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Abstract—We present an adaptive clutter suppression method for
airborne random pulse repetition interval radar by using prior
knowledge of clutter boundary in Doppler spectrum. In this method,
by exploiting the intrinsic sparsity, compressed sensing based on
iterative grid optimization (CS-IGO) is applied to directly recover
the clutter spectrum with only the test range cell instead of
nonhomogeneous training data from adjacent range cells. Since the
sensing matrix and clutter spectrum obtained by CS-IGO are well
adapted to the data, the prewhitening filter can be effectively obtained
to cancel the mainlobe clutter. Further, the clutter residue can be
suppressed by the iterative reweighted l1 minimization to enhance the
target response. Simulation results show that the approach is capable
of effective suppression of clutter and precise recovery of targets’
unambiguous spectrum, offering a high performance of output signal
to clutter and noise ratio.

1. INTRODUCTION

Random selection of the pulse repetition intervals (PRI) within fixed
coherent process interval (CPI) as a means of smearing the ambiguity
peaks has been alluded to in the past [1–3], which can achieve
great ECCM capabilities. Traditional processing approach for the
random PRI radar signal such as correlation is constrained by the
uncertainty principle and suffers from high sidelobe pedestal, which
reduces the performance of target detection and velocity measurement.
Considering of the random modulation scheme and the inherent
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sparsity of the target echo signal, the compressed sensing (CS)
theory [4–8] has been applied to successfully resolve the velocity
ambiguity and suppress the sidelobe pedestal [9].

In some actual applications such as airborne systems, however,
echoes form land clutter consisting of stable objects like mountains
and buildings [10] can violate the assumptions for CS severely [11],
which needs to be investigated. By now, several literatures have
directly addressed to alleviate strong clutter interference [9, 11–13],
where the approaches can be classified into two groups. One is pre-
filtering before CS recovery that is mathematically represented as
a projection to the clutter free subspace [11, 12], and the other is
weighting the clutter support combined with CS optimization [9, 13],
which is actually a sparsity enhancing technology [14]. Both of the
methods have a common point that the clutter spectrum needs to be
estimated as a prior knowledge for clutter cancellation. Therefore, the
key requirement is the accurate estimation of power spectral density
(PSD) of clutter.

Traditionally, statistical spectrum estimation methods such as
autoregressive model [9] need sufficient statistically independent and
identically distributed (i.i.d.) training data to obtain an effective
estimation of the clutter. However, if the clutter scenario is not
homogeneous, the range stationarity is destroyed, which results in an
inaccurate estimation of the clutter distribution [15]. Referring to the
direct data domain (D3) approach designed for space-time adaptive
processor (STAP) [15–17], we exploit the priori sparsity of the clutter
spectrum and propose a new approach to obtain the high-resolution
spectrum with only the test cell.

In this paper (which expands upon [18]), the recently developed
CS algorithm based on iterative grid optimization (CS-IGO) with slight
grid mismatch is applied to recover the Doppler spectrum. Since the
sensing matrix and spectrum obtained by CS-IGO are well adapted
to the data, there is almost no clutter sidelobe in the spectrum and
then the clutter echo can be obtained by using prior knowledge of
its boundary. This guarantees the availability of clutter covariance
matrix (CCM) and corresponding adaptive prewhitening filter, which
can effectively cancel the mainlobe clutter. Moreover, referring to the
sparsity enhancing technology, the iterative reweighted l1 minimization
is introduced to suppress the clutter residue and boost the target
response. Simulation results show that the approach offers a high
performance of output signal to clutter and noise ratio (SCNR) in
the nonhomogeneous clutter scenario.

The remainder of this paper is organized as follows. In the next
section, we mainly introduce the echo signal model of random PRI



Progress In Electromagnetics Research, Vol. 128, 2012 293

radar and exploit the sparsity of spectrum for estimation. Section 3
constructs the clutter suppression sketch by the pre-filter and iterative
reweighted l1 minimization. Section 4 makes some complementary
discussions. In Section 5 simulations and numerical illustrations are
used to test the performance of clutter estimation and suppression.
Some analyses are given as well. Finally, the conclusions are drawn in
the last section.

2. DATA MODEL AND SPECTRUM ESTIMATION
WITH CS-IGO

2.1. Data Model

In random PRI radar we transmit M pulses at Tm, which is i.i.d.
within the CPI (0,MTr) randomly where Tr is the average PRI. Then
the transmitted signal can be represented as

s(t) =
M−1∑

m=0

A rect
(

t− T/2− Tm

T

)
exp(j2πf0t) (1)

where rect
(

t
T

)
=

{
1, −T/2 ≤ t ≤ T/2
0, else , m = 0, 1, . . . , M − 1, A

is the pulse amplitude, f0 the carrier frequency, and T the pulse width.
Suppose that there are K targets in the test range cell moving

toward the radar with radial velocity vk. The received signal is
generated as the sum of the Doppler-shifted replicas of the transmitted
waveform, each of which is multiplied by the respective scattering
coefficient. Sampling the received signal of mth pulse after down-
conversion and low-pass filtering can obtain

sr[m] =
K∑

k=1

Ak exp(j2πυkTm) (2)

where Ak is the complex amplitude proportional to the square root
of target radar cross section (RCS), and υk = 2f0vk/c is the Doppler
frequency of the k-th target. Obviously, (2) can be regarded as a
typical underdetermined linear system

sr = Θ(ξ)α + w (3)

when we consider N (> M) Doppler ‘grids’ at ξ[n]δυ, where sr =
[sr[0], sr[1], . . . , sr[M − 1]]T , ξ = [ξ[0], ξ[1], . . . , ξ[N − 1]]T , Θ(ξ) is an
M ×N variable random sensing matrix, whose elements are Θ[m,n] =
exp(j2πξ[n]δυTm), the perturbation w = c + n represents clutter c
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plus noise n, α is the ‘scene’ vector with αn = Ak if target k locates
at ξ[n]δυ and zero else, n = 0, . . . , N − 1, δυ = 1/MTr and

ξ[n] =

{
υk/δυ, if |υk − nδυ| < δυ/2
υk/δυ, if υk − nδυ = δυ/2
n else

(4)

In this paper, we further assume that the clutter and noise are
all Gaussian distributed and mutually independent. Clutter c is
zero-mean with covariance matrix Rc and noise n is zero-mean with
covariance matrix σ2IM (IM is the identity matrix of size M).

If the signal-to-clutter ratio (SCR) and signal-to-noise ratio (SNR)
are sufficiently high, the random matrix Θ can be regarded to satisfy
the RIP approximately. Unfortunately, the land clutter is always
much stronger than the targets, which can violate the assumptions
for CS severely [19]. The approaches of clutter cancellation by pre-
processing [11] and weighting [14] are two practical ways to preserve
the favorable properties of CS provided that the clutter spectrum is
estimated as a prior knowledge. Therefore, the key requirement is the
accurate estimation of clutter PSD.

2.2. Spectrum Estimation with CS-IGO

Traditionally, autoregressive model together with Burg’s algorithm can
obtain an effective estimation of the clutter by using sufficient i.i.d.
training data [9]. However, it doesn’t work well if the range stationarity
is destroyed. So we propose a new approach similar to D3 in STAP [15–
17] with only the test cell by exploiting the priori sparsity of the clutter
spectrum.
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Figure 1. Geometry of airborne radar for moving target detection.
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Assume there are only mainlobe clutters in the echo which are
caused by stable objects like mountains and buildings [10]. As shown
in Fig. 1, it is well known that the Doppler frequency component of
mainlobe clutter is approximately limited within

∆υ = [2vpf cos(ϑ + θa/2)/λ, 2vpf cos(ϑ− θa/2)/λ] (5)

where vpf is the platform velocity, λ the radar wavelength, θa azimuth
beamwidth, and ϑ the angle between the velocity vector and the beam
axis. In order to enlarge the non-clutter area in Doppler domain, the
number of Doppler cells can be increased as large as the matrix RIP
holds owe to the unambiguity, and also narrow beamwidth is always
formed which leads to small number cells of clutter compared with the
whole Doppler cells. Thus, the significant elements only exist in the
area of the mainlobe as well as several discrete target positions, which
guarantees sparsity of the spectrum.

Assume the clutter c in the test range cell can also be represented
by S statistical independent scatter patches with complex amplitudes
Cs and corresponding Doppler frequencies υs, that is

c[m] =
S∑

s=1

Cs exp(j2πυsTm) (6)

where υs = 2vpf cos(ϑ+ θs)/λ ∈ ∆υ with θs as the corn angle between
the beam axis and the look direction, then the clutter model can be
represented as

c = Θc(ξc)αc (7)

where Θc(ξc) and αc represent the sensing matrix and ‘scene’ vector
of the clutter, which are similar to that of the targets. Finally, the
signal model can be modified as

sr = Θ′(ξ′)α′ + n (8)

where Θ′(ξ′) and α′ correspond to the new Doppler ‘grids’ ξ′[n]δυ and
complex amplitudes containing both targets and clutter.

If only we knew the exact ξ′, we could directly apply the l1
minimization method to obtain the parameters by solving the following
convex optimization problem

α̂′ = arg min
α′

∥∥α′
∥∥

1
subject to

∥∥sr −Θ′(ξ′)α′
∥∥

2
≤ ε (9)

where ε̂ ≈
√

Mσ̂2 is the noise level determined by the noise variance σ̂2,
which plays a significant role on the recovery performance of (9). For
example, if it is set to be too small or too large, in the reconstruction,
either a significant part of the strong noise is treated as signal or the
acquired signal components are not fully reconstructed, resulting in
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distortion due to too many false components or too few strong true
components. In our situation, the noise level can be almost exactly
estimated by using the nearby range cells with no clutter following the
method proposed in [13].

In practice, however, we always have no priori information of the
perfect Doppler ‘grids’, which may lead to unacceptable results with
direct CS method suffering from serious mismatch effect. Therefore,

Table 1. The iterative grid optimization algorithm.

Input: The signal sampling vector sr ∈ RM , the random PRI Tm,

the estimated noise bound ε, the error threshold Ξ, the

maximum number of iterations Lmax, the Doppler resolution

δυ=1/MTr, the number of Doppler cells N >M , initialization

σ
(0)
ξ = σ

(0)
n = 1, l = 0, the elements of ξ̂′

(loop)
are set as

ξ̂′
(loop)

[n] = n, loop = 0, . . ., Lmax − 1, n = 0, . . . , N − 1.

Output: The final sensing matrix Θ′(ξ̂′) and the spectrum

estimation α̂′ with clutters and targets.

Step1: Compute Θ′(0) from ξ̂′
(0)

and obtain the coarse spectrum

α̂′
(0)

by using (9).

Step2: Set l = l + 1 and estimate the support set vector Λ(l) of

α̂′
(l−1)

by constant false alarm rate (CFAR) detection to

form K(l), α̂′(l)
Λ and Θ

(l)
Λ , where K(l) is the vector length

of Λ(l), α̂′
(l)
Λ , Θ

(l)
Λ denote the elements and columns in

α̂′
(l−1)

, Θ′(0) indexed within Λ(l).

Step3: Compute Â
(l)
a as well as Â

+(l)
a by using Λ(l), â′

(l)
Λ , σ

(l−1)
ξ

and σ
(l−1)
n according to Aa = [σξΦξ, σnIM ], where A+

a is

the pseudo-inverse of Aa, Φβ [m, k] = j2πTm exp(j2πΛ[k]

δυTm)a′Λ[k], a′Λ[k] denotes the kth coefficient in â′
(l)
Λ and

k = 0, . . . , K(l) − 1.

Step4: Update â′
(l)
Λ according to âΛ = (HHH)−1HHy where

H = Â
+(l)
a Θ

(l)
Λ and y = Â

+(l)
a sr.

Step5: Compute ê(l) according to ê(l) = Â
+(l)
a (sr −Θ

(l)
Λ â

(l)
Λ ) and

(
ξ′(l)

)
Λ(l)

=
(
ξ′(l−1)

)
Λ(l)

+
σ
(l−1)
ξ

δυ
real

(
ê(l)[k]

∣∣∣
)K(l)

k=1
.

Step6: If
∥∥∥ξ′(l) − ξ′(l−1)

∥∥∥
2
≤ Ξ or l = Lmax, return Θ′(ξ′(l)), α̂′

(l−1)
,

stop; else reconstruct â′
(l)

with (9), compute σ
(l)
ξ

=

√
K(l)−1∑

k=0

|ê(l)[k]|2, σ
(l)
n =

√
K(l)+M−1∑

k=K(l)
|ê(l)[k]|2 and go to Step 2.
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in our situation the CS-IGO algorithm is used by deeming the clutter
as signals with high SNR. By updating the ‘grids’ with estimated
mismatch error iteratively to achieve better signal model fit, the
parameter estimation mean-squared error is close to the Cramer-Rao
lower bound (CRLB). And then the final sensing matrix Θ̂′(ξ̂′) and the
spectrum estimation α̂′ with clutters and targets can be well obtained,
which is summarized in Table 1.

3. CLUTTER SUPPRESSION WITH PRE-FILTER AND
REWEIGHTED L1 MINIMIZATION

Because some of the target energy may be losing during the
procedure of linear optimization, further adaptive processing for clutter
suppression is necessary for subsequent target detection. Considering
that the mainlobe clutter is localized and strong in the spectrum whose
boundary can be determined by the prior knowledge, we improve the
optimization problem from two different aspects: The first is to utilize a
pre-filter to cancel the mainlobe clutter, and the second is to construct
a reweighted optimization penalty to suppress the residue. As we deem
all the components within the boundary as clutter, further assumption
should be made that the spectrum of clutter does not overlap with
that of targets’ spectrum.

3.1. Suppression of Mainlobe Clutter with Pre-filter

In classical processing, cancellation for mainlobe clutter is often
performed simply by designing a notch filter, which is mathematically
represented as a projection to the clutter free subspace. The same
procedure can be performed for the CS processing. Generally, the
pre-filter can be represented by an M × M nonsingular matrix F.
The sensing matrix is modified to FΘ′, and the filtered perturbation
Fw contains only noise if the clutter contribution is totally removed.
Then the target spectrum α̂T can be obtained by solving the following
transformed optimization problem:

α̂T = arg min
α
‖α‖1 subject to

∥∥∥Fsr − FΘ̂′(ξ̂′)α
∥∥∥

2
≤ η (10)

where η = ‖Fw‖2 is the noise level after projection, which can also be
estimated by the method proposed in [13] if F is obtained. As Θ̂′(ξ̂′)
has already been obtained in (9), the only unknown part of (10) is the
pre-filter matrix F. Therefore, we will focus on the problem of how to
form F as follows.

In our specific case of airborne systems, because the location of
mainlobe clutter in the estimated Doppler spectrum α̂′ is determined
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by the platform velocity, the radar wavelength, the look direction and
the beamwidth as in (5), all values of which are a prior knowledge
when the radar works [20]. Therefore the boundary of clutter can be
obtained approximately. Then the estimated clutter can be effectively
obtained as

ĉ = Θ̂′(ξ̂′)Σα̂′ (11)
where Σ represents a diagonal matrix with elements ones correspond-
ing to the locations with clutter on the diagonal and zeros else. Then
the estimated CCM is given by

R̂c = ĉĉH = Θ̂′(ξ̂′)Σα̂′α̂′
H
ΣH(Θ̂′(ξ̂′))H (12)

which is proved to be an positive semi-definite Hermite matrix where
(·)H denotes conjugate transpose.

Proof : The CCM is obviously an Hermite matrix by testifying
R̂H

c = (ĉĉH)H = ĉĉH = R̂c. In order to prove its property of positive
semi-definite, we rewriter the CCM as the matrix form

R̂c =




ĉ0ĉ
∗
0 ĉ0ĉ

∗
1 . . . ĉ0ĉ

∗
M−1

ĉ1ĉ
∗
0 ĉ1ĉ

∗
1 . . . ĉ1ĉ

∗
M−1

...
...

. . .
...

ĉM−1ĉ
∗
0 ĉM−1ĉ

∗
1 . . . ĉM−1ĉ

∗
M−1


 (13)

where ĉp denotes the pth element in ĉ, and (·)∗ denotes conjugate. For
any given vector z = [z0, . . . , zM−1]T ∈ CM×1, we have

zHR̂cz=
M−1∑

p=0

M−1∑

q=0

z∗p ĉpĉ
∗
qzq =




M−1∑

p=0

z∗p ĉp






M−1∑

q=0

z∗q ĉq



∗

=

∣∣∣∣∣∣

M−1∑

p=0

z∗p ĉp

∣∣∣∣∣∣

2

≥0 (14)

Therefore, the CCM is positive semi-definite according to the
definition, thus proves R̂c the positive semi-definite Hermite matrix.

Notate σ̂2 as the estimated noise variance and then the estimated
covariance matrix of the perturbation w can be estimated as

R̂w = R̂c + σ̂2IM (15)
which is obviously positive definite and can be expressed by Cholesky
factorization R̂w = DHD with a nonsingular matrix D. Finally the
adaptive prewhitening filter can be derived as

F = (D−1)H (16)
In order to see the prewhitening effect, we can testify the

covariance matrix of w′ = Fw as follows
R̂w′ = E(w′w′H) = E(FwwHFH) = FE(wwH)FH ≈ FR̂wFH

= FDHDFH = IM (17)
which leads to the noise level η = ‖Fw‖2 ≈

√
M .
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3.2. Further Suppression of Clutter Residue by Reweighted
L1 Minimization

By the pre-filter, the strong clutters are almost suppressed without
doing harm to the reconstruction process. However, as the
prewhitening filter is not perfect, we construct a weighted optimization
penalty in (10) to suppress the residue. In terms of forming
target spectrum with high quality, one usually needs extraction of
the strongest signal components and rejection of others such as
clutter/noise residue. Considering that the discrimination between
targets and clutter/noise in the spectrum corresponds to their
amplitude difference, we make a distinction in the penalty function.
Instinctively, a weighted formulation of l1 minimization can be designed
as

α̂′T = arg min
α
‖Wα‖1 subject to

∥∥∥Fsr − F Θ̂′(ξ̂′)α
∥∥∥

2
≤ η (18)

where W is the diagonal matrix with the corresponding weight wi

for the ith component of on the diagonal and zeros elsewhere. As
illuminated in [14], small weights could be used to encourage the
recovery of strong components, while the large weights used potentially
suppress the small ones. In our special case, as the target spectrum α̂
with small clutter residue has been obtained by (10), we consider to
assign weights directly according to the spectrum. For example, the
weight for the ith coefficient of α can be calculated as

wi =

{
1

|α̂T (i)| , |α̂T (i)| 6= 0
1
ς , |α̂T (i)| = 0

(19)

where α̂(i) denotes the ith component of α̂. Because the spectrum α̂
is recovered by l1 minimization, it is always sparse with many zero
elements. To ensures the existence of W−1, we introduce a small
constant ς which can be preset as

ς = arg min
|α̂T (i)|

{
|α̂T (i)||N−1

i=0 , |α̂T (i)| 6= 0
}

(20)

Then, these weights can be applied in (21) to encourage the signal
support and suppress the residual clutter support.

To solve the problem more efficiently, a modification of (18) is
given by

x̂ = arg min
x
‖x‖1 subject to

∥∥∥Fsr − FΘ̂′(ξ̂′)W−1x
∥∥∥

2
≤ η (21)

and we have α̂′T = W−1x̂. Herein, the weights are applied to the
matrix but not to the coefficients to estimate. Thus, we can also
directly use l1 minimization method.
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Table 2. The iterative reweighted L1 minimization algorithm.

Input: The obtained signal Fsr and sensing matrix FΘ̂′(ξ̂′),
the estimated noise bound η, the error threshold Ξ′, the
maximum number of iterations L′max, initialization l′ = 0,
the estimated target spectrum with clutter residue

α̂
(0)
T = α̂T obtained by (10), the weight matrix W(0)

calculated by (19) and (20). Output: The final estimated
target spectrum α̂TF .

Step1: Solve the weighted l1 minimization problem
x̂(l′+1) = arg min

x
‖x‖1 subject to∥∥∥∥Fsr − FΘ̂′(ξ̂′)
(
W(l′)

)−1
x
∥∥∥∥

2

≤ η then we have

α̂
(l′+1)
T =

(
W(l′)

)−1
x̂(l′+1).

Step2: If
∥∥∥α̂

(l′+1)
T − α̂

(l′)
T

∥∥∥
2
≤ Ξ′ or l′ = L′max, return α̂

(l′+1)
T ,

stop; else update the weights by using α̂
(l′+1)
T to form

W(l′+1) with w
(l′+1)
i =





1∣∣∣α̂(l′+1)
T (i)

∣∣∣
,

∣∣∣α̂(l′+1)
T (i)

∣∣∣ 6= 0

1
ς(l
′+1) ,

∣∣∣α̂(l′+1)
T (i)

∣∣∣ = 0

ς(l′+1) = arg min∣∣∣α̂(l′+1)
T (i)

∣∣∣

{∣∣∣α̂(l′+1)
T (i)

∣∣∣
∣∣∣
N−1

i=0
,
∣∣∣α̂(l′+1)

T (i)
∣∣∣ 6= 0

}

set l′ = l′ + 1 and go to Step 1.

Moreover, in order to achieve successively better estimation of the
nonzero coefficient locations, an iterative reweighted l1 minimization
algorithm [14] is used to construct the weights, which is shown in
Table 2.

4. COMPLEMENTARY ISSUES AND DISCUSSIONS

After a series of processing, the targets’ velocities and amplitudes can
be finally obtained with considerable accuracy. However, it should be
noted that there are several issues to be further explained.

Firstly, as the number of statistical independent clutter scatters
distributed within the boundary may be more than that of the clutter
Doppler cells, what we recovered by CS-IGO is not the exact clutter
characteristics but the main components of the coherent summation
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of all the scatters. Fortunately, due to the nearly orthogonal columns
of the sensing matrix, the mainlobe clutter can be well represented
by the Doppler cells within the boundary because the signal can be
approximated sufficiently by a linear combination of the neighboring
grids [11], and more precisely with out optimized grids. Moreover,
when we transform the clutter spectrum back into the time domain,
most of the clutter components and energy can be reserved, which
hardly affects the design of pre-filter.

Secondly, apart from the l1 minimization there are two additional
iteration techniques in our approach, whose convergence properties
are still not characterized completely. Because the sensing matrix is
only approximately known at any intermediate iteration and hence the
traditional proof techniques do not apply. In principle, given access to
a sufficient number of measurements and high SNR, we may expect
similar convergence behavior for the two algorithms as conventional
CS algorithm. Empirically, they can be shown to be stable to small
amounts of noise in the sparse signal, which can be demonstrated with
the help of various numerical experiments in Section 5.

Finally, the approach’s computational complexity is another
concerned issue. It can be seen that the primary runtime cost is
incurred in solving CS-IGO and iterative reweighted l1 minimization,
which are both determined by the performance of solving a linear
system and the iteration number respectively. The overall runtime
of the approach is relatively larger than traditional methods, which
requires further investigation on fast l1 minimization. However, these
fast methods are not covered in this paper and our attention is mainly
focused on sound clutter suppression with only the test range cell.

5. NUMERICAL SIMULATIONS

In this section, we conduct some simulations to demonstrate the
effectiveness and the feasibility of the proposed method. Assume that
the radar works on X-band whose wavelength is 0.03 m, the coherent
processing interval is 6.4 ms and the width of each pulse in the train is
2µs. We transmit M = 64 pulses and consider N = 128 Doppler cells.
What’s more, there are some preconditions to be demonstrated.

1) For the random PRI signal, the pulses are transmitted at time
deviations which are selected in the coherent processing interval with
discrete uniform distribution.

2) In the following simulations the SNR, SCR or clutter-to-
noise ratio (CNR) represents for the sampling echo signal after down-
conversion and low-pass filtering, which is added by the complex white
Gaussian noise.
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False Components

Smaller False Components

with CS-IGO

Figure 2. The estimated clutter spectrum with both direct CS and
CS-IGO approaches under CNR = 10 dB.

3) For the clutter scenario, we directly assume that in the 31–
40th Doppler cells there are 50 independent clutter scatters, each of
which has a Gaussian distributed complex amplitude and a uniform
distributed Doppler frequency.

4) All the convex optimization problems are solved by employing
cvx [21] as an effective tool.

5) Our simulations are performed in MATLAB7 environment
using a Pentium (R) 4 CPU 3.00 GHz processor with 1 GB of memory,
and under Microsoft Windows XP operating system.

5.1. Clutter Spectrum Estimation by CS and CS-IGO

In this experiment, to characterize the clutter spectrum estimation
performance of the proposed approach, we add white Gaussian noise
to the echo signal with only clutter and no target, and both direct CS
and CS-IGO approaches are used for clutter recovery.

Firstly, we perform several experimental trials under CNR =
10dB and the typical estimated clutter spectrums with direct CS
and CS-IGO approaches are shown in Fig. 2. It indicates that the
50 independent clutter scatters can be well represented by the 10
Doppler cells, which are regarded as main components of the coherent
summation of all the scatters. What’s more, the clutter spectrum with
CS-IGO approach shows smaller false components than that of direct
CS method, thus maintaining much more energy when we transform
the clutter spectrum back into the time domain.

Secondly, in order to see the influence of estimated noise level
to the convex optimization problem, we set ε = κ

√
Mσ2 with κ =

1, 1.2, 1.4, 1.6 respectively. Defining the clutter relative mean square
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errors relative MSE (Relative MSE) as

Relative MSE = ‖ĉ− c‖2
2 / ‖c‖2

2 (22)

the distributions of relative MSEs under CNR=10 dB are shown in
Fig. 3 with 100 Monte Carlo simulations. It can be seen from the
histograms that the relative MSEs of clutters recovered by the CS-
IGO approach are much smaller, which means more precise estimation.
And we can observe another phenomenon that in both direct CS and
CS-IGO, as the estimated noise level deviates form the true value,
the estimation error of clutter increases obviously, which reflects the
significance of exact estimation of noise level.

Thirdly, we will testify how noise influences the approach

 
(a) (b)

Figure 3. Distribution of clutter relative MSEs with different
algorithms under CNR = 10 dB. (a) Direct CS. (b) CS-IGO.

 

Figure 4. Relative MSEs of estimated clutter versus CNR with both
direct CS and CS-IGO approaches.
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performance. The relative MSE results of estimated clutters are
calculated by averaging 50 Monte Carlo realizations under each CNR,
which increases from 0 to 20 dB. As shown in Fig. 4, it is obvious that
the performance meliorates with the increase of CNR. Especially, when
CNR is above 10 dB the estimated clutter with CS-IGO changes slowly
and the precision is always acceptable in practice, however, when CNR
is below 10 dB the relative MSE increases sharply with the decrease of
CNR, which is due to the sensitivity of CS theory to low CNR.

5.2. Comparison of Whitening Algorithms

In our first experiment, we will analyze the realization of weighting
algorithm for whitening proposed in [9], the basic idea of which is to
solve the following minimization problem

α̂′′T = arg min
α
‖α‖1 subject to

∥∥∥sr − Θ̂′(ξ̂′)(α̂c ¯α/ζ)
∥∥∥

2
≤ ε (23)

where α̂c is the estimated clutter spectrum, ζ a constant scale factor,
and ¯ the Hadamard product. It is indicated in [9] that by the
clutter whiten weighting clutter is suppressed to the noise level and
α̂′′T only denotes the unambiguous Doppler spectrum of targets. In
our particular situation, however, as the clutter spectrum α̂c = Σα̂′
is a sparse vector, those zero elements in the vector should be replaced
with a small constant to guarantee the solvability of (23), and then the
clutter spectrum for weighting can be represented as

αc(i) =
{ |αc(i)| , αc(i) 6= 0

ζ, αc(i) = 0 (24)

where α̂c(i) denotes the ith component of α̂c. In practice, weighting is
actually a sparse enhancement technique and weighting only the clutter
supports is a locally sparse enhancement technique. Therefore, on the
one hand, when the constant ζ is set too large, the clutter will not
be so well whitened that large mainlobe clutter residue exists. On the
other hand, when the constant ζ is set too small, the signal energy will
weaken and even the joint optimization problem becomes irresolvable
so that the target spectrum cannot be recovered.

Assume that there are three targets in the test range cell located
randomly among the non-clutter Doppler area and SCR = −10 dB,
SNR = 10 dB, we present the simulation results of a typical experiment.
The original spectrum with CS-IGO and the target spectrums after
weighting with ζ = 1, 10−2, 10−4 are shown in Fig. 5 respectively. It can
be seen that the weighting algorithm can well suppress the mainlobe
clutter with proper value of constant ζ (e.g., ζ = 10−2, 10−4) and the
clutter residue will be decreased with the reduction of ζ. However, the
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Figure 5. The original spectrum with CS-IGO and the target
spectrums after weighting with different values of ζ.

signal energy will decrease simultaneously, and what’s more, when the
constant is set to ζ = 10−6, the optimization problem (23) becomes
irresolvable and the target spectrum cannot be recovered. Therefore,
it can be concluded that the value of ζ is crucial to the performance of
weighting algorithm and it is hard to decide the value of ζ in a time
varying clutter environment.

In the next experiment, we will compare the pre-filter whitening
algorithm with the weighting algorithm. For justice, we consider the
same scenario as in last subsection. By directly following the algorithm
steps, the CCM and corresponding adaptive filter can be formed with
the estimated clutter spectrum and noise variance. Then the target
spectrum after pre-whitening is shown in Fig. 6(a), from which it can
be seen that mainlobe clutter can also be well suppressed with our
method. Further comparison to the spectrum by weighting algorithm
(with ζ = 10−4) as shown in Fig. 6(b) indicates that, using our
approach, the mainlobe clutter residue is more trivial and there are less
energy losses of the targets. Most importantly, there is no parameter
needed to be manually setting in our algorithm, which is more robust
in practice. Although some sidelobe clutter residues appear in the
spectrum, they can be suppressed by the iterative reweighted l1
minimization algorithm, which is presented in Fig. 6(c). And finally
the targets can be recovered with almost no clutter residue, which
provides much high precision of amplitude and velocity estimation of
the targets.

In order to compare the computational performance of the
algorithms, we present the consumed time and memory cost in Table 3
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(c)

Figure 6. The recovered target spectrums with different whiten
algorithms. (a) Pre-filtering. (b) Weighting with ζ = 10−4. (c) Pre-
filtering and reweighted l1 minimization.

Table 3. Performance and cost time of different algorithms.

Algorithms
Consumed
Time (s)

Memory Cost
(Double Complex)

Weighting 1.578 8384
Pre-filtering 1.659 12480

Pre-filtering and
reweighted l1
minimization

3.024 12480

for data size of M = 64 pulses and N = 128 Doppler cells. It can be
seen from the table that pre-filtering is a litter more time-consuming
and needs a larger memory cost than weighting due to calculation
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and storage of the prefilter. For the pre-filtering and reweighted l1
minimization method, as there are additional convex optimization
problems, more time is consumed, however, the memory cost remains
unchangeable. Although the cost time seems relatively much larger
than traditional methods, some fast algorithms for the l1-minimization
problems have already been proposed [22–25], which is not covered in
this paper.

5.3. Performance of Clutter Suppression

In order to characterize the clutter suppression performance of the
proposed algorithm more quantitatively, the output SCNR defined
in (25) and the normalized square errors (NSE) of the target amplitude
modulus defined in (26) are calculated for a single target under each
input SNR and SCR.

SCNR = 10 log10

[∣∣∣Â
∣∣∣
2
/

(
‖α̂T ‖2

2 −
∣∣∣Â

∣∣∣
2
)]

(25)

NSE =
(∣∣∣Â

∣∣∣− |A|
)2

/ |A|2 (26)

where Â is the estimated amplitude of the target, A the actual
amplitude of the target, and α̂T the recovered target spectrum. For
comparison, the following four different clutter suppression schemes
are used: a) weighting with ζ = 10−2; b) weighting with ζ = 10−4; c)
pre-filtering; d) proposed algorithm by pre-filtering and reweighted l1
minimization.

(a) (b)

Figure 7. Performance of four different schemes under different SNRs.
(a) Output SCNR versus SNR. (b) NSE versus SNR.
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Firstly, by setting SCR = −10 dB, the output SCNR and NSE
results are averaged over 50 independent Monte Carlo realizations
under each SNR, which increases from 0 to 20 dB. It can be seen in
Fig. 7 that, for the pre-filtering algorithm, although its output SCNR
is a litter lower than the weighting algorithm, its amplitude precision
is higher. Moreover, for the proposed algorithm by pre-filtering and
reweighted l1 minimization, its output SCNR and amplitude precision
are both higher, which is more effective than merely weighting the
clutter supports. Furthermore, as shown in Fig. 7(a), when the SNR
is not very high, the targets can be recovered with almost no clutter
residue by the proposed algorithm which leads to high output SCNR.
However, when the SNR is higher than 14 dB, the output SCNR
performance of the proposed algorithm is almost the same as that
of weighting with ζ = 10−4. This is because that when the noise level
is too low, the energy of sidelobe clutter residues after pre-filtering is
comparable to the noise, which leads to small improvement of output
SCNR by reweighted l1 minimization and there is still some sidelobe
clutter residues in the final spectrum.

Secondly, by setting SNR= 10 dB, the output SCNR and NSE
results are averaged over 50 independent Monte Carlo runs under
each SCR, which decreases from 0 to −20 dB. As shown in Fig. 8,
it can also be seen that under high SCRs (e.g. higher than −14 dB),
the proposed clutter suppression scheme is much more effective than
merely weighting the clutter supports. Similarly, it can be seen form
Fig. 8(a) that when the SCR is lower than −14 dB, the output SCNR of
the proposed algorithm is sometimes lower than that of the weighting
algorithm, which is also caused by the large energy of sidelobe clutter
residues after pre-filtering.

(a) (b)

Figure 8. Performance of four different schemes under different SCRs.
(a) Output SCNR versus SCR. (b) NSE versus SCR.
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Finally, it can be concluded that the proposed algorithm performs
well in amplitude estimation at all times and can improve the SCNR
dramatically under proper situations, which is much more effective
than merely weighting the clutter supports.

6. CONCLUSION

In this paper, an adaptive clutter suppression method is proposed for
airborne random pulse repetition interval radar. After recovering the
clutter spectrum with only the test range cell by exploiting its intrinsic
sparsity, the optimization problem is improved by utilizing a pre-
filter and an iterative weighted penalty, offering a high performance of
amplitude precision and output SCNR in the nonhomogeneous clutter
scenario. Simulation results demonstrate that the CS-IGO approach is
more precise than direct CS method in estimating the clutter spectrum
and the proposed clutter suppression scheme is also more effective than
merely weighting the clutter supports. How to decrease the overall
runtime of the approach and how to extend the approach to wideband
imaging radar are underway.
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