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Abstract

This work investigates adaptive coding and modulation (ACM) algorithms under the realistic assumption that the

available channel state information (CSI) at the transmitter is imperfect due to estimation errors and/or feedback

delays. First, we introduce an optimal performance metric for the secondary user (SU) bit-interleaved coded

orthogonal frequency division multiplexing (BIC-OFDM) system, called the expected goodput (EGP). By using an

accurate modeling approximation, we succeed in deriving a tractable and very accurate approximation for the EGP.

This approximate EGP (AEGP) is then used for the derivation of several ACM algorithms which optimize the code rate

and bit and energy allocation under a constraint on the interference caused to the PU network. In the numerical results,

we show that the AEGP is far more accurate than previous attempts to model the GP in the presence of imperfect CSI.

Further, we verify that, in spite of the imperfect nature of the available CSI, the derived ACM algorithms significantly

increase the goodput of the SU network, compared to a non-adaptive selection of the transmission parameters.

Keywords: Effective SNR mapping (ESM), Orthogonal frequency division multiplexing (OFDM), Adaptive coding and

modulation (ACM), Imperfect channel state information, Goodput

1 Introduction
To meet the demand of high data rates and the increas-

ing amount of traffic, the current and next generation

of wireless networks need spectrally efficient solutions

such as multicarrier orthogonal frequency division mul-

tiplexing (OFDM) transmission, efficient channel coding

techniques in the form of bit interleaved coded modu-

lation (BICM) [1], and adaptive coding and modulation

(ACM) [2]. To further increase the spectral efficiency, the

idea of cognitive radio (CR) [3, 4] has been proposed. This

technique allows unlicensed or secondary users (SUs) to

transmit over sections of spectrum owned by licensed or

primary users (PUs), on the condition that the former do

not harm the quality of service (QoS) of the latter.

If channel state information (CSI) is available at the

transmitter, ACM can significantly improve the perfor-

mance of the network by adapting the transmission

parameters, such as energy and bit allocation per subcar-

rier, constellation size, and code rate, to the actual state
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of the channel. However, in a wireless environment, the

CSI at the transmitter, obtained from channel estimates

fed back by the receiver, will be imperfect, due to chan-

nel estimation errors at the receiver and, in the case of

a time-varying channel, the feedback delay on the return

channel from the receiver to the transmitter. In [5], the

authors show for a single user OFDM system that, even

with CSI imperfections at the transmitter, the through-

put of the system can be significantly increased by using

adaptive modulation. The adaptation algorithms take the

CSI imperfections into account, and their performance

was shown to improve by having multiple estimates avail-

able at the transmitter. This means that, when multiple

estimates are available, the network can tolerate larger

channel estimation errors or longer delays, while still

achieving an acceptable performance level. In [6], this

scenario was extended to a multi-user OFDMA-system

where the subcarriers are allocated to the user with the

best signal-to-noise ratio (SNR) conditions and the num-

ber of bits per subcarrier are optimized bymaximizing the

average throughput. However, the results in [5, 6] were

obtained for an uncoded OFDM system; this consider-

ably simplifies the optimization problem (OP) because the
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probability of a bit error on a subcarrier only depends on

the SNR of the considered subcarrier, but the results are of

limited use in a practical scenario where channel coding is

used.

In recent years, there have been several works [7–12]

that studied resource allocation in cognitive underlay net-

works with imperfect CSI. However, these works used a

more theoretic performance metric like the capacity met-

ric or SNR and did not consider the difficult problem

of implementing ACM in a practical coded multi-carrier

transmission system. Because the bits are coded and the

channel is frequency-selective, the throughput of the net-

work depends upon a complicated function of the SNRs

of all the subcarriers which are used for the transmis-

sion. A technique which allows to simplify the analytical

expression for the performance metric is effective SNR

mapping (ESM) [13]. This technique transforms the vec-

tor of subcarrier SNRs, which affect the codeword, into

a scalar SNR. This effective SNR is the operating point

at which an equivalent coded system, which uses the

same modulation and coding scheme, operating over an

additive white Gaussian noise (AWGN) channel, has the

same performance as the system under consideration. A

very promising mapping function, called the cumulant-

generating function-based ESM (κESM), was introduced

in [14]. This mapping function combines the simplicity

of exponential ESM (EESM) with the accuracy of mutual

information ESM (MIESM) [15]. Another advantage is

that this mapping function can be used to optimize the

coding rate together with the energy and bit allocation per

subcarrier.

In [16], EESM has been applied to ACM in a multi-

carrier system with feedback delays. The bit allocation

per subcarrier and the code rate are selected such that

the throughput gets maximized under a certain block

error rate constraint. However, because the transmitter is

unaware of the fact that the available CSI is delayed, the

transmitter sometimes over- or underestimates the actual

channel conditions which results in a loss of spectral effi-

ciency. In [17], the throughput of a BIC-OFDM system

is optimized under a target packet error rate (PER) con-

straint, where a packet can consist of multiple OFDM

symbols. Also here, the considered adaptation algorithm

at the transmitter does not account for CSI imperfections,

which leads to a violation of the PER constraint when only

delayed CSI is available.

Rationale and contributions. This paper deals with an

ACM scheme for the SU link of a cognitive system based

on a BIC-OFDM signaling with imperfect CSI at the SU

transmitter, due to estimation errors or feedback delays.

The performance metric we consider is the goodput (GP),

which is similar to the throughput but considers only the

number of information bits which are correctly received.

The key idea behind the proposed method relies on

optimizing the long-term average GP of the SU link, aver-

aged over the realizations of both the actual channel and

the available CSI at the SU transmitter, under the con-

straints of the total transmitted energy and the level of

interference on the PU receivers. This can be achieved by

optimizing the expected GP (EGP) metric.1 This optimal

metric is the expected GP conditioned on the available

CSI at the SU transmitter. In view of these features, our

proposed scheme turns out to be more competitive, when

compared to the current literature, as outlined in the

sequel.

1. Instead of resorting to the often used information-

theoretical capacity metric, a more practically

relevant metric, i.e., the GP, is optimized, which gives

the advantage of allowing the optimization of

realistic modulation and coding formats.

2. Unlike the ad hoc approaches used in our previous

work [19, 20], we now start from the optimal

expression for the EGP. By using the statistical

approximation for the effective SNR, which we

introduced in [21], we now derive an analytical,

tractable approximation for the EGP, which we call

the approximate EGP (AEGP). In the numerical

results, we show that the AEGP is a far more

accurate approximation of the EGP, compared to the

metrics used in [19, 20]. To the authors’ knowledge,

these works are the first ones which propose to use a

practical metric, which takes care of the imperfect

CSI, for the optimization of the transmission

parameters.

3. In this work, we successfully combine the practical

assumption of imperfect CSI with the accurate model

of the effective SNR, which results in the AEGP

metric. This AEGP metric, which takes care of the

imperfect CSI, is proposed as the objective function

of an OP to search for the optimal combination of

the ACM parameters under the above mentioned

transmit energy and interference constraints. By

using the AEGP, packet errors or a loss in spectral

efficiency by over- or underestimating the actual

channel conditions are largely avoided. This differs

from the approach taken in [16, 17], where the

transmitter is unaware that its CSI is imperfect and

only the impact of the imperfect CSI on the

performance is investigated.

4. We derive several ACM solutions which optimize

the code rate together with uniform or non-uniform

bit allocation and uniform or non-uniform energy

allocation. The performance of these algorithms is

investigated for different types of CSI at the SU

transmitter.

5. Although affected by imperfect CSI, extensive

simulation runs show that the proposed ACM
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algorithms allow significant gains compared to

non-adaptive ACM schemes. Further, depending on

the quality level of the CSI, the resulting GP

performance can be very close to that obtainable in

scenarios where perfect CSI is employed.

Organization. In Section 2, we describe the cogni-

tive BIC-OFDM system. In Section 3, we introduce the

EGP metric and discuss the statistical approximation of

the κESM. The ACM algorithms which select the code

rate and the energy and bit allocations per subcarrier are

derived in Section 4. The accuracy of the EGP metric and

the performance of the ACM algorithms are validated in

Section 5. The conclusions are presented in Section 6.

Notations. Expectation operator is E[·], [·]T is the trans-

pose operator, [·]H is the Hermitian transpose operator,

x ∼ CN (0,�) refers to a circular symmetric zero-mean

Gaussian complex random vector with covariance matrix

�, and the matrix I denotes the identity matrix. The

ith column of the identity matrix is denoted by ei. The

notation (X)i,j refers to the element on the ith row and

jth column of the matrix X, while (x)i denotes the ith

component of the vector x.

2 Cognitive BIC-OFDM systemmodel
We consider a SU network, which consists of a point-to-

point OFDM link, that occupies the same bandwidth as

a PU network containing NPU PU receivers. Messages are

transmitted by means of a packet-oriented BIC-OFDM

communication system consisting ofN subcarriers within

a bandwidth B [14]. Each packet contains Np informa-

tion bits and NCRC bits for the cyclic redundancy check

(CRC), which leads to a total of Nu = Np + NCRC bits

per packet. These Nu bits are first encoded by a convolu-

tional encoder. Several convolutional codes are available

at the transmitter; these are punctured versions of a rate

1/2 code, designated by their rate r ∈ Dr. In the follow-

ing step, these Nu/r coded bits are randomly interleaved

and Gray-mapped to Ns unit-energy quadrature ampli-

tude modulation (QAM) symbols. In the last step, we

make use of OFDM, with N available subcarriers per

OFDM symbol, to transmit the Ns QAM symbols over a

frequency-selective fading channel, which is assumed to

be time-invariant for the whole packet transmission dura-

tion. The duration of an OFDM symbol will be denoted

by Ts. The SU receiver first performs a fast Fourier trans-

form (FFT) on the receivedOFDM symbol; the kthOFDM

subcarrier, with k ∈ {1, . . . ,N} is observed at the corre-

sponding FFT output as

zk
△=

√

EkHkxk + wk , (1)

where Ek is the transmit energy on the kth subcarrier,Hk is

the corresponding channel coefficient, xk is the constella-

tion symbol transmitted on subcarrier k containing mk ∈

Dm coded bits and E[ |xk|2]= 1, and wk ∈ CN
(

0, σ 2
w

)

is

the additive noise contribution. The transmit energies are

constrained by

N
∑

k=1

Ek ≤ Emax (2)

where Emax is the maximal transmit energy per OFDM

symbol. Next, the SU receiver first performs soft demap-

ping, and finally de-interleaves and decodes the packet;

the CRC allows to verify whether the packet has been

correctly decoded.

The received SNR associated with the kth subcarrier at

the FFT output is defined as

γk
�=Ek|Hk|2

σ 2
w

. (3)

Let us arrange the received SNRs into a vector Ŵ
�=

[ γ1, . . . , γN ] for further use. We define the trans-

mission mode (TM) φ
�={m, r} ∈ DN

m × Dr, with

m
�=[m1, . . . ,mN ]

T . As not all N available subcarriers

will necessarily be used for the transmission, we make a

distinction between the set {1, . . . ,N} of available sub-

carriers, and the set N ⊆{1, . . . ,N} of active subcarriers.
When the kth subcarrier is not active (i.e., k /∈ N ), we

have Ek = 0 andmk = 0.

Because of noise and/or feedback delays, the CSI avail-

able at the transmitter will often be imperfect. Tomake the

description of our proposed approach quite general, we

will denote the CSI, which is available at the transmitter

about the actual channel realization H
�=[H1, . . . ,HN ]

T ,

by the vector CSI. We make the assumption that H and

CSI are jointly zero-mean circular symmetric Gaussian.

It then follows that H conditioned on CSI is Gaussian,

with expectation μH|CSI = EH[H|CSI] and covariance

matrix CH|CSI = EH[HHH |CSI]−μH|CSIμ
H
H|CSI; note

that μH|CSI is the minimum mean-squared error (MMSE)

estimate of H based on CSI. Some examples of CSI and

the associated statistics are given in the Appendix section.

The signals transmitted in the SU network cause inter-

ference at the PU receivers, which should be constrained

in order not to affect the PU QoS. Denoting by G
(q)
k

the channel gain from the SU transmitter to the qth PU

receiver, experienced by the kth subcarrier, the interfer-

ence constraints can be expressed as
∑

k∈N Ek|G(q)
k |2 ≤

Iq for q ∈ Q
�={1, . . . ,NPU}.

We denote by CSIPU = {CSI(q)PU, q ∈ Q} the imper-

fect CSI available at the SU transmitter about its channels

to the PU receivers. This CSI could be obtained from a

band manager [22] or, assuming time-division duplexing

in the PU network and channel reciprocity, this CSI could

be extracted by the SU transmitter when the considered
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PU receiver has switched to a transmission mode. As only

CSIPU and not the exact channel gains G
(q)
k are available

at the SU transmitter, it can happen that the interfer-

ence constraint at the PU receivers is violated. Therefore,

alternative formulations of the interference constraints are

needed that can be satisfied by the SU transmitter. A first

possibility is to satisfy the interference constraints only on

average, conditioned on the available CSI
(q)
PU. In this case,

the interference constraint is replaced by

EG(q)

[

∑

k∈N
Ek|G(q)

k |2 |CSI(q)PU

]

≤ Iq, ∀q ∈ Q, (4)

where G(q) �=[G
(q)
1 , . . . ,G

(q)
N ]T . The expected value in (4)

can be expressed as (∀q ∈ Q)

EG(q)

[

∑

k∈N
Ek

∣

∣

∣
G

(q)
k

∣

∣

∣

2 ∣

∣

∣
CSI

(q)
PU

]

=
∑

k∈N
Ek

(

∣

∣

∣

(

μ
(q)
G|CSIPU

)

k

∣

∣

∣

2
+

(

C
(q)
G|CSIPU

)

k,k

)

,

(5)

where we have assumed that the distribution of G(q) con-

ditioned on CSI
(q)
PU is Gaussian with mean μ

(q)
G|CSIPU and

covariance matrix C
(q)
G|CSIPU .

A second possibility is to define the interference con-

straint by means of uncertainty sets [23, 24]. By defining

the uncertainty set S
(q)
k as follows

S
(q)
k =

{

Ĝ
(q)
k : Ĝ

(q)
k =

(

μ
(q)
G|CSIPU

)

k
+ αǫ, ‖ǫ‖ ≤ 1

}

,

(6)

the interference constraint is formulated as
∑

k∈N
Ek|Ĝ(q)

k |2 ≤ Iq, ∀q ∈ Q,∀Ĝ(q)
k ∈ S

(q)
k (7)

where the complex scalar α defines the size of the uncer-

tainty interval, which directly influences the minimum

probability that the interference is below the interference

threshold Iq. The set of constraints in (7) can be reduced

to a single constraint per PU receiver, by only considering

the value of Ĝ
(q)
k in S

(q)
k which leads to the most restrictive

constraint. Denoting this value by G
∗(q)
k , (7) is equivalent

to
∑

k∈N
Ek|G∗(q)

k
|2 ≤ Iq, ∀q ∈ Q. (8)

A third possibility, used in [12, 25, 26], is to neglect the

statistical variation of G
(q)
k for given CSI

(q)
PU, and to use the

following interference constraint
∑

k∈N
Ek|(μ(q)

G|CSIPU)k|2 ≤ Iq, ∀q ∈ Q. (9)

We note that these interference constraints can be linked

to the concept of interference probability as defined in

[12]. The interference probability (IP) for the qth PU

receiver reads as

IPq = Pr

(

∑

k∈N
Ek|G(q)

k |2 > Iq

)

. (10)

In the case that the dynamically allocated energy vector

E
�=[E1, . . . ,EN ]

T leads to an intolerable IP, one can sub-

stitute Iq in the corresponding interference constraint by

κqIq. The scaling factor κq is chosen such that IPq reaches

an acceptable value, after finding a new dynamic alloca-

tion of the vector E which satisfies the new constraint.

Finally, it is clear that the constraints (5), (8), and (9) all

have the same mathematical form. This means that our

proposed algorithms are compatible with all these con-

straints. For the remainder of the paper however, we will

consider the average interference constraint (5).

3 Goodput performancemetric
The goodput (GP), being defined as the ratio of the num-

ber of correctly received information bits (associated with

correctly decoded packets) and the actual transmission

time, has a very clear practical interpretation. Normaliz-

ing the GP by dividing by the actual bandwidth N/Ts, the

GP corresponding to a given TM φ = {m, r} and SNR

vector Ŵ is expressed as

GP = Npr

NNu

(

∑

k∈N
mk

)

· (1 − PER(φ,Ŵ)), (11)

where PER(φ,Ŵ) is the packet error rate (PER) corre-

sponding to the selected (φ,Ŵ). Note that the goodput (11)

is a function of the actual channel realization H because

of (3). As a performance measure of the SU network, we

consider the long-term average of the goodput (11) over

many channel realizations.

If perfect CSI were available at the transmitter (i.e., the

transmitter knows the realizations of its channels to the

SU receiver and PU receivers), the optimal way of selecting

the transmission mode φ and the energy allocation vector

E as a function of these realizations is to maximize (11)

under the constraints on the SU transmit energy and the

interference at the PU receivers, for the given realizations

H and {G(q), q ∈ Q}. This selection obviously maximizes

the long-term average goodput of the system, given by

GPavg = EH,{G(q),q∈Q} [GP].
However, when only imperfect CSI is available, the

transmission parameters (φ,E) must be selected as func-

tions of CSI and CSIPU, rather than H and {G(q), q ∈ Q}.

Taking into account that for given φ and E, GP from

(11) is a function of H and that the joint probability den-

sity function of H, CSI, and CSIPU can be factored as
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p(H,CSI,CSIPU) = p(H|CSI)p(CSI)p(CSIPU), the long-

term average goodput can be written as

GPavg=EH,CSI,CSIPU [ GP]

=ECSI,CSIPU

[

Npr

NNu

(

∑

k∈N
mk

)

·(1−EH[PER(φ,Ŵ)|CSI])
]

.

(12)

It follows from (12) that GPavg becomesmaximumwhen

for given (CSI,CSIPU) the transmission parameters (φ,E)

maximize the expression between brackets in the second

line of (12), under the constraints (2) and (4). This is equiv-

alent to maximizing the expected goodput (EGP) metric,

given by

EGP = EH [GP|CSI]

= Npr

NNu

(

∑

k∈N
mk

)

· (1 − EH [PER(φ,Ŵ)|CSI]) .

(13)

which is the conditional expectation of GP for given CSI

and represents the optimal performance metric in terms

of GPavg when only imperfect CSI is available at the

transmitter.

The evaluation of PER(φ,Ŵ) is not an easy task. In [14],

an accurate link performance evaluation model, referred

to as κESM, has been proposed for the BIC-OFDM sys-

tem. This model provides a closed-form expression for the

effective SNR γ . The effective SNR γ has the important

property that the PER of the considered BIC-OFDM sys-

temwhere the SNRs and transmissionmode of the subcar-

riers are given by Ŵ and φ, respectively, is approximately

equal to PERESM(r, γ ), which denotes the PER of an equiv-

alent BPSK system (i.e., using the same convolutional code

with rate r) which operates over an AWGN channel with

SNR equal to γ . The effective SNR is calculated as [14]

γ
�= − β log(Y ), (14)

where β is a scaling coefficient which is optimized across

all possible TMs [27]. Y is expressed as

Y
�= 1

∑

l∈N ml

∑

k∈N

k , (15)

and 
k is given by


k
�=

√
2mk
2

∑

n=1

αk,ne
−

γkn
2d2

k,min
4β , (16)

where dk,min denotes the minimum Euclidean distance of

the constellation used on the kth subcarrier, and αk,n is a

known constant which depends on the chosen constella-

tion.

The EGP from (13) can now be approximated by

replacing PER(φ,Ŵ) by PERESM(r, γ ), with γ given by

(14). The reference curves PERESM(r, γ ) can be stored

in a lookup table for each code rate r from the set

Dr. In order to compute the conditional expectation

EH
[

PERESM(r,−β log(Y ))|CSI
]

, we need the distribution

of Y conditioned on CSI. In [21], it was proposed to

approximate Y conditioned on CSI by a random variable

Z which follows a beta distribution with shaping parame-

ters a and b, i.e., pZ(z) ∝ za−1(1 − z)b−1 for 0 ≤ z ≤ 1.

The value of these shaping parameters is given by a =
e(e−e2−v)

v and b = (1−e)(e−e2−v)
v , where e = EH[Y |CSI]

and v = VarH[Y |CSI]. For more details, we refer to [21],

where closed-form expressions where derived for e and v.

Note that the distribution of Z depends on the selected

bit allocation through the variables αk,n, mk and dk,min.

Using this approximating beta distribution, we obtain the

approximate EGP (AEGP) given by

AEGP = Npr

NNu

(

∑

k∈N
mk

)

·
(

1−EZ
[

PERESM(r,−β log(Z))
])

.

(17)

The expectation w.r.t. Z in (17) can be approximated by

means of numerical integration.

4 Goodput optimization
In this section, we consider different algorithms the trans-

mitter can employ to optimize the code rate r, the energy

allocation Ek and the bit allocation mk (∀k ∈ N ) such

that the AEGP from (17) is maximized, while satisfying the

transmit energy constraint (2) and the interference con-

straints (4) at the PU receivers. These algorithms assume

that only imperfect CSI is available at the transmitter.

4.1 Uniform energy and bit allocation

In this first subsection, wemake the restriction that the bit

and energy allocation is uniform and that all N available

subcarriers are actually used, i.e.,N = {1, . . . ,N}. For the
bit and energy allocation, this means that

mk = m, Ek = E, ∀k ∈ N , (18)

where m ∈ Dm . Considering the constraints (2) and (4),

the optimal uniform energy per subcarrier is given by

E = min

⎛

⎝min
q∈Q

Iq

EG(q)

[

∑

k∈N |G(q)
k |2 |CSI(q)PU

] ,
Emax

|N |

⎞

⎠ ,

(19)

where the expected value can be found from (5) and |N |
denotes the number of active subcarriers. The transmitter

will calculate the AEGP (17) for every TM φ = {m, r}, and
then selects the TM φ = {m, r} which yields the largest

AEGP. The pseudo-code of this optimization is outlined

in Table 1.
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Table 1 Uniform energy and bit allocation

Optimization of E,m and r

Set AEGPopt = 0

Set E = min

(

minq∈Q
Iq

∑

l∈N (|(μ(q)
G|CSI)l |2+(C

(q)
G|CSI)l,l)

, Emax
|N |

)

Form ∈ Dm

Setmk = m, ∀k ∈ N

For r ∈ Dr

Set AEGP according to (17)

If AEGP ≥ AEGPopt Then

Set AEGPopt = AEGP

Set ropt = r

Setmopt = m

End If

End For

End For

4.2 Optimized energy and uniform bit allocation

In this subsection, we will adapt the previous algorithm

such that the transmitter optimizes the energy per sub-

carrier, while the bit allocation remains uniform. As

explained further, we will allow some of the subcarriers to

be inactive, i.e., N ⊆ {1, 2, . . . ,N}. We first have a closer

look at the EGP from (13) where PER(φ,Ŵ) is replaced by

PERESM(r, γ ), i.e.,

EGP ≈ Npr

NNu

(

∑

k∈N
mk

)

·
(

1 − EH
[

PERESM

(

r,−β log(Y (E))
)

|CSI
])

,

(20)

where we have explicitly shown the dependence on the

energy allocation vector E. Because the PER is a convo-

luted function of the individual subcarrier energies, an

exact optimization of this metric will be very hard to

obtain. Therefore, we suggest amore computationally effi-

cient method, by optimizing the following simplification

of the EGP

EGP ≈ Npr

NNu

(

∑

k∈N
mk

)

·
(

1 − PERESM

(

r,−β log (EH [Y (E)|CSI])
))

,

(21)

where the average is now taken inside the logarithm. As

PERESM(r, γ ) decreases with increasing γ , the maximiza-

tion of (21) w.r.t. E is equivalent to the minimization

of EH[Y (E)|CSI]. The latter function can be obtained

analytically [21]:

EH [Y (E)|CSI] = 1
∑

l∈N ml

∑

k∈N

√
2mk
2

∑

n=1

gk,n(Ek), (22)

where

gk,n(Ek) = αk,n
e

−
∣

∣

∣(μH|CSI)k
∣

∣

∣

2 Ek
4βσ2w

n2d2
k,min

1+ Ek
4βσ2w

n2d2
k,min(CH|CSI)k,k

1 + Ek
4βσ 2

w
n2d2k,min

(

CH|CSI
)

k,k

· (23)

So the optimized energy allocation that maximizes the

simplified EGP in (21) is found by solving the following

OP
⎧

⎪

⎨

⎪

⎩

E(opt) = argminE
∑

k∈N
∑

√
2mk
2

n=1 gk,n(Ek)

s.t.
∑

k∈N Ek ≤ Emax

(4)

. (24)

According to [28], an OP is convex when both the con-

straints and the objective function are convex. From (24),

it is clear that the constraints are convex, as they are lin-

ear in the components of E. Further, the convexity of the

objective function follows from the fact that the second

derivative of gk,n(Ek)with respect to Ek can be shown to be

non-negative; hence, each term of the objective function

is convex, so that the entire objective function is convex as

well. Therefore, the OP of (24) can be efficiently solved by

using optimization tools such as CVX [29].

For the optimization of the EGP, we slightly adapt the

algorithm outlined in Table 1. We start by considering all

available subcarriers as active, i.e., N = {1, . . . ,N}. For
every possible TM φ = {m, r} the algorithm computes the

approximation (17) of the EGP, using as energy allocation

the solution of OP (24). Because the energy allocation now

depends on the parameterm, it must now become part of

the outer loop of the algorithm. For a given value of m, it

might happen that for some k the optimized value of Ek
equals 0. In this case, the corresponding subcarriers are

removed from the active set N by putting mk = 0, which

also removes the large terms with Ek = 0 (i.e., γk = 0)

from (15) for the considered bit allocation. Finally, the

algorithm selects the TM and the corresponding energy

allocation yielding the largest value of the AEGP (17).

4.3 Uniform energy and greedy bit allocation

In this subsection we consider a uniform energy alloca-

tion according to (19) and an optimized bit allocation per

subcarrier.

We first consider the simplified expression for the EGP

(21):

EGP ≈ Npr

NNu

(

∑

k∈N
mk

)

·
(

1 − PERESM

(

r,−β log (EH [Y (m,E) |CSI])
))

,

(25)

where now the dependence on the bit and energy

allocation vectors m and E is explicitly shown. Con-

sidering (15), we notice that the simplified EGP from
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(25) only depends on the bit allocation through the

quantity
∑

k∈N EH [
k(mk ,Ek)|CSI] and the sum
∑

k∈N mk
�=M(m). Because the PER is a decreasing func-

tion of the effective SNR γ , the maximal value of the

simplified EGP, for a fixed value ofM(m), will be achieved

for the bit allocation m and energy allocation E which

minimizes

argmin
E,m

∑

k∈N
EH [
k(mk ,Ek)|CSI]

= argmin
E,m

∑

k∈N

√
2mk
2

∑

n=1

gk,n(mk ,Ek). (26)

where gk,n(mk ,Ek) is given by (23), and the dependence

on mk is shown explicitly. However, this represents a

mixed integer programming problem, which is computa-

tionally very hard. In order to obtain a computationally

efficient solution, we base our algorithm on the iterative

suboptimal greedy algorithm described in [30].

In the current iteration, we modify the bit allo-

cation from the previous iteration by adding 2 bits

(because we restrict our attention to square QAM con-

stellations, representing an even number of bits) to

the subcarrier which leads to the smallest increase of
∑

k∈N EH [
k(mk ,Ek)|CSI]. For the resulting bit and

energy allocation, we determine the code rate r which

leads to the highest AEGP (17). The iterative algorithm

is initialized with mk = 0 for all available subcarriers

(yielding M(m) = 0) and continues until all N available

subcarriers have mmax bits (yielding M(m) = mmaxN),

where mmax is the largest allowed number of bits in the

constellation. At that point, we select the code rate r and

the energy and bit allocation which correspond to the

value ofM(m) for which the AEGP (17) is maximal.

Now, we outline how the increase of
∑

k∈N EH [
k

(mk ,Ek)|CSI] is evaluated. Let us denote by m the value

of the bit allocation vector and by N the set of active

subcarriers, both referring to the previous iteration. We

now introduce the quantity δ
(mk+2)
k (m) which is defined

as the increase of (26) when the bit allocation on subcar-

rier k increases frommk tomk + 2. If subcarrier k was not

active in the previous iteration (i.e., mk = 0), the set of

active subcarriers increases fromN (previous iteration) to

N ∪ {k} (current iteration), yielding the increase

δ
(2)
k (m)=EH

[


k(2,Ek(m + 2ek))

+
∑

l∈N
(
l(ml,El(m+2ek))−
l(ml,El(m)))|CSI

]

,

(27)

where E(m) and E(m + 2ek) denote the uniform energy

allocations from (19) corresponding to the bit allocations

m and m + 2ek , respectively, related to the previous and

the current iteration; because the corresponding set of

active subcarriers has changed, E(m) and E(m + 2ek)

are different, which makes in (27) the summation over l

nonzero. If subcarrier k was already active in the previous

iteration (i.e.,mk > 0), we obtain

δ
mk+2
k (m) = EH [
k (mk + 2,Ek (m + 2ek))

−
k (mk ,Ek(m)) |CSI] . (28)

As in this case, the set of active subcarriers equals N

for both the previous and the current iteration, the uni-

form energy allocation from (19) satisfies E(m + 2ek) =
E(m). In the current iteration, the increments δ

mk+2
k (m)

are computed for all k ∈ {1, . . . ,N}; then, the subcar-

rier k which yields the lowest δ
mk+2
k (m) (k ∈ {1, . . . ,N})

is selected, and the bit allocation for this subcarrier and

M(m) are both increased by 2, compared to the previous

iteration.

4.4 Suboptimal joint energy and bit allocation

The greedy bit allocation algorithm introduced in the pre-

vious subsection requires the reevaluation of the values of

δ
mk+2
k (m) (∀k ∈ {1, . . . ,N}) each time the set N of active

subcarriers is modified. The complexity would increase

even further if we combined each step of the greedy bit

allocation algorithm with the optimized energy allocation

introduced in Section 4.2, which requires solving a convex

optimization algorithm instead of a simple evaluation of

Eq. (19).

To circumvent this complexity, we present a faster,

less computationally intensive algorithm. We initialize

the algorithm with the optimal uniform energy and bit

allocation from Section 4.1. Then, as a first step we calcu-

late for this specific uniform bit allocation the optimized

energy allocation vector resulting from OP (24), for N =
{1, . . . ,N}. In the second step, we optimize the bit allo-

cation and code rate according to the greedy algorithm

outlined in 4.3. Because during this step the energy allo-

cation vector E is kept to its value resulting from the

previous step, we can drop the dependency of δ
mk+2
k on

m because δ
mk+2
k

now depends only on mk for given k

and, therefore, has to be evaluated only once for each mk

(mk ≥ 0,∀k ∈ {1, . . . ,N}). This considerably reduces

the complexity. For more details, we refer to the pseudo-

code of this algorithm shown in Table 2. As a final step,

the optimized energy allocation vector E is recalculated

according to Section 4.2, for the optimized TM resulting

from the second step. The resulting values for the code

rate r, energy allocation E, and bit allocation m are then

used for the transmission.
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Table 2 Suboptimal joint energy and bit allocation

Optimization of E,m and r

Set AEGPopt = 0

Set r andm according to section 4.1

Set E according to (24)

For k ∈ {1, . . . ,N}
Formk ∈ Dm

Set δ
mk

k according to (28)

End For

Set δ
mmax+2
k = ∞

End For

Setmk = 0 (∀k ∈ {1, . . . ,N})
ForM ∈ {2, 4, . . . ,mmaxN}

Set k = argmin{δm1+2
1 , . . . , δ

mN+2
N }

Setmk = mk + 2

UpdateN

For r ∈ Dr

Set AEGP according to (17)

If AEGP ≥ AEGPopt Then

Set AEGPopt = AEGP

Set ropt = r

Setmopt = m

End If

End For

End For

Set E according to (24)

5 Numerical results
We consider a communication system characterized by

the parameters from Table 3, which uses orthogonal

frequency-division multiple access (OFDMA) to support

several users. Here, we concentrate on the performance of

a user to which 48 data subcarriers are allocated, which

is equal to one subchannel in the FUSC permutation

mode of WiMax [31]. These subcarriers are considered

to be evenly spaced across the available bandwidth. The

channel impulse responses behave according to the ITU

vehicular A model [32], with time variations according

to Jakes’ model [33]. We consider a single PU receiver

(so we can drop the index q) and the channels between

the different nodes are characterized by Tr(E[hhH ] ) = 1

and Tr(E[ ggH ] ) = 10−3 , where h and g denote the

channel impulse responses corresponding to the chan-

nel frequency responses H and G, respectively; this yields

E[ |Hk|2]= 1 and E[ |Gk|2]= 10−3 for k ∈ {1, . . . ,N}.
In this section, we will consider three types of CSI, i.e.,

estimated CSI, delayed CSI, and estimated and delayed

CSI (see the Appendix section); we always assume that

for both CSI and CSIPU, the same type of CSI is avail-

Table 3 System parameters

Data subcarriers (N) 48

Sampling rate (1/T ) 5.6 MHz

FFT size (Ncar) 512

Length of cyclic prefix (ν) 64

Convolutional code (133, 171)8

Code rates (Dr) 1/2, 2/3, 3/4, 5/6

Constellation sizes (Dm) 2, 4, 6 bits

Information bits (Np) 1024

CRC (NCRC) 32

able at the transmitter. We note however that this is not

a requirement for the proper functioning of our proposed

algorithms.

The SNR is defined as

SNR
�=Emax

Nσ 2
w

. (29)

As a performance indicator for the different resource

allocation schemes, we will display (12), which denotes

the average of the actual GP w.r.t. the joint probability

density function of H, CSI, and CSIPU. This averaging

involves the generation of realizations of CSI and CSIPU,

from which the corresponding (m,E, r) are computed. For

each such realization of (m,E, r), we generate realizations

of H according to the conditional distribution p(H|CSI).
For each such realization of H, we transmit and decode

one packet using the transmission parameters (m,E, r)

and verify whether a decoding error has occurred; averag-

ing the indicator of a decoding error over the realizations

ofH yields EH[ PER(φ,Ŵ)|CSI] corresponding to the con-

sidered realization of (m,E, r).

5.1 Accuracy of AEGP

In this subsection, we investigate how accurately the

AEGP metric (17) approximates the EGP from (13). As a

reference, we compare the accuracy with the predicted GP

(PGP) introduced in [20] and the IC-κESM introduced in

[19]. The PGP is obtained by neglecting the uncertainty on

H given the actual CSI, and is calculated by substitutingH

byμH|CSI in the expression (15) and using this determinis-

tic value of Y to replace the random variable Z in (17). The

IC-κESM is an approximation that only applies to delayed

CSI. For this reason, we will compare the accuracy of these

three metrics for the scenario where the transmitter only

has delayed CSI available (see the “Delayed CSI” section in

the Appendix). The following simulation parameters are

used: SNR = 10 dB, Iq/σ
2
w = 0 dB, and the value of fdτd is

equal to 0.05.

We generate 1000 realizations of CSI and CSIPU (see

the Appendix section), and for each realization, the corre-

sponding optimum uniform bit and energy allocation and
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code rate are obtained as described in Section 4.1. Then,

for each realization of CSI, CSIPU, and the correspond-

ing (m,E, r), we compute (i) the AEGP from (17); (ii) the

PGP; (iii) the IC-κESM; (iv) the EGP from (13), where

the average conditioned on CSI is replaced by an arith-

metical average over 1000 realizations of H, generated

according to the conditional distribution p(H|CSI) (see

the Appendix section), and for each realization of H, it is

verified whether the received packet is correctly decoded;

and (v) the differences ǫAEGP = |AEGP − EGP|, ǫPGP =
|PGP − EGP|, and ǫIC-κESM = |IC-κESM − EGP|. Table 4
shows the average, the standard deviation, and the root

mean-squared (rms) value of ǫAEGP, ǫPGP, and ǫIC-κESM,

resulting from the simulations; these numbers should be

compared to the average of EGP over the CSI, which

equals 1.42 bits/s/Hz. From Table 4, we observe that the

AEGP is a very accurate estimate of the EGP, outperform-

ing both the PGP and the IC-κESM by about one order

of magnitude in terms of rms value. This result validates

the accuracy of both the κESM and our approximation

of Y by a beta-distributed random variable. The high

accuracy of the AEGP metric makes it a very attractive

objective function for the optimization of the SU trans-

mission parameters. Further, we also note that being able

to accurately describe the expected performance of a link

will also have further benefits for more high level algo-

rithms such as scheduling as the probability, of correctly

allocating a user to a channel that satisfies its demands,

will be increased.

5.2 Uniform energy and bit allocation

The performance of the uniform energy and bit allocation

algorithm described in Section 4.1 is investigated. As a ref-

erence, we will also show the performance in the case of

perfect CSI and also for non-adaptive transmission.

In the case of perfect CSI, the optimal uniform energy

allocation is given by

E = min

(

min
q∈Q

Iq
∑

l∈N |G(q)
l |2

,
Emax

|N |

)

. (30)

Using this uniform energy allocation, the GPmetric (11) is

computed for each possible TM {m, r} but with PER(φ,Ŵ)

replaced by PERESM(r, γ ). The TM which corresponds to

the largest GP is then considered optimal.

Table 4 Accuracy of the AEGP, PGP and IC-κESM metric

(SNR= 10 dB, Iq/σ
2
w = 0 dB and fdτd = 0.05)

AEGP PGP IC-κESM

E[ǫ] 1.87 × 10−2 5.48 × 10−1 5.57 × 10−1

√
Var[ ǫ] 2.07 × 10−2 2.45 × 10−1 1.95 × 10−1

√

E[ ǫ2] 2.79 × 10−2 6.00 × 10−1 5.90 × 10−1

In the case of non-adaptive transmission, the transmit-

ter has no CSI available. This is equivalent to the case

where the pdf of the channel gains conditioned on the

CSI reduces to the unconditional pdf of the channel gains.

Hence, the uniform energy allocation is obtained as

E = min

⎛

⎝min
q∈Q

Iq

EG(q)

[

∑

l∈N |G(q)
l |2

] ,
Emax

|N |

⎞

⎠ . (31)

For the above energy allocation, the transmitter selects,

for the current value of SNR (29), the TM {m, r} which

leads to the highest value of EH[ GP], with GP given by

(11) .

Now, we will apply the algorithm described in

Section 4.1. As a first example, we assume that the trans-

mitter only has estimated CSI available (see the “Esti-

mated CSI” section in the Appendix). The variance of the

estimation error related to the PU and SU channels is

equal to σ 2
e = 0, 10, 20, and 30 dB. For the interfer-

ence threshold, we consider Iq/σ
2
w = 0 dB. The results are

shown in Fig. 1. We observe that the performance of the

SU network clearly depends on the variance of the esti-

mation error σ 2
e . For σ 2

e = 30 dB, there is almost no gain

by exploiting CSI compared to a non-adaptive transmis-

sion algorithm, because the CSI is unreliable. However,

when the value of σ 2
e decreases, we consistently see a clear

gain in performance by exploiting the CSI. When σ 2
e = 0

dB, we notice there is a negligible difference between the

algorithm using estimated CSI or perfect CSI. Further,

we also note that there is almost no gain compared to

non-adaptive transmission for small SNR.

In the following example, the transmitter only has access

to delayed CSI (see the “Delayed CSI” section in the

Appendix). The performance of the SU network is shown

Fig. 1 GP using estimated CSI (σ 2
e = 0, 10, 20, and 30 dB)
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in Fig. 2 for a value of fdτd equal to 0.01, 0.05, 0.1, and

0.2. It is clear from Fig. 2 that when fdτd is equal to 0.2,

there is almost no gain in performance compared to the

non-adaptive transmission algorithm because the channel

variations are too fast. However, for lower values of fdτd,

the GP of the SU network increases considerably. When

fdτd = 0.01, the GP almost equals the performance of the

algorithm which uses perfect CSI.

In Fig. 3, we show the difference in performance

between optimizing the AEGP, the PGP (as in [20]), and

the IC-κESM (as in [19]). We show the performance for

fdτd equal to 0.05 and 0.2. For fdτd = 0.05, we can

see a small performance benefit by optimizing the AEGP

compared to the less accurate PGP and IC-κESM. When

fdτd = 0.2, we notice that the performance improvement

we get by using the AEGP or IC-κESM becomes signifi-

cantly larger compared to using the PGP. In this case, the

performance achieved by using the PGP drops even below

the performance we would get by using the non-adaptive

approach. This demonstrates that the PGP approximation

is unable to accurately describe the expected goodput and

is thus not suited as an objective function for the OPs,

especially in the case of fast channel variations. While

optimizing the IC-κESM is shown to achieve a similar per-

formance as the optimization of the AEGP, the IC-κESM

is far less general than the proposed AEGP as it can only

be used in the scenario with delayed CSI described in the

“Delayed CSI” section in the Appendix.

In the last example, we combine the delayed CSI with

the estimated CSI (see the “Estimated and delayed CSI”

section in the Appendix). We choose fdτd = 0.2 and

σ 2
e = 0 dB. We investigate the performance for a different

number (P) of available, delayed channel estimates, with

corresponding delays τd, 2τd, . . . , Pτd. The performances

Fig. 2 GP using delayed CSI (fdτd = 0.01, 0.05, 0.1, and 0.2)

Fig. 3 Comparison between AEGP, PGP, and IC-κESM using delayed

CSI (fdτd = 0.05 and 0.2)

are shown in Fig. 4 for P = 1, 2, 3, and 4. We observe that

the performance of the SU network can be significantly

improved when the CSI consists of multiple delayed chan-

nel estimates. In this example, the GP increases by about

20 % when going from P = 1 to P = 4 for high SNRs.

We note that it is not possible to reach the performance of

an algorithm with perfect CSI, by increasing the number

of estimates. As is clear from Fig. 4, there is no noticeable

performance gain by going from P = 3 to P = 4.

In Fig. 5, we investigate the impact of the interfer-

ence threshold. We show the performance of the uni-

form bit and energy allocation algorithm when Iq/σ
2
w =

0, 5 and 10 dB. The resulting goodput is shown for the

following simulation variables: fdτd = 0.2, σ 2
e = 0 dB

Fig. 4 GP using estimated and delayed CSI (σ 2
e = 0 dB, fdτd = 0.2,

P = 1, 2, 3 and 4)
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Fig. 5 GP for different interference thresholds. (σ 2
e = 0 dB, fdτd = 0.2,

P = 3, Iq/σ
2
w = 0, 5 and 10 dB)

and P = 3. We observe that the value of the interference

threshold has a huge impact on the performance of the

SU network. A too conservative value of the interference

threshold will severely limit the achievable goodput of the

SU network.

5.3 Optimized energy and uniform bit allocation

In this subsection, the optimized energy (OE) allocation

from (24) and the uniform energy (UE) allocation are

compared in terms of goodput. The following simulation

parameters are chosen: σ 2
e = 0 dB, fdτd = 0.2, P = 3,

and Iq/σ
2
w = 0 dB. Figure 6 shows the goodput result-

ing from the uniform energy and bit allocation described

Fig. 6 GP achieved by optimal and uniform energy allocation (σ 2
e = 0

dB, fdτd = 0.2, P = 3, Iq/σ
2
w = 0 dB)

in Section 4.1, along with the goodput corresponding to

the OE allocation for the same uniform bit (UB) allo-

cation. We notice that for high SNR the OE allocation

improves the goodput by about 8 % compared to UE

allocation.

5.4 Greedy bit allocation

Now, we investigate the performance of the SU network

in the case where the SU transmitter optimizes the bit

allocation per subcarrier. The simulation parameters are

chosen as follows: σ 2
e = 0 dB, fdτd = 0.2, P = 3,

and Iq/σ
2
w = 0 dB. We compare the performance of

uniform bit and energy allocation (UB+UE), with our algo-

rithm introduced in Section 4.3 which combines greedy

bit allocation with uniform energy allocation (GB+UE).

Further, we also consider the performance of the subopti-

mal algorithm introduced in Section 4.4 which combines

the greedy bit allocation and optimized energy allocation

(GB+OE). From Fig. 7, we notice that there is a con-

siderable increase in GP when we apply GB instead of

UB allocation. At low SNR, the transmitter is now capa-

ble of deactivating subcarriers with poor instantaneous

channel gains, which considerably decreases the PER and

improves GP. At higher SNR the transmitter can now bet-

ter utilize the full capacity at each subcarrier by allocating

a larger number of bits to a subcarrier with favorable

channel gains. An even larger gain at higher SNR can be

obtained by combining the GB with the OE allocation. In

Fig. 7, we notice that the gain compared to uniform bit and

energy allocation (UB+UE) amounts to 10 % for greedy

bit and uniform energy allocation (GB+UE) and becomes

nearly 20 % for greedy bit and optimized energy allocation

(GB+OE). This additional gain is achieved by giving the

Fig. 7 Comparison of the goodput achieved by GB and UB allocation

(σ 2
e = 0 dB, fdτd = 0.2, P = 3, Iq/σ

2
w = 0 dB)
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transmitter the freedom of reallocating the energy over

the subcarriers, which improves the performance in sev-

eral ways: it can happen for example that subcarriers with

less favorable channel gains now receive more energy, or

that subcarriers causing strong interference at the PU are

switched off to allow for a higher total transmit energy.

We do notice however that at lower SNRs the GB+OE

algorithm performs slightly worse than the GB+UE algo-

rithm. This is a consequence of our suboptimal approach

outlined in Section 4.4. However, the performance loss

at low SNR is very small, and an optimal joint bit and

energy allocation algorithm would require a much higher

complexity.

5.5 Computational complexity

To illustrate their complexity, we will compare the aver-

age computation times of the different resource allocation

algorithms described in Section 4. The SNR is fixed at

20 dB and the simulation parameters are σ 2
e = 0 dB,

fdτd = 0.2, P = 3 and Iq/σ
2
w = 0 dB. In Fig. 8, the

computation time of the algorithms is shown as a func-

tion of the number of subcarriers N. We notice a slight

increase in computation time for the optimized energy

allocation (UB+OE) compared to the uniform energy allo-

cation (UB+UE). However, a more significant increase in

computation time occurs when implementing the greedy

bit allocation. The greedy bit with uniform energy allo-

cation (GB+UE) described in Section 4.3 clearly becomes

unfeasible when the number of subcarriers becomes too

high. Compared to GB+UE, the complexity is signifi-

cantly reduced when using the suboptimal joint energy

and bit allocation (GB+OE) described in Section 4.4,

whose computation time increases much more slowly

with N.

Fig. 8 Comparison of the simulation time of the different bit and

energy allocation algorithms (SNR = 20 dB, σ 2
e = 0 dB, fdτd = 0.2,

P = 3, Iq/σ
2
w = 0 dB)

6 Conclusions
In this paper, we have considered adaptive coding and

modulation in a cognitive BIC-OFDM system, under the

realistic assumption that only imperfect CSI is available.

In order to tackle this problem, we introduced an opti-

mum performance metric called the expected goodput

(EGP), which is the expectation of the goodput, condi-

tioned on the imperfect CSI.

A major advantage of this metric is that it allows the

transmitter to account for the imperfections of the CSI by

selecting its transmission parameters such that the best

average goodput is achieved. To make the optimization

of the code rate, bit and energy allocation tractable, we

proposed a very accurate approximation of this perfor-

mance metric, referred to as approximate EGP (AEGP).

The numerical results clearly show that the ACM algo-

rithms based on the AEGP have at least the same per-

formance as the non-adaptive algorithms and, in most

cases, clearly outperform them. Finally, we also show that,

depending upon the quality of the available CSI, the pro-

posed algorithms can come very close to the performance

of algorithms with perfect CSI.

Endnotes
1This EGP metric is different from the expected

effective goodput metric proposed in [18]. The metric

introduced in [18] takes into account the expected trans-

mission time, which can vary because of the possibilities

of retransmissions. It has however nothing to do with

imperfect CSI which is the focus of the present paper.
2Note that if we have a number of paths L < ν + 1, only

L diagonal elements of Rh are strictly greater than 0.

Appendix
Examples of different types of CSI at the transmitter

In the following, the impulse response of a generic chan-

nel between the SU transmitter and any receiver of the

PU or SU network will be denoted by h(m, t), where the

delay variable is represented by the discrete time index

m associated with a sampling rate 1/T , and the time

variability of the channel is indicated by a continuous

time index t. Without any loss of generality, we can

assume that h(m, t) = 0 for m < 0 and for m >

ν, where ν is defined as the length of the cyclic pre-

fix. For given t, the samples h(m, t) (0 ≤ m ≤ ν) of

the channel impulse vector h(t)
�=[ h(0, t), . . . , h(ν, t)]T are

assumed to be independent circular symmetric zero-mean

Gaussian complex random variables; assuming stationar-

ity w.r.t. the variable t, the covariance matrix of h(t) is

given by2 Rh
�= diag(σ 2

0 , . . . , σ
2
ν ). The time variations

of the channel are described by Jakes’ model [33], which

gives E [h(m, t + τd)h
∗(m, t)] = J0(2π fdτd)σ

2
m, where J0(x)
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represents the zeroth-order Bessel function of the first

kind, and fd denotes the Doppler spread.

Introducing the Fourier matrix F ∈ C
Ncar×(ν+1) as

Fk,l
�=e−j2π(k−1)(l−1)/Ncar , k = 1, . . . ,Ncar; l = 1, . . . , ν+1,

(32)

the time-varying frequency response of the channel can

then be written as H(t) = Fh(t) which has the covariance

matrix RH = FRhF
H . The kth component ofH(t) denotes

the channel gain which affects the kth subcarrier at time

instant t.

In the following subsections, we consider a few possible

examples of the type of CSI available at the transmitter.

Each case leads to different expressions for the parameters

μH|CSI andCH|CSI, which completely describe the random

variableH(t) conditioned on the available CSI as follows

H(t) = μH|CSI(t) + n(t), (33)

where n(t) ∼ CN(0,CH|CSI). The probability density

function p(H(t)|CSI) is then given by CN(μH|CSI(t),
CH|CSI). If only N of the Ncar subcarriers are available at

the transmitter, as is the case in the numerical section, we

can define a smallerμH|CSI andCH|CSI which only contain
the elements corresponding to the available subcarriers.

Estimated CSI

In this subsection we determine the quantities μH|CSI and
CH|CSI in the case of channel estimation errors. The trans-

mitter only has access to an estimated frequency response

H̃(t), which means that CSI = H̃(t). The estimated

frequency response H̃(t) is decomposed as

H̃(t) = H(t) + ẽ(t), (34)

where ẽ(t) and H(t) are statistically independent, ẽ(t) ∼
CN(0, σ 2INcar). In Section 5, we will use the value

of the normalized estimation error variance σ 2
e

�=
σ 2/Tr

(

E
[

hhH
])

. It can be shown that

μH|CSI = RH(RH + σ 2INcar)
−1H̃(t), (35)

and

CH|CSI = RH − RH

(

RH + σ 2INcar

)−1
RH. (36)

Note that in the case of perfect estimation (i.e., σ 2 = 0) we

obtain perfect CSI, as (34), (35) and (36) reduce to H̃(t) =
H(t), μH|CSI = H(t) and CH|CSI = 0.

Delayed CSI

Now we assume that the CSI is outdated, because of a

delay in the feedback to the transmitter. At time instance t,

the delayed CSI available at the transmitter is denoted by

H(t − τd), where τd denotes the delay. In this case, it can

be shown that

μH|CSI = J0
(

2π fdτd
)

H(t − τd), (37)

and

CH|CSI =
(

1 − J0
(

2π fdτd
)2

)

RH. (38)

When τd = 0, we obtain perfect CSI, as (37) and (38)

reduce to μH|CSI = H(t) and CH|CSI = 0.

Estimated and delayed CSI

In this section we assume that the CSI available at the

transmitter is both delayed and estimated. We also con-

sider the possibility that the transmitter has access to

multiple delayed estimates. With P denoting the number

of available estimates, the CSI which is available at the

transmitter is given by

CSI =
[

H̃ (t − τd)
T . . . H̃ (t − Pτd)

T
]T

, (39)

where H̃(t − kτd) (∀k ∈ {1, . . . ,P}) is defined as in (34).

Defining the matrices

X
�=

[

J0
(

2π fdτd
)

, J0
(

2π2fdτd
)

. . . , J0
(

2πPfdτd
)]

⊗ RH,

(40)

Y
�=J ⊗ RH + IP ⊗ σ 2INcar , (41)

where J ∈ C
P×P with entries Jk,l

�=J0
(

2π fdτd(k − l)
)

, k =
1, . . . ,P; l = 1, . . . ,P, and ⊗ indicates the Kronecker

product, it can be shown that

μH|CSI = XY−1CSI, (42)

and

CH|CSI = RH − XY−1XH . (43)
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