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Abstract—This paper proposes a new motion estimation
method based on convolutional sparse coding to adaptively design
the colored-coded apertures in static and dynamic spectral videos.
The motion in a spectral video is estimated from a low-resolution
reconstruction of the datacube by training a convolutional dic-
tionary per spectral band and solving a minimization problem.
Simulations show improvements in terms of peak signal-to-noise
ratio (of up to 2 dB) of the reconstructed videos by using
the proposed approach, compared with state-of-art non-adaptive
coded apertures.

Index Terms—Compressive spectral video, motion estimation,
adaptive imaging, convolutional sparse coding.

I. INTRODUCTION

Compressive spectral imaging (CSI) systems drastically

reduce the amount of acquired spectral data by capturing

datacube projections in order to reconstruct the underlying

image. One outstanding CSI architecture is the colored-coded

aperture snapshot spectral imager (C-CASSI) [1]. C-CASSI is

a snapshot system that captures compressive projections of the

datacube along time. C-CASSI uses three optical components,

the colored-coded aperture (CCA), the dispersive element

and the focal plane array (FPA). Specifically, the incoming

light of the scene is spatially and spectrally modulated by

the colored-coded aperture and spectrally smeared by the

dispersive element before it impinges on the FPA [1]. The

underlying spectral scene is reconstructed by solving a convex

optimization problem [2], [3]. Unlike traditional CASSI that

uses block-unblock coded apertures (which block or transmit

the full spectral signature in a given pixel [4]), the colored-

coded apertures filter the incoming light per pixel. C-CASSI

has been used successfully for capturing static scenes. Extend-

ing C-CASSI to dynamic scenes is clearly interesting.

Recently, a variation of C-CASSI based on compressive

spectral video sensing (CSVS), called video-C-CASSI, has

been proposed [5]. Most CSVS systems rely on coding and

dispersion of the incoming light towards the camera sensor

[6]–[10]. In addition, video-CASSI improves flexibility in the

encoding of the dynamic scenes by using an array of optical

filters. Moreover, video-C-CASSI employs uniform sampling

along the frames, estimates the motion between successive

frames using optical flow and uses a regularization term to

reduce the errors introduced by the motion of the scene [5].

While optical flow is a well-established algorithm for motion

estimation, recent works showed that motion regularization

based on patch-based or convolutional learned dictionaries

generally improves motion estimation (see, e.g., [11]–[13]).

However, the interest of these approaches for the design of

the colored-coded aperture of dynamic scenes has never been

explored, which is the main objective of this work.

A traditional coded aperture design of C-CASSI is per-

formed in a non-adaptive manner, i.e., the coded aperture is

designed independently from the scene [1], [5]. Recently, a few

works proposed adaptive designs in C-CASSI [14], and CASSI

[15] using static scenes. The main objective of this paper

is to use convolutional sparse coding (CSC), a translation-

invariant image representation [16] to compute the motion

between successive frames of a video, and to consequently

design coded apertures adaptively by separating the sampling

of static and dynamic scenes. The contribution of this work is

to design coded apertures of C-CASSI adaptively to capture

compressive measurements for spectral video. The proposed

method estimates the motion between successive frames by

minimizing a cost function formed by a data attachment term

penalized by a spatial regularization promoting smoothness

and a sparse regularization using a convolutional dictionary

for motion fields. Simulations results show that the proposed

adaptive video-C-CASSI outperforms approaches of the state-

of-art such as random C-CASSI and blue-noise C-CASSI.

II. VIDEO C-CASSI

Video C-CASSI acquires dynamic scenes at a particular

frame rate. It is composed of an objective lens, a temporal

colored-coded aperture (T-CCA), a relay lens, a dispersive

element, and a focal plane array (FPA) or detector. The discrete

measurements for the dth frame on the detector are

Y d
i,j =

L−1∑

ℓ=0

Fd
i,(j+ℓ),ℓT

d
i,(j+ℓ),ℓ + ωi,j (1)



where Y d
i,j are the elements of a matrix Yd ∈ R

N×(M+L−1)

containing the measurements of the dth frame, M × (N +
L − 1) is the dimension of the detector (note that the width

of the compressive measurements is higher than the height

due to the dispersion of the prism), and ωi,j is the Gaussian

noise of the sensing system at position (i, j). The acquisition

process can be compactly written in matrix form as yd =
Hdfd + ω

d where yd ∈ R
N(M+L−1) is a vector containing

the compressive measurements of Yd and fd ∈ R
NML is the

vectorized datacube Fd ∈ R
N×M×L for frame #d, ωd is the

corresponding vectorized Gaussian noise and Hd is the dth

C-CASSI sensing matrix whose structure was defined in [1].

Note that Hd models the physical phenomenon of the coded

aperture and the shifting produced by the dispersive element.

More details about the structure of the matrix Hd can be found

in [1].

III. CODED APERTURE DESIGN IN SPECTRAL VIDEOS

USING MOTION ESTIMATION.

A. Motion Estimation

Pairwise video motion estimation (VME) uses two consecu-

tive frames Fd−1
H and Fd

H (of RM×N×L) from a spectral video

acquired at time instants d − 1 and d. Denote as Sd
(ℓ,x) and

Sd
(ℓ,y) ∈ R

M×N×L the video motions for the frame d along the

x and y axes. The proposed VME method is inspired by the

works conducted in [11]. It minimizes a function composed

of a data fidelity term Edata, penalized by two regularization

terms Espatial and Esparse

argmin
X,Sd

{

Edata(S
d
,F

d
H ,F

d−1

H )+λsEspatial(S
d)+λpEsparse(S

d
,X)

}

(2)

where (λp, λs) ∈ R
2 are two regularization parameters

(balancing the influence of the data fidelity term and the

regularizations) and Sd = Sd
(ℓ,x) or Sd = Sd

(ℓ,y). Note that the

displacement vectors components along x and y are estimated

independently for simplicity. The first regularization term

promotes smooth variations in the video motion field by using

a standard total variation function, i.e., Espatial(S
d) = ‖∇Sd‖22,

where ∇ is the gradient operator and ‖.‖22 is the squared ℓ2
norm. The other terms in (2) are defined below.

B. Data fidelity term

Optical flow assumes brightness constancy and temporal

consistency leading to the following optical flow equation

∂tf
d
H +∇fTHsd = 0 (3)

where sd ∈ R
NM represents the flow field such that sdℓ is

the vectorized video motion Sℓ, ∂tf
d
H denotes the temporal

derivative and ∇fTH is the spatial gradient of the brightness.

The data fidelity term resulting from optical flow is

Edata(s
d, fdH , fd−1

H ) =
∥∥∂tfdH +∇fTHsd

∥∥2
2

(4)

where ‖.‖
2
2 is the squared ℓ2 norm.

C. Sparse regularization

The second regularization term promotes sparsity of the

motion vectors in a dictionary of representative motions. It

decomposes the video motion Sd as a convolution between V
sparse coefficient maps Xv and a set of V filters Gv , i.e.,

Esparse(S
d,X) =

∥∥∥∥∥S
d −

V∑

v=1

Gv ∗Xv

∥∥∥∥∥

2

2

(5)

where ∗ denotes convolution. This regularization was used

successfully for ultrasound images [13]. One of the objectives

of this paper is to analyze its interest for multi-temporal

hyperspectral images.

D. Adaptive coded aperture scheme

Fig. 1 summarizes the four steps proposed to design the

video adaptive colored-coded apertures (VA-CCA). Specifi-

cally, the following iterative process is repeated for all the

frames: (1) sample the datacube to capture the compressive

measurements of a pair of frames, (2) reconstruct the datacube

by solving an inverse problem to define some prior information

[14], (3) estimate the video motions using optical flow, (4)

design the colored-coded apertures by thresholding the motion

estimates resulting from (3). Note that step (3) requires the

computation of a convolutional dictionary (step (3a)) (which

uses the training video motion S̃) and of coefficient maps

((step (3b)) using test video motions St.

E. Adaptive coded aperture design algorithm

Algorithm 1 designs the coded apertures adaptively for a

compressive spectral video sequence. The algorithm uses two

sets of compressive measurements and a sequence of motion

fields estimated from a spectral video. It also requires to

choose the hyperparameters λs, λp that balance the spatial

and sparse regularization terms, respectively. Moreover, the

alternating direction method of multipliers (ADMM) [17] used

in this work requires to set the parameter ρ for the Lagrangian,

and λ to balance the sparsity of the coefficients maps. Note that

a low-resolution reconstruction of the datacube is necessary

to obtain the video sequence appearing in lines 6 and 12 of

the algorithm. This reconstruction is obtained by solving the

following optimization problem f̂dL = Ψ−1
L (argminθL

‖yd −

Hd
LΨ

d
Lθ

d
L‖

2
2 + τ‖θd

L‖1), where y contains the compressive

measurements, Ψ−1
L denotes the low-resolution representation

basis, θ
d
L represents the sparse signal, Hd

L corresponds to

the measurement matrix, ‖.‖1 is the ℓ1-norm, and τ is a

regularization parameter. Line 2 computes the convolutional

dictionary by assuming that each band in a specific spectral

frame of the video can be represented as a set of V filters

Gv convolved with a set of sparse coefficient maps Xv , i.e.,

Sd ≈
∑V

v=1 Gv ∗Xv .

F. Dictionary learning

The determination of a convolutional dictionary satisfying

Sd ≈
∑V

v=1Gv ∗ Xv can be achieved using several off-the-

shelf algorithms [18]. In this paper, the dictionary learning



step is performed by solving the following problem (where

S̃d denotes the training video sequence which was obtained

using Horn-Schunck optical flow estimation)

argmin
Gv,Xd,v

1

2

∑

d

∥∥∥∥∥
∑

v

Xd,v ∗Gv − S̃d

∥∥∥∥∥

2

2

+ λ
V∑

v=1

∑

d

‖Xd,v‖1

s.t. ‖Gv‖ = 1 ∀v = 1, ..., V.
(6)

The minimization of (6) can be handled efficiently using the

ADMM.

reconstruction
Dictionary

learning

Motion

Estimation

Coded Aperture

Design

Coefficient

maps
𝐲𝑑+1

Sensing ത𝒇𝑑+1𝐇d+1
𝑺𝒕𝐗

𝐆
෩𝑺

𝑺𝒅+𝟏
End

𝒇𝒅+𝟏
(3a)(3b)(3)(4)(1) (2)

Fig. 1. Flowchart of the proposed adaptive coded aperture design for VME.

Algorithm 1 Adaptive coded aperture design for compressive

spectral video using motion estimation.

Input: λs, λp,K,D, λ, ρ, S̃,St : Training/test video motions

Output: Sd
ℓ

1: function CODED APERTURE DESIGN USING VIDEO MO-

TION ESTIMATION (y0,y1, λs, λp,K, J, λ, ρ, S̃,St)

2: Gv ← Computes the dictionary by solving (6)

3: Xv ← Computes the coefficient maps by solving (7)

4: y0 ← H0f ⊲ First snapshot

5: f̂0L ← Ψ−1
L (argminθL

‖y0 −H0
LΨ

d
Lθ

d
L‖

2
2 + τ‖θd

L‖1)
6: ⊲ Low-resolution

7: f̂0H ← P(f̂0L) ⊲ Interpolation

8: F̂0
H ← rearrange(f̂0H) ⊲ Rearrange

9: for k ← 1,K do

10: for d← 1, D do

11: f̂dL ← Ψ−1
L (argminθL

‖yd−Hd
LΨ

d
Lθ

d
L‖

2
2 + τ‖θd

L‖1)
12: ⊲ Low-resolution

13: f̂dH ← P(f̂dL) ⊲ Interpolation

14: F̂d
H ← rearrange(f̂dH) ⊲ Rearrange

15: for ℓ← 1, L do

16: argminSd
ℓ

{
Edata(F̂

d−1
H , F̂d

H ,Sd−1
ℓ )+

λs‖∇S
d−1
ℓ ‖22 + λp(k)‖S

d−1
ℓ −

∑
v Gv ∗Xv‖

2
2

}

s.t. ‖Gv‖ = 1 ∀v ⊲ Video motion estimation

17: Qd
ℓ ← (Sd−1

ℓ ,Sd
ℓ ) ⊲ Thresholding motion

18: qd
ℓ ← vec(Qd

ℓ ) ⊲ Vectorized motion areas

19: rdℓ ← qd
ℓ ⊙ bd

ℓ + (1− qd
ℓ )⊙ b̂d

ℓ ⊲ Next code

20: Hd
ℓ ← rearrange(rdℓ ) ⊲ Rearrange

21: yd ← Hdf ⊲ Next snapshot

22: f̂ ← Ψ−1(argminθ ‖y −HΨθ‖22 + τ‖θ‖1)
23: return Sd

ℓ ⊲ (Estimated motion field)

G. Sparse coding

Once the dictionary Gv has been determined, the coefficient

maps of a sequence of test images denoted as Sd
t are obtained

by solving the following optimization problem (see line 3 of

Algorithm 1)

argmin
Xv

1

2

∥∥∥∥∥

V∑

v=1

Xv ∗Gv − Sd
t

∥∥∥∥∥

2

2

+ λ
V∑

v=1

‖Xv‖1 (7)

which can again be done using the ADMM algorithm.

H. Video reconstruction

In order to compute the adaptive coded apertures, some prior

information is required. We propose to use a low resolution

reconstruction of the image f̂dL (see line 11 of Algorithm

1), where Hd
L is a decimated sensing matrix Hd

L = HdD,

D is another decimation matrix such that f̂dL = Df̂d, the

representation basis is denoted by Ψ−1
L and the vectorized

sparse signal is θ
d
L. An interpolation is used in Line 13 of

Algorithm 1 to create a high resolution image f̂dH from a low

resolution reconstruction f̂dL, where P is a bilinear interpolator.

The interpolated datacube f̂dH is rearranged in Line 14 to obtain

the datacube of the dth frame F̂d
H .

The VME is reported in Line 16. In line 17 of the algorithm,

a thresholding using a binary mask Qd
ℓ divides each pixel in

background and target areas using a pair of motions Sd−1
ℓ ,

and Sd
ℓ . The matrix Qd

ℓ is vectorized as qd
ℓ in line 18 and the

resulting coded aperture rdℓ is computed in line 19. Note that

the coded aperture depends on two blue noise code apertures

b̂d
ℓ and bd

ℓ [19]. One blue noise coded aperture corresponds

to the background area (complement of matrix qd
ℓ , 1 − qd

ℓ )

and a moving blue noise coded aperture bd
ℓ is attributed to the

mobile target (the subset of the scene qd
ℓ ). For an example

of designed codes, the reader is invited to look at Fig. 2

in Section IV. In line 20 the coded aperture is reorganized

leading to the matrix Hd
ℓ . In the following step (line 21)

the compressive measurements yd are obtained by sampling

with the adaptive coded aperture Hd
ℓ . The last step in line 22

reconstructs the spectral video with improved quality due to

the designed patterns.

IV. SIMULATION RESULTS

In order to validate the performance of the proposed coded

aperture design, a set of C-CASSI video measurements was

simulated using the model (1). These measurements were

constructed using a real test spectral source acquired in

the Optics Lab of the High Dimensional Signal Processing

(HDSP) research group at Universidad Industrial de Santander

with a CCD camera using wavelength steps of 10 nm. The

resulting discrete source F used in simulations has 12 frames

of 128× 128 pixels and L = 10 spectral bands ranging from

400 nm to 500 nm. Given the compressive projections, the

compressive sensing algorithm GPSR (Gradient Projection for

Sparse Reconstruction) was used to recover the data [3]. The

4D sparse representation basis used in this experiment was the

Kronecker product between a 2D-Wavelet Symmlet 8 basis for

the spatial dimensions denoted as Ψ2D, a 1D-Discrete Cosine

basis (DCT) for the spectral dimension denoted as W and a

1D-DCT basis for the temporal dimension denoted as U [20].



Algorithm 1 was used to design the video adaptive colored-

coded apertures (VA-CCA) in an adaptive manner. The de-

signed apertures were then used to create a C-CASSI spectral

source and to reconstruct the image sequence of interest.

The performance of the designed apertures was compared

with random colored-coded apertures (R-CCA) [1] with the

same transmittance, with blue noise apertures (BNA) [19], and

with 50% transmittance blocking-unblocking coded apertures

(BUA) [21]. For the experiments, the estimated low-resolution

image had a spatial resolution of 32 × 32 pixels, which

corresponds to a spatial downsampling by a factor of 4. An

example of the motion field obtained for the first frame, and

the first spectral band is depicted in Fig. 2. Fig. 2(a) displays

the motion field, Fig. 2(b) shows a zoomed version of the

motion field, Fig. 2(c) depicts the Otzu thresholding of the

motion field, which divides the scene into static and dynamic

regions, Fig. 2(d) displays a hybrid blue noise coded aperture

which is composed of one blue noise code aperture for the

static part of the scene and a dynamic blue noise that moves

to keep the complementarity between frames.

The quality of image reconstructions was evaluated in terms

of peak-signal-to-noise ratio (PSNR) and structural similarity

index (SSIM). The PSNR, given in decibels (dB), is related to

the mean squared error (MSE) as 10 log10(max2/MSE) where

max is the maximum possible value of an image pixel. SSIM

measures the structure similarity between two imageswith

values varying from 0 to 1, 1 being the value obtained for two

identical images. Table I summarizes the results in terms of

PSNR mean and SSIM for the different coded apertures. The

PSNR and SSIM obtained with the proposed VA-CCA patterns

are higher than those obtained with BUA, BNA, and R-CCA.

Fig. 3 shows the RGB reconstructions of the frames #4, #8,

and #12 and provides the quality of reconstructions in terms

of PSNR. The VA-CCA provides the best reconstructions, with

a PSNR up to 2 dB higher than the block-unblock coded

apertures, 2.9 dB higher than blue noise coded apertures, and

0.7 dB higher than the random colored-coded apertures. These

results are very promising.

TABLE I
MEAN PSNR AND SSIM OF THE RECONSTRUCTION IN DB ACROSS THE

SPECTRAL AND TEMPORAL DIMENSIONS.

Coded Aperture Patterns BU BN CCA VA-CCA

PSNR mean 25.04 24.56 26.75 27.42
SSIM mean 0.844 0.843 0.895 0.906

V. CONCLUSIONS

This paper studied a new design of adaptive colored-coded

apertures (VA-CCA) for compressive spectral sampling in

video C-CASSI. After introducing a mathematical model for

dynamic scenes, we investigated the colored-coded apertures

in C-CASSI relying on prior information on the scene, pro-

vided by motion estimation between pairs of consecutive

frames. The proposed design divides the video scene into

static and dynamic regions, assigning two different blue noise

patterns to the static and mobile parts of the image. The im-

provement in PSNR obtained with the proposed approach is up

PSNR=25.0 dB

Fr 4 Fr 8 Fr 12

(c
) 

R
-C

C
A

(d
) 

V
A

-C
C

A
(b

) 
B

N
A

(a
) 

B
U

A

PSNR=24.6 dB

PSNR=26.6 dB

PSNR=27.3 dB

PSNR=25.2 dB PSNR=25.4 dB

PSNR=24.7 dB PSNR=24.9 dB

PSNR=26.9 dB

PSNR=27.6 dB

PSNR=26.8 dB

PSNR=27.3 dB

Fig. 3. Video reconstructions for frames 4, 8, and 12 (one frame per column),
using non-adaptive and adaptive coded apertures. (a) block-unblock apertures,
(b) blue noise apertures, (c) random CCA, (d) video adaptive CCA. The PSNR
mean across the spectral band is shown in each frame.

to 2 dB compared to traditional blocking-unblocking apertures,

2.9 dB in comparison with non-adaptive blue noise patterns,

and 0.7 dB higher than random colored-coded apertures.
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(a) Fr. 1 motion estimation. (b) Fr. 1 zoomed version.

(c) Threshold estimation (d) Adaptive Video CCA

Fig. 2. (a) Example of motion field of the 1
st frame, and the 1

st spectral
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scene, i.e., static area and dynamic area. (d) Hybrid blue noise coded aperture,
notice that a yellow area depicts the dynamic blue noise coded aperture, and
the blue area represent the static blue noise coded aperture.
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