
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007 1

Adaptive Cluster Distance Bounding for High
Dimensional Indexing+

Sharadh Ramaswamy∗, Student Member, IEEE, and Kenneth Rose†, Fellow, IEEE

Abstract—We consider approaches for similarity search in
correlated, high-dimensional data-sets, which are derived within a
clustering framework. We note that indexing by “vector approxi-
mation” (VA-File), which was proposed as a technique to combat
the “Curse of Dimensionality”, employs scalar quantization,
and hence necessarily ignores dependencies across dimensions,
which represents a source of suboptimality. Clustering, on the
other hand, exploits inter-dimensional correlations and is thus a
more compact representation of the data-set. However, existing
methods to prune irrelevant clusters are based on bounding
hyperspheres and/or bounding rectangles, whose lack of tightness
compromises their efficiency in exact nearest neighbor search. We
propose a new cluster-adaptive distance bound based on separat-
ing hyperplane boundaries of Voronoi clusters to complement our
cluster based index. This bound enables efficient spatial filtering,
with a relatively small pre-processing storage overhead and is
applicable to Euclidean and Mahalanobis similarity measures.
Experiments in exact nearest-neighbor set retrieval, conducted
on real data-sets, show that our indexing method is scalable with
data-set size and data dimensionality and outperforms several
recently proposed indexes. Relative to the VA-File, over a wide
range of quantization resolutions, it is able to reduce random
IO accesses, given (roughly) the same amount of sequential IO
operations, by factors reaching 100X and more.

Index Terms—Multimedia databases, indexing methods, simi-
larity measures, clustering, image databases.

I. INTRODUCTION

W ITH developments in semiconductor technology and

powerful signal processing tools, there has been a

proliferation of personal digital media devices such as digital

cameras, music and digital video players. In parallel, storage

media (both magnetic and optical) have become cheaper to

manufacture and correspondingly their capacities have in-

creased. This has spawned new applications such as Multi-

media Information Systems, CAD/CAM, Geographical Infor-

mation systems (GIS), medical imaging, time-series analysis

(in stock markets and sensors), that store large amounts of data

periodically in and later, retrieve it from databases (see [1] for

more details). The size of these databases can range from the

relatively small (a few 100 GB) to the very large (several 100

TB, or more). In the future, large organizations will have to

retrieve and process petabytes of data, for various purposes

such as data mining and decision support. Thus, there exist

numerous applications that access large multimedia databases,

which need to be effectively supported.
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Spatial queries, specifically nearest neighbor queries, in

high-dimensional spaces have been studied extensively. While

several analyses [2], [3], have concluded that the nearest-

neighbor search, with Euclidean distance metric, is impractical

at high dimensions due to the notorious “curse of dimen-

sionality”, others have suggested that this may be overpes-

simistic. Specifically, the authors of [4] have shown that what

determines the search performance (at least for R-tree-like

structures) is the intrinsic dimensionality of the data set and

not the dimensionality of the address space (or the embedding
dimensionality).

The typical (and often implicit) assumption in many previ-

ous studies is that the data is uniformly distributed, with inde-

pendent attributes. Such data-sets have been shown to exhibit

the “curse of dimensionality” in that distance between all pairs

of points (in high dimensional spaces) converges to the same

value [2], [3]. Clearly, such data-sets are impossible to index as

the nearest and furthest neighbors are indistinguishable. How-

ever, real data sets overwhelmingly invalidate assumptions of

independence and/or uniform distributions; rather, they typi-

cally are skewed and exhibit intrinsic (fractal) dimensionalities

that are much lower than their embedding dimension, e.g.,

due to subtle dependencies between attributes. Hence, real

data-sets are demonstrably indexable with Euclidean distances.

Whether the Euclidean distance is perceptually acceptable is

an entirely different matter, the consideration of which directed

significant research activity in content-based image retrieval

toward the Mahalanobis (or weighted Euclidean) distance (see

[5],[6]). Therefore, in this paper, we focus on real data-sets

and compare performance against the state-of-the-art indexing

targetting real data-sets.

II. OUR CONTRIBUTIONS

In this section, we outline our approach to indexing

real high-dimensional data-sets. We focus on the clustering

paradigm for search and retrieval. The data-set is clustered,

so that clusters can be retrieved in decreasing order of their

probability of containing entries relevant to the query.

We note that the Vector Approximation (VA)-file technique

[7] implicitly assumes independence across dimensions, and

that each component is uniformly distributed. This is an

unrealistic assumption for real data-sets that typically exhibit

significant correlations across dimensions and non-uniform

distributions. To approach optimality, an indexing technique

must take these properties into account. We resort to a Voronoi

clustering framework as it can naturally exploit correlations

across dimensions (in fact, such clustering algorithms are the
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method of choice in the design of vector quantizers [8]).

Moreover, we show how our clustering procedure can be

combined with any other generic clustering method of choice

(such as BIRCH [9]) requiring only one additional scan of

the data-set. Lastly, we note that the sequential scan is in fact

a special case of clustering based index i.e. with only one

cluster.

A. A New Cluster Distance Bound

Crucial to the effectiveness of the clustering-based search

strategy is efficient bounding of query-cluster distances. This

is the mechanism that allows the elimination of irrelevant

clusters. Traditionally, this has been performed with bounding

spheres and rectangles. However, hyperspheres and hyperrect-

angles are generally not optimal bounding surfaces for clusters

in high dimensional spaces. In fact, this is a phenomenon

observed in the SR-tree [10], where the authors have used

a combination spheres and rectangles, to outperform indexes

using only bounding spheres (like the SS-tree [11]) or bound-

ing rectangles (R∗-tree [12]).

The premise herein is that, at high dimensions, consider-

able improvement in efficiency can be achieved by relaxing

restrictions on the regularity of bounding surfaces (i.e., spheres

or rectangles). Specifically, by creating Voronoi clusters, with

piecewise-linear boundaries, we allow for more general convex

polygon structures that are able to efficiently bound the cluster

surface. With the construction of Voronoi clusters under the

Euclidean distance measure, this is possible. By projection

onto these hyperplane boundaries and complementing with the

cluster-hyperplane distance, we develop an appropriate lower

bound on the distance of a query to a cluster.

B. Adaptability to Weighted Euclidean or Mahalanobis Dis-
tances

While the Euclidean distance metric is popular within the

multimedia indexing community (see [7], [13], [14], [15]), it

is by no means the “correct” distance measure, in that it may

be a poor approximation of user perceived similarities. The

Mahalanobis distance measure has more degrees of freedom

than the Euclidean distance [6] and by proper updation (or

relevance feedback), has been found to be a much better

estimator of user perceptions (see [16], [17], [5] and more

recently [6]) . We extend our distance bounding technique to

the Mahalanobis distance metric, and note large gains over

existing indexes.

C. An Efficient Search Index

The data set is partitioned into multiple Voronoi clusters

and for any kNN query, the clusters are ranked in order of

the hyperplane bounds and in this way, the irrelevant clusters

are filtered out. We note that the sequential scan is a special

case of our indexing, if there were only one cluster. An

important feature of our search index is that we do not store the

hyperplane boundaries (which form the faces of the bounding

polygons), but rather generate them dynamically, from the

cluster centroids. The only storage apart from the centroids

are the cluster-hyperplane boundary distances (or the smallest
cluster-hyperplane distance). Since our bound is relatively

tight, our search algorithm is effective in spatial filtering of

irrelevant clusters, resulting in significant performance gains.

We expand on the results and techniques initially presented

in [18], with comparison against several recently proposed

indexing techniques.

III. PERFORMANCE MEASURE

The common performance metrics for exact nearest neigh-

bor search have been to count page accesses or the response

time. However, page accesses may involve both serial disk

accesses and random IOs, which have different costs. On the

other hand, response time (seek times and latencies) is tied

to the hardware being used and therefore, the performance

gain/loss would be platform dependent.

Hence, we propose a new 2-dimensional performance met-

ric, where we count separately the number of sequential

accesses S and number of random disk accesses R. We note

that given the performance in terms of the proposed metric

i.e. the (S,R) pair, it is possible to estimate total number of

disk accesses or response times on different hardware models.

The number of page accesses is evaluated as S + R. If Tseq

represented the average time required for one sequential IO

and Trand for one random IOs, the average response time

would be Tres = TseqS + TrandR.
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Fig. 1. Comparing Performance Graphs of (hypothetical) Index A and Index
B

1) Performance Curves for Index Comparison: Many in-

dexes have index specific free parameters which when tuned

lead to different performances. For example, in the VA-File the

number of quantization levels per dimension can be varied,

leading to different performance characteristics. For other

indexes like iDistance [15], LDC [19] as well as our own

technique , it would be the number of clusters. We vary the

tunable parameters of each index and obtain a performance
graph.

If the performance graph of indexing method A lies strictly
below that of another index B (see Figure 1), then method

A would be preferable. This is because for every choice of

an operating point (SB ,RB) for method B (or an equivalent

response time), we can find an operating point for A (SA,RA)

that has a smaller R and smaller S and hence, lower response
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time1.

IV. RELATED WORK

Several index structures exist that facilitate search and

retrieval of multi-dimensional data. In low dimensional spaces,

recursive partitioning of the space with hyper-rectangles (R-

trees [20], R∗-trees [12]), hyper-spheres (SS-Tree [11]) or a

combination of hyper-spheres and hyper-rectangles (SR-Tree

[10]), have been found to be effective for nearest neighbor

search and retrieval. While the preceding methods specialize to

Euclidean distance (l2 norm), M-trees [21] have been found to

be effective for metric spaces with arbitrary distance functions

(which are metrics).

Such multi-dimensional indexes work well in low dimen-

sional spaces, where they outperform sequential scan. But it

has been observed that the performance degrades with increase

in feature dimensions and, after a certain dimension threshold,

becomes inferior to sequential scan. In a celebrated result,

Weber et. al. [7] have shown that whenever the dimension-

ality is above 10, these methods are outperformed by simple

sequential scan. Such performance degradation is attributed to

Bellman’s ‘curse of dimensionality’ [22], which refers to the

exponential growth of hyper-volume with dimensionality of

the space.

A. Vector Approximation Files

A popular and effective technique to overcome the curse

of dimensionality is the vector approximation file (VA-File)

[7]. VA-File partitions the space into hyper-rectangular cells,

to obtained a quantized approximation for the data that reside

inside the cells. Non-empty cell locations are encoded into

bit strings and stored in a separate approximation file, on

the hard-disk. During a nearest neighbor search, the vector

approximation file is sequentially scanned and upper and lower

bounds on the distance from the query vector to each cell are

estimated. The bounds are used to prune irrelevant cells. The

final set of candidate vectors are then read from the hard-

disk and the exact nearest neighbors are determined. At this

point, we note that the terminology “Vector Approximation” is

somewhat confusing, since what is actually being performed is

scalar quantization, where each component of the feature vec-

tor is separately and uniformly quantized (in contradistinction

with vector quantization in the signal compression literature).

VA-File was followed by several more recent techniques to

overcome the curse of dimensionality. In the VA+-File [23],

the data-set is rotated into a set of uncorrelated dimensions,

with more approximation bits being provided for dimensions

with higher variance. The approximation cells are adaptively

spaced according to the data distribution. Methods such as

LDR [24] and the recently proposed non-linear approximations

[25] aim to outperform sequential scan by a combination of

1Alternatively, consider the tangent to the performance curve of index A
with parametric form TseqS + TrandR = T , for some specific hardware
serial and random IO response times Tseq , Trand. The distance of this tangent
from the origin is proportional to the optimal performance time with A. Now,
if the performance graph of A lies strictly below that of another index B, the
tangent to A is closer to the origin than the tangent to B. Hence, A offers a
faster response time than B.

clustering and dimensionality reduction.There also exist a few

hybrid methods, such as the A-Tree [13], and IQ-Tree [14],

which combine VA-style approximations within a tree based

index.

B. Transformation to and Indexing in One Dimension
Other techniques, such as LDC [19], iDistance [15], and

Pyramid Tree [26], are based on local dimensionality reducing

transformations. The data-set is partitioned and, in each par-

tition, the distances of the resident vectors to some reference

point, typically the centroid, are evaluated. The feature vectors

in a partition are now indexed by their centroid-distance, using

ubiquitous one-dimensional indexes such as the B+-tree [1].

During query processing, spheres of gradually increasing radii

are drawn around the query, until they intersect a cluster

sphere. Now, the relevant elements in the partition, identified

by centroid-distances which lie in the intersecting region, are

retrieved for finer scrutiny. The search radius is set to such a

value that the exact NNs are returned.
It is to be noted that co-ordinate hyperplanes translated to

the centroid divide the feature space into 2d boxes, where d is

the space dimensionality. In LDC [19], another approximation

layer is created, by generating a box identification code for

each resident point. Once an initial set of candidates have been

identified with the B+-tree, the corresponding approximations

are scanned to further filter out irrelevant points within the

partition. The surviving elements are finally retrieved from

the hard drive to determine the nearest neighbors. In order to

reduce disk IO, care is taken to control the maximal fraction

of space searched, yet return the exact nearest neighbors.

C. Approximate Similarity Search
Lastly, it has been argued that the feature vectors and

distance functions are often only approximations of user

perception of similarity. Hence, even the results of an exact

similarity search is inevitably perceptually approximate, with

additional rounds of query refinement necessary. Conversely,

by performing an approximate search, for a small penalty in

accuracy, considerable savings in query processing time would

be possible. Examples of such search strategies are MMDR

[27], probabilistic searches (PAC-NN) [28], VA-LOW [29],

[30], [31], [32] and locality sensitive hashing [33]. The reader

is directed to [34] for a more detailed survey of approximate

similarity search. The limits of approximate indexing i.e. the

optimal tradeoffs between search quality and search time has

also been studied within an information theoretic framework

[35].

V. CLUSTER DISTANCE BOUNDING

In this section, we describe our procedure for estimating

distances to clusters. We begin with a few preliminaries and

then develop an effective cluster distance bound. A list of

notations we use subsequently is presented in Table 1.
Let d(x1, x2) be a distance function that estimates the

distance between feature vectors x1 and x2, that abstract the

actual objects of the database.

d : R
n × R

n → [0,∞) (1)
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TABLE I
TABLE OF NOTATIONS

Symbol Represents...
R Set of real numbers

R
d Feature space of dimension d

X ⊆ R
d d-dimensional data-set

x, x1, x2, ... Typical elements of the data-set
q Typical query
X1, ...,XK K clusters of the data-set
cm Centroid of cluster Xm

H = (n, p) A hyperplane in the feature space
with the normal vector n and scalar p

d(q, H) The distance from q to H
Hmn Hyperplane separating Xm, Xn

d(., .) A typical distance measure
d(q,Xm) The query-cluster distance
dLB(q,Xm) A lower bound on query-cluster

distance
d(Xm, H) Distance of cluster Xm to hyperplane H

In subsequent discussion, we shall first specialize to the

Euclidean distance over (real vector spaces) as the feature

similarity measure i.e. d(x1, x2) = ‖x1−x2‖2 and in a similar

fashion, extend results to the Mahalanobis distance measure

i.e. d(x1, x2) =
√

(x1 − x2)T Σ−1(x1 − x2), where Σ is a

positive definite matrix.

We define the distance from query q and a cluster Xm as

d(q,Xm) = min
x∈Xm

d(q, x) (2)

We note that it would be necessary to read the elements of the

cluster to evaluate d(q,Xm). In practice, lower bounds on the

query-cluster distance would be suitable approximations. Let

dLB(q,Xm) be a typical lower bound. Then, by definition,

dLB(q,Xm) ≤ d(q,Xm) (3)

A. The Hyperplane Bound

Definition 5.1: Hyperplane H = H(n, p) in R
d is defined

as H = {y : yT n + p = 0}
Definition 5.2: Let H = H(n, p) be a hyperplane in R

d and

y ∈ R
d. Then, the distance of y from H is d(y,H) = |yT n+p|

‖n‖2

We are now ready to develop the hyperplane bound.

Lemma 5.1: Given a cluster Xm, query q and hyperplane

H that lies between the cluster and the query (a “separating
hyperplane”),

d(q,Xm) ≥ d(q,H) + min
x∈Xm

d(x,H)

Proof: By simple geometry (see Figure 2), it is easy to

show that for any x ∈ Xm

d(q, x) ≥ d(q,H) + d(x,H)
≥ d(q,H) + min

x∈Xm

d(x,H)

⇒ d(q,Xm) = min
x∈Xm

d(q, x) ≥ d(q,H) + min
x∈Xm

d(x, H) (4)

For convenience, we also use d(Xm,H) to denote the

cluster-hyperplane distance min
x∈Xm

d(x,H).
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Fig. 2. Principle of the Hyperplane Bound.

Corollary 5.2: If Hsep represents a countably finite set of

separating hyperplanes (that lie between query q and cluster

Xm),

⇒ d(q,Xm) ≥ max
H∈Hsep

{d(q, H) + d(Xm,H)} (5)

Inequality (5) can be used to obtain a tighter lower bound

on d(q,Xm). Next, we note that cluster boundaries of Voronoi

clusters are indeed piecewise-linear and may hence benefit

from the above lower bound (see Figure 3). (This result is

of course trivial and is included here for completeness).

Definition 5.3: Let the data-set X be partitioned into

Voronoi clusters {Xm} pivoted around {cm}. Then,

• Xm = {x ∈ X : d(x, cm) ≤ d(x, cn),∀n 
= m}
• X =

⋃
m

Xm where Xm

⋂Xn = φ,∀n 
= m

VORONOI
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Fig. 3. Query Projection on Separating Hyperplane Boundaries of Voronoi
Clusters.

Lemma 5.3: The boundary H12 between two Voronoi clus-

ters X1 and X2 is a linear hyperplane.

Proof: Let c1 and c2 be the pivots for X1 and X2

respectively. Then, ∀y ∈ H12

d(c1, y) = d(c2, y)
⇒ ‖c1 − y‖2

2 = ‖c2 − y‖2
2

⇒ ‖c1‖2
2 − ‖c2‖2

2 − 2(c1 − c2)T y = 0

Therefore, the hyperplane H12 = H(−2(c1 − c2), ‖c1‖2
2 −

‖c2‖2
2) is the boundary between the clusters X1 and X2.
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What is to be noted is that these hyperplane boundaries need
not be stored, rather they can be generated during run-time
from just the pivots {cm}K

1 . We finally present the condition

for a hyperplane to be a separating hyperplane i.e., to lie

between a cluster and the query point.

Corollary 5.4: Given a query q and Hmn, the hyperplane

boundary between Voronoi clusters Xm and Xn, Hmn lies

between q and cluster Xm if and only if d(q, cm) ≥ d(q, cn).
The proof is fairly straight forward.

Lastly, we show how the boundary between Voronoi clusters

remains a hyperplane even under Mahalanobis distances.

Lemma 5.5: The boundary H12 between two Voronoi clus-

ters X1 and X2, defined by a Mahalanobis distance measure,

is a hyperplane.

Proof: Let the new distance measure be evaluated as

d(x1, x2) =
√

(x1 − x2)T Σ−1(x1 − x2) (6)

Let c1 and c2 be the pivots for X1 and X2 respectively.

∀y ∈ H12, d(c1, y) = d(c2, y)
⇒ (c1 − y)T Σ−1(c1 − y) = (c2 − y)T Σ−1(c2 − y)

⇒ −2(c1 − c2)T Σ−1y + cT
1 Σ−1c1 − cT

2 Σ−1c2 = 0

Therefore, H12, the boundary between the clusters X1 and X2,

is a hyperplane.

B. Reduced Complexity Hyperplane Bound

For evaluation of the lower-bound presented in (4) and (5),

we would need to pre-calculate and store d(Hmn,Xm) for

all cluster pairs (m, n). Hence there are K(K − 1) distances

that need to be pre-calculated and stored, in addition to the

cluster centroids themselves. The total storage for all clusters

would be O(K2+Kd). This storage can be reduced by further

loosening the bound in (5) as follows:

d(q,Xm) ≥ max
H∈Hsep

{d(q,H) + d(H,Xm)}
≥ max

H∈Hsep

d(q,H) + min
H∈Hsep

d(H,Xm)

This means that for every cluster Xm we would only need to

store one distance term

dm = min
1≤n≤K,n �=m

d(Hmn,Xm)

VI. CLUSTERING AND INDEX STRUCTURE

The first step in index construction is the creation of Nearest

Neighbor/Voronoi clusters. There exist several techniques of

clustering the data-set, from the fast K-means algorithm [36]

(which requires multiple scans of the data-set) and Generalized

Lloyd Algorithm (GLA) [8] to methods such as BIRCH [9],

which require only a single scan of the data-set. The output

of any of these algorithms can be a starting point. From each

of the K clusters detected by a generic clustering algorithm,

a pivot is chosen i.e. K pivot points in all. Then the entire

data-set is scanned and each data-element is mapped to the

nearest pivot.

Data mapping to the same pivot are grouped together to

form Voronoi clusters (see Algorithm 1). This would lead to

slight re-arrangement of clusters, but this is necessary to retain

piecewise linear hyperplane boundaries between clusters. We

believe the centroid is a good choice as a pivot. Thus, quick

Voronoi clustering, with possibly only a single scan of the

entire data-set, can be achieved using any generic clustering

algorithm. Lastly, also note that any indexing scheme would

need at least one scan of the database, which indicates that

index construction times for our scheme are as very close to

the minimum possible.

Algorithm 1 VORONOI-CLUSTERS(X ,K)

1: //Generic clustering algorithm returns

//K cluster centroids

{cm}K
=1 ←GenericCluster(X ,K)

2: set l = 0, X1 = φ,X2 = φ, . . . ,XK = φ
3: while l < |X | do
4: l = l + 1
5: //Find the centroid nearest to data element xl

k = arg min
m

d(xl, cm)
6: //Move xl to the corresponding Voronoi partition

Xk = Xk

⋃{xl}
7: end while
8: return {Xm}K

=1, {cm}K
=1

We note that the K-means, GLA and BIRCH algorithms are

fast and can generate reliable estimates of cluster centroids,

from sub-samples of the data-set. Typically, for K clusters,

even a sub-sample of size 100K is sufficient. As we shall

see, for the range of clusters we are considering, this would

be overwhelmingly smaller than the data-set. Faster index

construction would be possible by allowing for hierarchical

and multi-stage clustering. However, only the clusters at the

leaf level are returned.

We tested several clustering techniques including GLA and

BIRCH, and the results were largely similar. While it is

possible to also optimize the clustering itself, that is not our

goal in these experiments.

A. Storage Strategy

Elements within the same cluster are stored together (con-

tiguously). We retain the cluster centroids cm and maintain

pointers from each centroid to the location of the correspond-

ing cluster on the hard-disk. We also maintain in a separate

file the distance (bounds) of each cluster from its bounding

hyperplanes. We note that the total storage is O(Kd+K2) and

O(K(d+1)) real numbers, for the full and reduced complexity

hyperplane bounds respectively, where K is the number of

clusters. Lastly, note that while the elements of each cluster

are stored contiguously, the individual clusters are stored on

different parts of the disk, with enough space provided to allow

them to grow and shrink.

Again, we note that the hyperplane boundaries can be

generated in run-time and assume systems of sufficient main-

memory capacity to allow storage of intermediate results. For a

main memory capacity of G Gigabytes, and assuming the exact

hyperplane bound with K >> d, we can store O(104 ×√
G)

clusters. Typical database server memory would easily handle
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TABLE II
ADDITIONAL NOTATION

Variable Type Represents
N Output No. of elements read

dsort
LB [...] Internal Query-cluster lower bounds

sorted in ascending order
o[...] Internal Ranking of clusters

(by distance bounds)
kNN [...] Output k-nearest neighbors to q
dkNN Internal Distance of the kth-NN

found so far
Xcand Internal Candidate set
V ecsPerPage Internal No. of d-dim. vectors

that fit on a page
FLAG Internal Flag to continue

search or stop
count Internal Internal counter

the range of clusters we consider. Figure 4 is representative of

the proposed index.
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Fig. 4. Proposed Index Structure.

VII. THE KNN SEARCH ALGORITHM

We now present KNN-SEARCH, our procedure for k-NN

search. Our algorithm is a branch-and-bound algorithm, and

since the clusters are accessed in order of the lower bounds to

the query distance, it is guaranteed to return the k-nearest

neighbors. The main search algorithm KNN-SEARCH (see

Algorithm 2) calls on four functions

• HyperplaneBound(q) - returns lower bounds on the dis-

tance between query q and all clusters, using separating

hyperplane boundaries (as explained in section V-A).

• SortArray(a[],‘ascend’) - sorts an array a in ascending

order and returns the sorted array and sorting “rank”

(order).

• Farthest(x,A) - returns the distance of the element in A
furthest from x.

• FindkNNsIn(q,A, I) - for query q and initial candidate

list I, finds and returns the kNNs in cluster A, as well

the number of elements in the cluster

• LoadNextPage(F ) - loads a page of a cluster into main

memory (RAM), where F is the pointer to the cluster file

• FindkNN (x,A) - finds the k-nearest neighbors of x in set

A.

Algorithm 2 KNN-SEARCH(q)

1: //Initialize

set FLAG=0, count = 0, N = 0, kNN = φ
2: //Evaluate query-cluster distance bounds

dLB [] ←HyperplaneBound(q)

3: //Sort the query-cluster distance bounds in ascending

//order

{dsort
LB [], o[]} ←SortArray(dLB ,’ascend’)

4: while FLAG==0 do
5: count = count + 1
6: //Find the kNNs upto current cluster

{Nc, kNN} ←FindkNNsIn(q,Xo[count], kNN )

7: //Update number of elements scanned

N = N + Nc

8: //Find the kNN radius

dkNN =Farthest(q, kNN)
9: if count < K then

10: if N > k then
11: if dkNN < dsort

LB [count + 1] then
12: set FLAG=1 //kNNs found, search ends

13: end if
14: end if
15: else
16: set FLAG=1 //all clusters scanned, search ends

17: end if
18: end while
19: return kNN

Algorithm 3 FindkNNsIn(q,A, I)

1: set Nc = 0, F=Open(A), kNN = I
2: while !(EOF(F )) do
3: // Load the next cluster page

C=LoadNextPage(F)

4: //Merge kNN list with current page

Xcand = C ⋃
kNN

5: //Find the kNNs within the candidate list

kNN [] ←FindkNN (q,Xcand)
6: //Update number of elements scanned

Nc = Nc + |C|
7: end while
8: return Nc, kNN

For every query, the processing starts with a call

to HyperplaneBound(q). The centroids and the cluster-

hyperplane distances are loaded into the main memory. The

hyperplane bounds are calculated and returned. These lower

bounds are sorted in ascending order and the clusters are cor-

respondingly ranked (line 3). Then, the first (nearest) cluster is

scanned from the hard-disk (one page at a time2, see Algorithm

3) and the kNNs within this subset of the data-set (line 6)

2We scan clusters one page at a time, since cluster sizes might exceed
available main memory (RAM). As a result, the kNN candidate evaluation is
pipelined or threaded with cluster scanning
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are identified. Additionally, dkNN , the distance of the kth-

NN from the query, is evaluated (line 8) and stored in main

memory. If this distance is less than the distance of the next

closest cluster, then the search ends as the kNNs have been

found. In other words, this is the stopping condition (line 12).

Otherwise, the second cluster is scanned from the disk. The

previous estimate of the kNNs is merged with the entries

of the current cluster to form a new candidate set and the

kNNs within this new candidate set are evaluated. This search

procedure continues till the stopping condition is reached or

all clusters have been searched (line 16).

VIII. EXPERIMENTAL RESULTS

We have conducted extensive tests on real data-sets to char-

acterize and compare the performance of our index structure

with other popular schemes. By varying the number of clusters

(or some suitable parameter), a range of solutions, in terms of

random vs. sequential IOs, was obtained for each index and

these performance curves were subsequently compared.

A. Data-sets and Experimental Set-up

We tested our index on 5 different data-sets - HISTOGRAM,

SENSORS, AERIAL, BIO-RETINA and CORTINA. The HIS-

TOGRAM3 data-set consisted of color histogram extracted

from a sample image data-set. The second real data-set,

SENSORS, was generated by the Intel Berkeley Research

Lab4. Data were collected from 54 sensors deployed in the

Intel Berkeley Research lab between February 28 and April

5, 2004. Each sensor measures humidity, temperature, light

and voltage values once every 31 seconds. We retain data

from those sensors that generated in excess of 50,000 readings.

This corresponds to 4 types of measurements - temperature,

light, humidity and voltage readings - from 15 sensors which

is equivalent to 60 correlated sources.

The next two data-sets, AERIAL and BIO-RETINA, were

MPEG-7 texture feature descriptors extracted from 64×64 tiles

of the images. AERIAL5 was extracted from 40 large aerial

photographs while BIO-RETINA 6 was generated from images

of tissue sections of feline retinas as a part of an ongoing

project at the Center for Bio-Image Informatics, UCSB. On the

other hand, the CORTINA7 data-set consists of a combination

of homogenous texture features, edge histogram descriptors

and dominant color descriptors extracted from images crawled

from the World Wide Web. In our experiments, we assumed

a page size of 8kB. The query sets were 100 randomly

chosen elements of the relevant data-sets. In all subsequent

sections, we report results from experiments where the 10

nearest neighbors (10NN) were mined, unless otherwise stated

(see section VIII-I, where the number of kNNs retrieved was

varied).

3Download from http:/scl.ece.ucsb.edu/datasets/Histogram.mat
4Download from http://db.csail.mit.edu/labdata/labdata.html
5Download from http://vision.ece.ucsb.edu/data-sets
6Download from http://scl.ece.ucsb.edu/datasets/BIORETINA features.txt
7http://scl.ece.ucsb.edu/datasets/CORTINA all feat1089K.mat

TABLE III
DATA-SETS USED

Name Dimensionality No. of Vectors Size (Pages)
HISTOGRAM 64 12,103 379
SENSORS 60 50,000 1471
AERIAL 60 275,465 8300
BIO-RETINA 62 208,506 6200
CORTINA 74 1,088,864 40,329

TABLE IV
TUNABLE PARAMETER VARIATION IN EXPERIMENTS

Indexing Method Tunable parameter Range Tested
VA-File Bits per dimension 3 - 12 bits

VA+-File Bits per dimension 5 - 8 bits
iDistance No. of clusters 10 - 400
LDC No. of clusters 10 - 4000
Clustering
+ Cluster-distance No. of clusters 10 - 400
bounding

B. Performance Measure and Tunable Parameter Variation

We propose to separately track the average number of se-

quential and random accesses incurred to retrieve the 10NNs.

In a typical search procedure, by varying the tunable pa-

rameters θ (where applicable), a range of solutions with

different sequential and random accesses would be possible

i.e. a performance graph. Two competing search procedures

are compared by comparing the number of random seeks R
given roughly the same S or vice-versa.

Table IV lists the tunable parameter for each indexing

technique and the range of values considered. The performance

of each indexing technique is evaluated at all values of its

tunable parameter within the ranges considered. In the VA-

File, the number of quantizing bits is varied from 3 to 12

bits per dimension, while in the VA+-File, this is varied from

5-8 bits per dimension. In LDC, the number of clusters is

varied from 10 - 4000 clusters, whereas in the iDistance and

our and our proposed technique, the number of clusters was

varied from 10-400. The performance is evaluated and plotted

at each setting.

C. Comparison with Rectangular and Spherical Distance
Bounds

Traditionally, spatial filtering of irrelevant clusters has been

done by constructing minimum bounding hyperrectangles

(MBR) and hyperspheres (MBS) around clusters, and evaluat-

ing distance bounds to these minimum bounding surfaces (see

Figure 5). We, on the other hand, evaluate this distance bound

from the separating hyperplane boundaries that lie between

the query and the cluster.

In Figures 6 and 7, we present MBR, MBS and Hyperplane

distance bounds along with the true (golden) query-cluster

distances for a sample query, on the BIO-RETINA data-set.

The distance of the query to every cluster is evaluated and

these distances are sorted in ascending order. We note that his

sorting order or ranking is also the order in which the clusters

are read. Now, the distances bounds are evaluated to these

ranked clusters and are compared with the true distances. The

goal of this study is to compare the relative tightness of the
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bounds and also to observe how well they imitate the correct

ranking.
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We immediately note that the hyperplane bounds are very

close to the true distance. For the 30 cluster case, we note

that the sphere (MBS) bound is almost zero for the first 6-

8 clusters. This is because in a large cluster (small number

of clusters), the volume occupied by bounding spheres is

significantly larger than the actual cluster volume. Hence, the

ability to filter out clusters is significantly diminished. Once

the number of clusters has been increased to around 300, the

performance of the sphere bound improves slightly. On the

other hand, though the MBR bound is tighter than the sphere

bound, it is much looser than the hyperplane bounds. This

suggests that while the MBR is able to adjust to the cluster

shape a little better than the MBS, the convex polygons formed

by the hyperplane boundaries adapt to the cluster shape much

better than both MBRs and MBSs. We noticed similar behavior

in the other data-sets.

Lastly, we note that, the reduced complexity hyperplane

bound is almost as good as the full complexity hyperplane

bound, while at the same time enjoying a smaller storage

overhead. We also note that the distance profiles generated by

the hyperplane bounds has almost the same (non-decreasing)

nature of the true, sorted query-cluster distances. This means

that despite the approximation error in distance estimates,
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Fig. 7. Comparison of Distance Bounds, 300 Clusters

the clusters are still searched in close to the correct order.

However, this is not so for the MBR and MBS bounds. We

note in Figures 6 for the MBR bound and 7 for the MBS

bound, the distance profile is very jittery. This, as we shall

see, leads to a large number of needless disk accesses, further

compromising the IO performance.
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1) IO Performance Comparison: We conclude this study

with comparison of the IO performance of the different

distance bounds on the different data-sets (see Figures 8,

9, 10, 11, 12). We note that the sphere (MBS) and the

MBR bounds are comprehensively outperformed by the two

proposed hyperplane bounds in all data-sets. For the BIO-

RETINA data set, when allowed roughly 1000 sequential IO

pages, the MBR and sphere bounds generate nearly 20X more
random accesses than the hyperplane bounds. When allowed

roughly 10 random disk accesses, the MBR and sphere require

nearly 4X-5X more sequential disk reads. Similar trends are

noticed in other data-sets, with the performance gains higher

in bigger data-sets.

D. Comparison with Popular Indexes

Next, we compare the performance of our proposed clus-

tering (plus ’Hyperplane Bound’ or ’Red. Comp. Hyperplane

Bound’) framework with the VA-File, VA+-File, iDistance and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on April 19,2010 at 00:44:04 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007 9

100 101 102 103
1000

2000

3000

4000

5000

6000

7000

8000
No

. o
f S

eq
ue

nt
ial

 P
ag

es

No. of Random IOs (log scale)

AERIAL, 10NN

MBR
Sphere Bound
Hyperplane (red. comp.)
Hyperplane (full)

Fig. 9. IO Performance of Distance Bounds - AERIAL

100 101 102
0

200

400

600

800

1000

1200

1400

No
. o

f S
eq

ue
nt

ial
 P

ag
es

No. of Random IOs (log scale)

SENSORS, 10NN

MBR
Sphere Bound
Hyperplane (red. comp.)
Hyperplane (full)

Fig. 10. IO Performance of Distance Bounds - SENSORS

Local Digital Coding (LDC) - recently proposed multidimen-

sional index structures that have been successful in overcoming

the curse of dimensionality.

1) Description: In the VA-File/VA+-File initially the ap-

proximation files are read into the main memory and then

the nearest elements are retrieved for finer scrutiny. As more

bits are allocated in quantizing the dimensions, the size of

the approximation file, which is proportional to the no. of

sequential IOs, increases. At the same time, the number of

vectors visited in the second stage, which determines the no.

of random IOs, are reduced. Hence, the IO performance was

evaluated at different levels of compression (VA-File - 12 to

3 bits/dimension and VA+-File - 8 to 5 bits/dimension).

For the proposed index structure, as well as the iDistance

and the LDC, the performance would depend on the number

of clusters created. The number of clusters was varied from

10-4000 for LDC and 10-400 for iDistance and our technique.

Each multi-dimensional index was searched till the 10 exact
nearest neighbors (10NNs) were guaranteed to be found.

In all data-sets (Figure 13, 14, 15, 16 and 17), the proposed

index (clustering plus hyperplane bounds) outperforms all

popular indexes. For the CORTINA data-set, when allowed

(roughly) the same number of sequential IOs as the VA-File,

speed-ups in costly random IOs ranging from 3000X-5X, are

possible. For clarity, we also present in Table V the actual

random IOs incurred for different sequential IOs in the four
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best indexing schemes i.e. the VA-File, VA+-File, iDistance

and our proposed index with full hyperplane bound. In the

AERIAL data-set, when allowed (roughly) the same number of

sequential IOs as the VA-File, our index structure has random

IOs reduced by factors ranging from 500X-5X. When allowed

the same number of sequential page accesses, random disk IOs

reductions ranging from 40X-90X over the LDC, 3x-16x over

the iDistance and 1.6X over the VA+-File were observed.

2) Discussion: The basis behind the idea of vector approx-

imations is that if a compressed feature vector is close to the

query, so is the original feature vector. To generalize the idea

behind vector approximations, if multiple feature vectors were

represented by a single code-vector, and if this code-vector is

close to the query, so would the original feature vectors. By

clustering the data-set, we group together feature vectors that

are similar and represent the cluster by the centroid. Hence, by

accessing the nearest clusters, a bigger candidate set of feature

vectors is retrieved.

Moreover, in the second phase of the VA-File/VA+-File

search, relevant feature vectors are selected, based upon dis-

tance approximations, for retrieval by random access opera-

tions. For a k-NN query, this implies that a minimum of k-

random IO reads is inevitable. More importantly, it is to be

noted that in any random access read, even though an entire
page is read into the main memory, only one feature vector is

relevant and the remaining data from the page is not useful. For
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example, with a page size of 8kB and 60-dimensional (floating

point vectors), each random access read would retrieve the

equivalent of 34 feature vectors in order to obtain a single

feature vector. This inefficient use of random IOs is avoided

in our clustering scheme where every random IO retrieves the

first page of cluster, yielding a bunch of candidate feature

vectors.

Lastly, we note that the iDistance and LDC indexes se-

lect clusters based on distance bounds to different bounding

spheres. As observed in prior sections, this bound is loose

and results in poor spatial filtering of the data-set. We also

note that LDC suffers from a weakness also present in the

VA-File. While pruning the cluster with relevant digital codes

(DCs), the final candidate vectors still need to be retrieved by

individual random disk reads. By maintaining low-precision

TABLE V
RANDOM IO COSTS FOR CORTINA 10NN QUERIES

��������������Indexing Scheme

Serial IO (pages)
6680 8800 13,430

VA-File 11910 290 13.18

VA+-File 15 11.4 10.2
iDistance 322 180 55.16

Cluster Distance Bounding 11.41 7.32 4.29
Hyperplane (full)
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digital codes, the number of sequential reads are reduced but

as a consequence, a fairly large number of expensive random

IOs are necessary to retrieve the final candidate vectors.

E. Computational Costs

We also evaluated the computational costs incurred by the

different indexes, in terms of the number of distance evalua-

tions. Since the VA-File/VA+-File maintains an approximation

for every element of the data-set and evaluates the distances to

these approximation cells, the number of distance calculations

are O(|X |), the size of the data-set. However, we note that

the other indexes are based on clustering, which can exploit

spatial dependencies across dimensions. Initial distances are

evaluated to the cluster centroids and relevant clusters alone

are inspected. This results in efficient filtering and substantial

reductions in the number of distance computations required.

We only present results from the CORTINA data-set, as

similar trends were observed for other data-sets. Our index

structure requires ≈10X less distance calculations than the VA-

File or VA+-File on the average. It also compares favorably

with the iDistance. In the case of LDC, with its combination of

dimension ranking arrays and partial distance searches, explicit

distance evaluations for the second layer of approximations,

are replaced by faster binary operations. Nevertheless, since

processor speeds are much faster than IO speeds, out index

structure still maintains its advantage in total response time
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over LDC.

F. Preprocessing Storage

In Table V, we evaluate the preprocessing storage for each

indexing scheme in terms of the various entities, including

dimensionality d, database size N , approximation bits per

dimension b, and total number of clusters K. We assume 4

bytes of storage for each real (floating point) number. Note

that in the reduced complexity hyperplane bound, we need

to store only one distance term per cluster, while in the full

complexity hyperplane bound, we have to store K−1 distance

terms per cluster.

We present the preprocessing storage vs. random IOs perfor-

mance for the CORTINA data-set and notice substantial gains

TABLE VI
PREPROCESSING STORAGE FOR INDEXING SCHEMES

Indexing Scheme Storage (bytes)

VA-File 1
8
.N.d.b

VA+-File 1
8
.N.d.b

iDistance 4.(K.d + N)

LDC 4.(K.d + N) + 1
8
.N.d

Hyperplane Bound 4.K.d + 4.K.(K − 1)
(full complexity )
Hyperplane Bound 4.K.(d + 1)
(reduced complexity)

over competing indexes (Figure 19). This is because on the

one hand the approximation file size grows with data-set size,

dimensions and the number of approximation/quantization bits

per dimension. On the other hand, both iDistance and LDC

store one distance term for every data-set element (in addition

to the centroids), thus incurring enormous preprocessing stor-

age costs. For the same number of random IOs, our proposed

index requires ≈100X less storage than the VA-File or VA+-

File.

100 101 102 103 104 105
0

5000

10000

15000

Pr
ep

ro
ce

ss
ing

 S
to

ra
ge

 (P
ag

es
)

No. of Random IOs (log scale)

CORTINA−74, 10NN

VA−File
VA+−File
iDistance
LDC
Hyperplane (red. comp.)
Hyperplane (full)

Fig. 19. Preprocessing Storage - CORTINA

G. Scalability with Data-set Size

Figures 20 and 21 present performance comparisons of the

proposed indexes with sub-sampled versions of the CORTINA

data-set. Figure 20 represents the results of varying the data-

set size for the full complexity hyperplane bound. Figure

21 pertains to the reduced complexity hyperplane bound.

The performance variation is nearly linear in the number of

sequential accesses and almost insensitive in the number of

random IOs. Hence, our clustering based index scales well

with data-set size.
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H. Scalability with Dimensionality

We also evaluated the scalability of the proposed indexes

with dimensions by retaining only 48, 24, 10 and 1 dimen-

sions of the original CORTINA data-set (Figures 22, and 23
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Fig. 21. Data-set Size vs. Reduced Complexity Hyperplane Bound

respectively). Both methods display a graceful degradation in

performance with dimensionality. We also note that the VA-

File degrades at very low number of dimensions while naive

indexes degrade at high dimensionality.
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Fig. 22. Dimensionality vs. Full Complexity Hyperplane Bound
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Fig. 23. Dimensionality vs. Reduced Complexity Hyperplane Bound

I. Scalability with Number of Nearest Neighbors

We also vary the number of nearest neighbors with 10NNs,

20NNs and 50NNs being mined (see Figures 24 and 25). We

note very slight variation in performance. This is because

when each cluster is retrieved, several promising candidates

are available. Hence, even if we search for more NNs, we

don’t notice any substantial increase in disk accesses.
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Fig. 24. No. of kNNs vs. Full Complexity Hyperplane Bound
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Fig. 25. No. of kNNs vs. Reduced Complexity Hyperplane Bound

J. Robustness to Random Insertions and Deletions

Our index structure is robust to insertions and deletions as

may be evident from the design procedure itself. We first note

that our index structure is flat or scan-based (and not tree

based). Next, while we store elements of a cluster together,

the clusters themselves may be located in different parts of

the disk i.e. we can provide enough space for clusters to

grow/shrink. Further, during index construction, the centroids

are extracted using only random subsamples of the data-set

and are used as pivots to induce Voronoi space partitions. But

given a set of centroids, the creation of the index structure

is almost complete, since the Voronoi partitions created are

independent of the data that might reside in them. In other

words, during creation, the index is blind to the presence

or absence of the remaining elements. The creation of the

index from random subsamples and subsequent casting of all

database elements into Voronoi partitions can be considered

equivalent to deletion and insertion, respectively.

In case of an insertion, the only additional complexity

involves the possible update of its cluster distance to a hyper-

plane if the new point is closer than the current bound. In a

similar manner, deletions can also be handled, by reevaluating
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(and if necessary updating) the cluster-hyperplane distances.

To reduce calculations (at the expense of a negligible storage

overhead), an ordered list of cluster-hyperplane distance(s) can

be maintained and periodically updated.

In our experiments, for runs with more than 400 clusters,

hierarchical clustering was performed. The data-set is initially

partitioned into 400 clusters and later these clusters are appro-

priately sub-clustered. This is because what is necessary for

index construction are only the cluster centroids, which act

as the pivot points for the subsequent Voronoi partitioning. In

either case, with K clusters, only random subsamples of the

data-set, of size 100K vectors, were used in creating the index.

For example, under this setting, only 40,000 out of 1,088,864

elements of CORTINA were used in index construction.

K. Extension to Approximate Search

Since feature vectors are imperfect representations of the

corresponding objects, it could be argued that even exact

search is unavoidably approximate. Since each disk IO re-

trieves a cluster, it may be sufficient to stop the search after

the first few disk accesses to extract an approximate result,

that could be further refined with user feedback. For brevity

of presentation, we describe results for only the reduced

complexity hyperplane bound. Similar results are observed

with the full complexity hyperplane bound.

In approximate similarity search, the quality of the retrieved

is typically measured through precision or recall metrics. If

A(q) and G(q) represent the approximate and golden (true)

answer sets for query q, we define

Precision =
|A(q) ∩ G(q)|

|A(q)|
Recall =

|A(q) ∩ G(q)|
|G(q)|

For kNN queries, |A(q)|=|G(q)| and hence precision equals

recall.

It has also been argued that precision or recall are hard

metrics that improperly measure the quality of results [30]

[31] and that softer metrics such as the distance ratio metric

proposed in [30] [32] would be more appropriate.

D =

∑
x∈A(q)

d(x, q)

∑
x∈G(q)

d(x, q)
(7)

We compare against VA-LOW [29], a variant of the VA-

Files that can return approximate NNs. In the VA-LOW, the

search in the second phase is stopped once sufficient vectors

have been visited to assure a certain precision. Figure 27

shows the performance of our clustering + reduced complexity

hyperplane bound retrieval with precision as quality metric,

while Figure 26 pertains to distance ratio.

We first note that even the very first cluster returns high-

precision results. In order to reduce the number of sequential

IOs, it is necessary to allow ≈300 clusters, which results in

a few additional random disk IOs. On the other hand, in VA-

LOW, several random and sequential disk access are necessary.
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Fig. 26. Clustering vs. VA-LOW, Distance Ratio
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Fig. 27. Clustering vs. VA-LOW, Precision

Moreover, we observe that 100% precision results i.e. the

retrieval of exact nearest neighbors, is possible with just the

first few disk IOs. Of course, in this approach, there is no

guarantee that the exact NNs have been found, even though

experimentally we notice 100 % precision.

L. Adapting to Mahalanobis Distances

By proper user feedback, the Mahalanobis distance measure

[17], [16], [5] can be updated and thus produce more relevant

results. The database collects user feedback and periodically

updates the distance measure and the index. The data-set is

once again partitioned into Voronoi clusters {Xm}K
1 using the

new distance measure (as explained in section VI). Since the

boundaries between Voronoi clusters are still hyperplanes, we

can still apply the hyperplane bounds to filter out irrelevant

clusters. We note that to adapt the VA-File, iDistance and

LDC to the new distance measure, we would definitely need to

“whiten” or transform the data-set (to avoid any performance

degradation).

We present the results from one such sample weight matrix.

In our experiments, if d is dimensionality,

Σ = (
d∑

n=1

λnunuT
n )−1 (8)

where {un} was an orthonormal set of vectors (generated from

a correlation matrix), with 1 ≤ λn ≤ 5,∀n (following general
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guidelines established in [5]). For compactness, we present

results only from the BIO-RETINA data-set (see Figure 28).
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Fig. 28. IO Comparison - BIO-RETINA with Mahalanobis Distance

We note that the performance graph of the clustering plus

hyperplane bounds is beneath the performance graphs of other

indexes, with performance gains being largely retained. Thus,

the hyperplane bound can be easily adapted to Mahalanobis

distances.

IX. CONCLUSIONS

Real multidimensional data-sets exhibit significant corre-

lations and non-uniform distributions. Hence, indexing with

the VA-File, by performing uniform, scalar quantization, is

suboptimal. We proposed an indexing method, based upon

principles of vector quantization instead, where the data set

is partitioned into Voronoi clusters and clusters are accessed

in order of the query-cluster distances. We developed cluster-

distance bounds based on separating hyperplane boundaries

and our search index, complemented by these bounds, is

applicable to Euclidean and Mahalanobis distance metrics. It

obtained significant reductions in number of random IOs over

several recently proposed indexes, when allowed (roughly) the

same number of sequential pages, has a low computational cost

and scales well with dimensions and size of the data-set.

We note that while the hyperplane bounds are better than

MBR and MBS bounds, they are still loose compared with the

true query-cluster distance (see Figures 6 and 7). Conceivably,

the cluster-distance bounds can be further tightened, possibly

by optimizing the clustering algorithm so as to optimize

the cluster distance bounds. Future efforts would be directed

toward this and other related problems.
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