. But here the initiator of clock synchronization
is somewhere outside the sensor network, for example
a control center. This model degrades to the previous
model though, once the message to start synchroniza-
tion has reached from the outsider to the necessary
sensor nodes. So, this is essentially same as the previ-
ous one and we will not treat this as different.

342

3. RELATED WORK

3.1 Traditional Clock Synchronization
Protocols

As mentioned earlier, most traditional clock synchroniza-
tion protocols share the same basic design: a connection-less
messaging protocol, exchange of clock information between
client and server(s), methods to reduce the effects of ran-
dom non-deterministic communication delay, and a method
to upgrade the client time based on the information from
the server. NTP is widely deployed in the internet, since
it is scalable, robust and has good performance. It consists
of various levels (or stratum) of servers in a hierarchy pro-
viding synchronization to the clients which are leaves in a
hierarchical tree. These protocols cannot be applied directly
to sensor networks because of the differences pointed out in
Section 2.1.

3.2 Wireless Clock Synchronization Protocols
There have been a few synchronization protocols which

are specifically for wireless or ad hoc networks. Romer [11]
proposed a scheme for sparse ad hoc networks. The algo-
rithm does not synchronize the computer clocks of the nodes,
but generates time-stamps which is used by the unsynchro-
nized clocks to transform the message time-stamp. As a
message moves from hop to hop, each node transforms the
message time-stamp to its local time-stamp with some intro-
duced error. This error increases with the number of hops.
Huang et al. [12] showed that the 802.11 MAC time synchro-
nization protocol is not scalable for large number of nodes.
They proposed a simple modification to the MAC proto-
col which maintains synchronization among nodes in a sin-
gle broadcast region. Saurabh et al. [13] recently proposed
a timing synchronization protocol based on sender-receiver
synchronization.

3.3 Receiver-Receiver Synchronization
A couple of previous works use a completely different ap-

proach than the traditional approaches. They synchronize
a set of receivers among themselves. This reduces much
of the message delivery latency non-determinism associated
with traditional protocols. CesiumSpray [2] was the first
to use this idea. It is a hybrid external/internal synchro-
nization protocol. It uses a two-level hierarchy to improve
scalability.

Our work is based on the Reference Broadcast Synchro-
nization (RBS) [3]. Least-squares linear regression is used
to find the relative frequency of the clocks. RBS uses post-
facto synchronization to synchronize two nodes’ clocks by
extrapolating backwards to estimate the phase offset at any
previous time. It extends the work to do multihop clock syn-
chronization. Our protocol is similar to this work in terms
of protocol in the single-hop case, other than some minor
improvements. However, RBS does not contain any analy-
sis on the number of reference broadcasts necessary, or the
frequency of reference broadcasts. We analyse these issues
and provide a probabilistic bound on the maximum error.
We also relate this probability with the number of reference
broadcasts required. RBS also has more overhead in terms
of exchanging information between the receivers. It assumes
a single broadcast region for the sender and all the receivers,
which is not the case. Two receivers, lying in the broadcast
range of a sender, might not be able to exchange messages

since they might be out of range of each other. For multihop
synchronization, unlike RBS, our protocol does not require
all sensor nodes to be within one hop of at least one sender.

3.4 Probabilistic Clock Synchronization
There are a few synchronization protocols that are prob-

abilistic in nature. The clock skew that a probabilistic pro-
tocol guarantees, has a probability of invalidity associated
with the guarantee. However, the probability of invalidity
can be bounded. All the probabilistic algorithms proposed
are for server-client architecture, where the clients try to
synchronize with the clock of the server. This is funda-
mentally different from our approach where we synchronize
amongst receivers.

However, we adapt the idea of the probability analysis
techniques proposed in the following two papers. The idea
of probabilistic protocol was proposed by Christian [5]. He
realized that guarantee cannot be provided when unbounded
message delays are possible or messages can be lost. Hence,
his principle is to retry sufficient number of times to read the
clock of another process with a given precision with prob-
ability as close as desired. However, there are some fun-
damental limitations to the accuracy that can be achieved.
His algorithm reads the remote server clock within the spec-
ified precision. It repeats these attempts till a reply comes
back within a certain desired interval of time. The lower the
round trip time for a reading attempt and its reply to come
back, the higher the accuracy achieved in reading the clock
of the remote server. The average number of messages to
reach synchronization is 2/(1−p), where p is the probability
of failure of message delivery within a fixed period of time.
This process is repeated k times, such that the probability
of reaching synchronization is 1 − pk. By choosing a large
enough k, the probability can be made arbitrarily close to 1.

Arvind [4] proposed another probabilistic synchronization
protocol. It has two main parts— the Time Transmission
Protocol (TTP), by which the clock value of the sender is
read by the receiver, and Probabilistic Clock Synchroniza-
tion (PCS), which uses this value to adjust the receivers
clock. In TTP, the sender sends a sequence of n synchro-
nization messages, each having the sender time-stamp. The
receiver adjusts the clock value using these n time-stamps.
The synchronization procedure is repeated every interval of
time. He analytically showed the minimum number of mes-
sages necessary for achieving a given maximum synchroniza-
tion error. This paper has less overhead than Christian’s
paper, if the physical medium is considered to be broadcast.

4. SINGLE-HOP CLOCK SYNCHRONIZA-

TION
In this section, we describe the technique of receiver-receiver

synchronization used in our protocol. Next, we present the
extension of this technique to probabilistic synchronization
for use within a single broadcast region. We then analyse it
mathematically to find the probabilistic bounds.

4.1 Receiver-Receiver Synchronization Error
The sources of non-deterministic error in message latency

have been described in Section 2.3. In RBS and Cesium-
Spray, this non-deterministic error was significantly reduced
by synchronizing among the receivers, instead of synchro-
nizing between the sender and receivers. In receiver-receiver

343

synchronization, the only remaining sources of non-determinism
are the Propagation Time and Receive Time. Propagation
Time is very small, considering the range of the sensors and
the speed of radio waves. Receive Time is much more deter-
ministic and can be bounded by time-stamping the receiving
time at the hardware level [1, 3]. If the total error previ-
ously was ǫsr, for sender-receiver synchronization, and the
error in this case is ǫrr, for receiver-receiver synchronization,
then ǫsr >> ǫrr.

The receiver-receiver synchronization works in the follow-
ing manner. The sender sends a reference pulse at any time.
Each receiver marks when it received the reference pulse ac-
cording to its local clock. All the receivers exchange with
each other the time of reception of the reference pulse. Since
each receiver assumes that the pulse should have been re-
ceived by all other receivers at approximately the same real
time, a receiver A is able to estimate the offset of its clock
with respect to another receiver B which has exchanged in-
formation with A. The number of reference packets may be
increased in order to get better synchronization.

Elson et al. [3] have found the distribution of the synchro-
nization error among a receiver set. Multiple pulses are sent
from the sender to the set of receivers. The difference in
actual reception time at the receivers is plotted. As each
of these pulses are independently distributed, the difference
in reception times gives a Gaussian (or normal) distribution
with zero mean.

Given a Gaussian probability distribution for the synchro-
nization error, it is possible to calculate the relation between
a given maximum error in synchronization and probability
of actually synchronizing with an error less than the max-
imum error. If the maximum error that we allow between
two synchronizing nodes is ǫmax, then the probability of
synchronizing with an error ǫ ≤ ǫmax is given from Gaus-
sian distribution property.

P (|ǫ| ≤ ǫmax) =

� ǫmax
−ǫmax

e
−

x2

2 dx
√

2π

So, as the ǫmax limit is increased, the probability of failure
(1 − P (|ǫ| ≤ ǫmax)) decreases exponentially. We use this
observation in the analysis below.

4.2 Description of the Protocol
In this section, we present our protocol, extending the

deterministic RBS protocol to provide adaptive clock syn-
chronization. The frameworks for providing external syn-
chronization with UTC and for providing relative synchro-
nization among the nodes are different. In this paper, we
concentrate on providing relative synchronization, as it is
sufficient for most sensor network applications.

• For external synchronization, we assume the availabil-
ity of GPS in a subset of the nodes. These nodes will
be senders of synchronization messages. The sensor
nodes will synchronize with these GPS receivers us-
ing any of the many sender-receiver probabilistic algo-
rithms proposed previously [4, 5]. Obviously, the syn-
chronization error will be more than receiver-receiver
synchronization because of the reasons pointed out in
the Section 4.1.

• For relative synchronization, we use receiver-receiver
algorithm. The basic framework for providing the Al-

ways On or Sensor Initiated model is the same. So,
we present and analyse them together, pointing out
the differences as and when necessary. The steps in
this protocol are described next. The subset of nodes
chosen as senders is random among the set of sensor
nodes. If the relative density of sensor sender nodes
and all sensor nodes is above a threshold, and if we as-
sume uniform distribution of the sensor nodes, we can
assume the presence of sender sensors in every broad-
cast region. But, this assumption is not necessary, as
we will see in section 5, when we extend our protocol
for multihop synchronization.

The following happens for every sender sensor in a single-
hop broadcast region. A particular sensor being in the
broadcast region of two senders will do all of the steps below
separately for each sender. When synchronization is neces-
sary in a sensor-initiated model, the sensors needing syn-
chronization send out a REQUEST . This request is broad-
casted till it reaches a sender sensor, which starts a cycle of
the algorithm. In the Always On model, each sender sensor
starts the cycle and repeats it periodically (period is deter-
mined analytically in Section 4.3).

1. A sender broadcasts n reference packets to its neigh-
bors. Each packet contains two counters, one showing
a cycle number, and another the reference packet num-
ber in the current cycle. The interval between each
packet is fixed and greater than some minimum, such
that they are independent of each other.

2. Each receiver records the time according to its own
local clock, when each of these reference packets are
received. Using these time-stamps, the receiver uses
linear regression to fit a line on these data. The slope
of the line will approximate the relative clock skew
between the receiver and the sender.

3. Each receiver sends back to the sender, a packet con-
taining the slope of the line and one point on that line.
The sending back of these packets are jittered over an
interval so that the packets sent back by different re-
ceivers have less chance of colliding with each other.

4. The sender composes all these slopes together, and
broadcasts a packet containing its relative clock skew
slope to all the receivers who have replied back.

5. Each receiver after receiving this packet, can now cal-
culate its own slope relative to all the receivers in the
broadcast region of a a particular sender. So, for ev-
ery pair of receivers, within the broadcast region of the
sender, the clock skew and clock offset are now known
with some synchronization error. The Send Time and
Access Time errors are factored out when calculating
this relative slope, as that error is the same for any
two receivers. The only error present will be that due
to propagation time and receive time.

4.3 Mathematical Analysis
The preceding section shows how our algorithm keeps the

clocks of sensor nodes synchronized. In this section we will
analyse the probabilistic guarantee of achieving the desired
synchronization skew. We will derive how to convert the

344

service specifications (maximum clock synchronization er-
ror and confidence probability) to actual protocol param-
eters (minimum number of messages and synchronization
interval).

4.3.1 Synchronization overhead

The error among the receivers is a normal distribution,
as described in Section 4.1. Normal distribution makes it
easier to study a distribution statistically. The following
theorem gives a relation between the synchronization error
and its associated probability, with the message overhead.

For n synchronization pulses from the sender, the receivers
exchange their observations via the sender. As explained
earlier, the slope of the skew between the receivers is found
by a least square linear estimation using the n data points.
The calculated slope of the skew has an associated error in
it. This error is the difference in phase between the cal-
culated slope and the actual slope. As the points have a
Gaussian distribution, this error can be calculated. As the
number of data samples, n, increases, this error reduces. To
prove the theorem, the following lemmas will be used.

In Lemma 1, it is proved that the characteristic function
of the sum of independent random variables is a product of
the characteristic function of each random variable.

Lemma 1: Let Z = X1 + X2 with fX1(x), fX2(x) and
fZ(z) denoting pdf’s of X1, X2, and Z respectively, X1 and
X2 are independent random variables. Then, ΦZ(ω) =
ΦX1(ω)ΦX2(ω). Extending the result by induction, ΦZ(ω) =
ΦX1(ω)ΦX2(ω) · · ·ΦXn(ω).

In Lemma 2, the characteristic function of the sum of
independent random variables is derived, if the random vari-
able’s are Gaussian distributions. This derivation uses Lemma 1.

Lemma 2: The characteristic function of the summation
of n Gaussian distributions is:

φZ(t) = eiµt− σ2t2

2n

Proof : Given that, Z = X1+X2+···+Xn

n

= X1
n

+ X2
n

+ · · · + Xn

n

Now, f(x) = e
−

1
2 [x−µ

σ]2
√

2πσ

Therefore, f(y) = f � x
n ✁

= ne

−
1
2 ✂✄ (x

n
−

µ
n)n2

σ ☎✆ 2

√

2πσ
= e

−
1
2 ✝ y−

µ
n

σ
n ✞ 2

√

2π(σ
n)

The characteristic function of a Gaussian distribution Xi

is, φXi
(t) = eiµt−σ2 t2

2

So, the characteristic function of Xi

n
is,

φ Xi
n

(t) = ei
µ
n

t−(σ
n)2 t2

2

From the previous lemma, the characteristic function of
the summation of the independent random variables will by
the product of the characteristic function of the individual
random variables. Therefore, the characteristic function of
Z is

φZ(t) = ✟ ei
µ
n

t−(σ
n)2 t2

2 ✠ n

= e
(i µ

n
t− σ

n2
t2

2
)n

= e(iµt−σ2 t2

2n
) = e

(iµt−(σ
√

n
)2 t2

2
)

Using the Gaussian distribution N(µ, σ2

n
) of Z, the syn-

chronization error function can be found. Theorem 1 gives
the relation between the synchronization bound with asso-
ciated probability, and the minimum number of messages
necessary. As the number of messages is the overhead of the
protocol, this also gives the resource requirement to achieve
a specified synchronization bound. This is the error in syn-
chronization at the time when synchronization is done.

Theorem 1: P (|ǫ| ≤ ǫmax) = 2 erf ✡ √
n ǫmax

σ ☛
where ǫ is the clock skew at synchronization, ǫmax is the
maximum specified clock skew at synchronization point, n is
the minimum number of synchronization messages to guar-
antee the specified error, and σ is the variation of the dis-
tribution.

Proof: For a Gaussian distribution N(µ, σ2), the pdf,

f(x) = e
−

1
2 [x−µ

σ]2
√

2πσ2

Hence, for the Gaussian distribution of Z,

f(z) = e

−
1
2 ✂✄ x−µ

σ
√

n
☎✆ 2

☞
2π(σ

√

n
)2

The probability that the error, ǫ lies within ǫmax is given
by:

P (|ǫ| ≤ ǫmax) =

� ǫmax
−ǫmax

e

−
(x−µ)2

2(σ
√

n
)2

dx☞
2π(σ

√

n
)2

Putting µ = 0,

P (|ǫ| ≤ ǫmax) =
2
√

n
� ǫmax
0 e

−
nx2

2σ2 dx
√

2πσ2

=
2
√

nσ
� ǫmax

σ
0 e

−
ny2

2 dy
√

2πσ2
[Putting y = x

σ
]

=
2

�
√

nǫmax
σ

0 e
−

z2

2 dz
√

2π
[Putting z = y

√
n]

= 2erf (ǫmax
√

n

σ
) [Where, erf (x) =

�
x
0 e

−
t2

2 dt
√

2π
]

4.3.2 Synchronization interval

The previous theorem specified the minimum synchroniza-
tion error, given the number of messages. That was the
error in synchronization precisely when synchronization was
done. In the next theorem, given a maximum specified clock
skew, a time period within which re-synchronization has to
be done is derived.

Theorem 2: γmax = ǫmax + (Tsync + σmax)ρ

where γmax is the maximum allowable synchronization at
any point in time, Tsync is the time period between syn-
chronization points for the Always On model (time period
of validity for Sensor Initiated model), ρ is the maximum
drift of the clock rate, and σmax is the maximum delay (af-
ter the synchronization procedure has been started) in the
time values of one receiver reaching another receiver.

345

R7

S

R1

R2

R3

R4

R5

R6

Figure 1: Multihop clock synchronization

Proof : In our protocol, successive re-synchronization at-
tempts are never spaced more than Tsync +σmax time units,
since once the re-synchronization has started, a receiver
might receive the vector corresponding to the times reported
by another receiver after, at most σmax time. Thus, due
to clock drift, the maximum clock skew that can arise be-
tween two receiver clocks, in this time interval is (Tsync +
σmax)ρ. Moreover, our synchronization protocol guarantees
that after a synchronization attempt, the maximum skew
between two receivers is ǫmax with an invalidity probabil-
ity of 1 − P (|ǫ| ≤ ǫmax). Hence, the total maximum skew
that can develop between two receiver clocks is given by
γmax = ǫmax + (Tsync + σmax)ρ.

5. MULTIHOP SYNCHRONIZATION
In the previous section, we presented our algorithm for

achieving adaptive clock synchronization among all receivers
that are within a single wireless hop of a sender. In this
section, we extend our algorithm to achieve clock synchro-
nization between receivers that may be multiple hops away
from a sender. This multihop extension is in contrast to
the multihop extension proposed by Elson et al. [3] that as-
sumes that all sensor nodes are always within a single hop
of at least one sender. Also, in order for two sensor nodes
(present in the broadcast regions of two different senders)
to be synchronized, their algorithm requires the existence
of a node that is within the broadcast region of both the
senders. Our algorithm does not make any such assump-
tions, and sensor nodes in our algorithm are allowed to be
multiple hops away from a sender and still be synchronized
with all other nodes within the nodes transmission range.

5.1 Protocol Description
For this protocol, we consider senders at various levels.

A sender which does not need any synchronization (like the
sender in Section 4) is called a sender at level 0. A sensor
node which is within the broadcast region of a sender at
level 0 can behave as a sender in order to synchronize sensor
nodes which are two hops away from the sender at level 0.
Such a sender is called a sender at level 1. This can be
extended for multiple hops from the sender at level 0.

The receivers which are within the broadcast region of
the sender at level 0 get synchronized in the same way as
described in Section 4. Once these receivers get synchro-
nized among themselves, each receiver starts behaving as a
sender at level 1 and starts sending n reference broadcast
packets. In order to avoid collision of reference broadcast
packets, a sender at level 1 delays the transmission of its n

reference packets until it does not hear the reference packets

of any other sender at level 1. These packets are received by
all sensor nodes which are within the broadcast region of a
sender at level 1.

Consider the scenario presented in Figure 1. Nodes R1,
R2, R3 and R4 are within the broadcast region of the sender
S. Using the single hop synchronization protocol nodes R1,
R2, R3 and R4 are synchronized among themselves. Sup-
pose R2 gets to be the first node to end the reference broad-
cast, that is R2 starts behaving as a sender at level 1. By a
similar synchronization procedure, R1, R3, R5, R6 and R7
get synchronized among themselves. Now suppose R6 needs
to send a message to R4. The message would have to be
routed through a node which is synchronized with R6, say
R3. The assumption here is that due to the relative high
density of sensor nodes, a node, such as R3 as shown in
Figure 1, will exist in the broadcast region of two senders;
the two senders might be at the same level or they might
be separated by a single level. Now since R3 is synchro-
nized with R4, R3 can transform the time reported by R6.
Finally, since R3 is synchronized with R4, R4 can trans-
form the time reported by R3. Hence, all along the routing
path of the message suitable time transformations can be
performed.

However, from the description of the protocol it seems
that the protocol will have a very high overhead since the
protocol essentially floods the entire network with reference
packets. This can be easily fixed by causing time synchro-
nization to be sensor initiated so that a sender (at any level)
broadcasts reference packets only if the sender receives a re-
quest for synchronization from a sensor node in the local
broadcast region of the sender. This ensures that a node
does not broadcast reference packets if there is no sensor
node in its local broadcast region that can listen to the ref-
erence packets.

5.2 Mathematical Analysis
The mathematical analysis of this protocol is similar to

the mathematical analysis presented in Section 4.3. If ǫmax

is the maximum error between two receivers present in the
broadcast region of a sender then the maximum error pos-
sible between two sensor nodes which are k hops apart is
k · ǫmax. We shall prove by mathematical induction on the
number of time transforms performed on an actual reported
time.

Base Case: If there is a single time transform performed on
the message then by the analysis of Section 4.3 the maximum
error possible between the actual time reported and the
transformed time is ǫmax. Thus, if the actual time is t0 then
the reported time will lie in the interval [t0− ǫmax

2
, t0+

ǫmax
2

].

Induction Hypothesis: After k time transformations on
the actual reported time t0, the transformed time can lie in
the interval [t0 − k · ǫmax

2
, t0 + k · ǫmax

2
] since by induction

hypothesis the maximum error after k time transformations
is k · ǫmax.
Suppose we perform one more time transform on the time
tr ∈ [t0 −k · ǫmax

2
, t0 +k · ǫmax

2
]. Then the transformed time

will lie in the interval

�

t0 − k · ǫmax

2
− ǫmax

2
, t0 + k · ǫmax

2
+

ǫmax

2 ✁

346

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

e
rf

(x
)

x

"erf"

Figure 2: Error function of x versus x

=
�

t0 − (k + 1) · ǫmax

2
, t0 + (k + 1) · ǫmax

2
✁

Thus, the error is 2(k+1) · ǫmax
2

= (k+1) ·ǫmax. This proves
our induction hypothesis.

Moreover, if p is the probability that the maximum error
between two receivers within broadcast region of a sender is
ǫmax, then pk is the probability that k ·ǫmax is the maximum

error between two receivers which are k hops apart. Since
p < 1 ⇒ pk < p, the larger the number of time transforma-
tions, the lesser the probability of staying within an error
bound. However, if we consider the average error over a
single hop to be erravg = ǫmax

2
then the average error over

k hops will be erravg ·
√

k (since variance is additive). This
implies that the error propagation is sublinear.

6. EVALUATION
The error function erf (x) is a standard function and has

been plotted in Figure 2. The function is defined for nega-
tive values of x, yet since erf (−x) = −erf (x), we plot the
function only for positive values of x. As shown in Figure 2,
the function asymptotically reaches the value of 0.5. Theo-
rem 1 gives the probability of achieved error being less than

a maximum specified error as

P (|ǫ| ≤ ǫmax) = 2 erf � √
n ǫmax

σ ✁
We can derive a relationship between n i.e. the number of
messages and the achieved probability P . This relationship
is plotted in Figure 3. Each of the three different curves
corresponds to the ǫmax

σ
ratio of 0.5, 1.0, and 2.0. Thus,

given an ǫmax and the probability P of achieving an error
ǫ ≤ ǫmax we can find the required number of messages. As
expected, if the ratio increases we need lesser number of
messages in order to achieve a desired probability i.e. n ∝✡ σ

ǫmax ☛ 2

. This proportionality suggests that once the ǫmax

has been specified, the number of messages required is very
sensitive to the standard deviation. From Table 1, it is clear
that for lower values for the ratio of ǫmax

σ
the number of

messages required gets quite large. For example, to achieve
a probability of 0.99 with ǫmax

σ
= 1, the algorithm requires

7 messages whereas for ǫmax
σ

= 2, the algorithm requires
only 2 messages.

ǫmax
σ

Probability Number of messages

0.5 0.95 16
0.5 0.99 28
0.5 0.999 44

1.0 0.95 4
1.0 0.99 7
1.0 0.999 11

2.0 0.95 1
2.0 0.99 2
2.0 0.999 3

Table 1: Variation in probability and number of

messages for different values of ǫmax
σ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

P
ro

b
a
b
ili

ty

number of messages

ratio=0.5
ratio=1
ratio=2

Figure 3: Probability of achieved error being less

than a maximum

347

7. CONCLUSION
In this paper, we present and analyze a adaptive clock

synchronization protocol for sensor networks. This proto-
col is based on the earlier deterministic RBS protocol [3].
The RBS protocol uses the concept of receiver-receiver syn-
chronization to achieve better synchronization bounds than
traditional synchronization protocols. Our protocol, being
a probabilistic one, is not bound by the limit given by Lun-
delius et al. [10]. In our protocol, we periodically send n

messages to probabilistically keep the clocks of the sensor
network within the specified error bound. Our contributions
in this paper are three-fold:

• We extend the deterministic RBS protocol to provide
adaptive clock synchronization, allowing the trade-off
between the synchronization accuracy and the resources
used by the protocol.

• We analyze the protocol to derive expressions for syn-
chronization overhead (in terms of number of mes-
sages) and synchronization interval. For example, we
show that to achieve a synchronization error less than
σ of the distribution with a confidence probability of
99%, the protocol requires 7 synchronization messages
per interval. We show how to convert service spec-
ifications (maximum clock synchronization error and
confidence probability) to actual protocol parameters
(minimum number of messages and synchronization in-
terval).

• We also extend the RBS protocol to handle multi-
hop clock synchronization in which all nodes need not
be within single-hop range of a clock synchronization
sender. Those nodes not within single-hop range will
receive synchronization with some degradation of the
bounds, when compared to single-hop case.

We are currently implementing our adaptive clock syn-
chronization protocol in Berkeley sensor motes to show its
performance experimentally. We would like to build actual
applications for sensor networks that utilize our adaptive
clock synchronization service.

8. ACKNOWLEDGEMENTS
This work was supported in part by NSF under grants

ANI-0338856, CNS-0325971, and ANI-0209204, by NASA
under grant NAG3-2534, and by a gift from Schlumberger.
The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either express
or implied, of NSF, NASA, Schlumberger, Rice University,
or the U.S. Government or any of its agencies.

9. REFERENCES
[1] Kopetz, H., wilhelm Ochsenreiter: Global time in

distributed real-time systems. Technical Report 15/89,
Technische Universitat Wien, Wien Austria (1989)

[2] Verissimo, P., Rodrigues, L., Casimiro, A.:
CesiumSpray: A Precise and Accurate Global Time
Service for Large-Scale Systems. Journal of Real-Time
Systems 12 (1997) 243–294

[3] Elson, J., Girod, L., Estrin, D.: Fine-Grained Network
Time Synchronization using Reference Broadcasts. In:
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, Boston,
Massachusetts (2002)

[4] Arvind, K.: Probabilistic Clock Synchronization in
Distributed Systems. IEEE Transactions on Parallel
and Distributed Systems 5 (1994) 474–487

[5] Cristian, F.: Probabilistic Clock Synchronization.
Distributed Computing 3 (1989) 146–158

[6] Mills, D.: Internet Time Synchronization: The
Network Time Protocol. IEEE Transactions on
Communications 39 (1991) 1482–1493

[7] Elson, J., Romer, K.: Wireless Sensor Networks: A
New Regime for Time Synchronization. In: First
Workshop on Hot Topics in Networks, Princeton, New
Jersey (2002)

[8] Lamport, L.: Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM 21 (1978) 558–565

[9] Srikanth, T.K., Toueg, S.: Optimal Clock
Synchronization. Journal of the ACM 34 (1987)
626–645

[10] Lundelius, J., Lynch, N.: A new fault-tolerant
algorithm for clock synchronization. In: Proceedings
of the Third annual ACM Symposium on Principles of
Distributed Computing, Vancouver, Canada (1984)
75–88

[11] Romer, K.: Time Synchronization in Ad Hoc
Networks. In: Proceedings of the Second ACM
International Symposium on Mobile Ad Hoc
Networking and Computing, Long Beach, California
(2001)

[12] Huang, L., Lai, T.H.: On the Scalability of IEEE
802.11 Ad Hoc Networks. In: Proceedings of the Third
ACM International Symposium on Mobile Ad Hoc
Networking and Computing, Lausanne, Switzerland
(2002)

[13] Ganeriwal, S., Kumar, R., Srivastava, M.B.:
Timing-sync Protocol for Sensor Networks. In:
Proceedings of the 1st ACM Conference on Embedded
Networked Sensor Systems (SenSys), Los Angeles,
California (2003)

348

