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Adaptive coding of visual information in
neural populations
Diego A. Gutnisky1 & Valentin Dragoi1

Our perception of the environment relies on the capacity of neural
networks to adapt rapidly to changes in incoming stimuli1–4. It is
increasingly being realized that the neural code is adaptive5, that
is, sensory neurons change their responses and selectivity in a
dynamic manner to match the changes in input stimuli1,2,5.
Understanding how rapid exposure, or adaptation, to a stimulus
of fixed structure changes information processing by cortical net-
works is essential for understanding the relationship between
sensory coding and behaviour5–8. Physiological investigations of
adaptation have contributed greatly to our understanding of how
individual sensory neurons change their responses to influence
stimulus coding2,9–12, yet whether and how adaptation affects
information coding in neural populations is unknown. Here we
examine how brief adaptation (on the timescale of visual fixa-
tion)2,9,10 influences the structure of interneuronal correlations
and the accuracy of population coding in the macaque (Macaca

mulatta) primary visual cortex (V1). We find that brief adaptation
to a stimulus of fixed structure reorganizes the distribution of
correlations across the entire network by selectively reducing their
mean and variability. The post-adaptation changes in neuronal
correlations are associated with specific, stimulus-dependent
changes in the efficiency of the population code, and are consistent
with changes in perceptual performance after adaptation2,13,14.
Our results have implications beyond the predictions of current
theories of sensory coding, suggesting that brief adaptation
improves the accuracy of population coding to optimize neuronal
performance during natural viewing.

Understanding how adaptation influences population coding
requires an understanding of how adaptation changes the structure
of interneuronal correlations across the network. Indeed, during the
past decade, it has become increasingly understood that the trial-by-
trial variability in neuronal responses, or ‘noise’, is not independent,
but that it exhibits correlations15,16. This implies that the accuracy of the
population codemust depend on the distribution of noise correlations
across thenetwork17–19. Theoretically, it has beenproposed that adapta-
tionwould reduce neuronal correlations, andhence redundancy20,21, to
improve stimulus coding1. In reality, exactly how the structure of cor-
relations across a population of neurons is affected by adaptation, and
how it influences the efficiency of coding, is unknown.

We address this issue in the context of the macaque primary visual
cortex (V1), in which adaptation has been shown previously to
induce changes in the response magnitude and selectivity of indi-
vidual neurons2,5,9–11. We focus on a particular, rapid form of adapta-
tion that is believed to occur spontaneously during visual fixation
when cortical cells are exposed to redundant information for hun-
dreds of milliseconds2,9. Our hypothesis is that rapid adaptation
changes the structure of noise correlations in V1 and increases the
amount of information in a population code in a way that is consis-
tent with perceptual performance.

Responses to dynamic test stimuli in area V1 of a fixating monkey
were recorded before and after brief (400-ms) adaptation to a sine-
wave grating of fixed orientation (Fig. 1a). We used a movie sequence
as the test stimulus (see Methods), in which each frame was a sine-
wave grating of pseudorandom orientation flashed at 60Hz. The
stimulus was fixed across trials and covered multiple neuronal recep-
tive fields (Supplementary Fig. 1). We measured noise correlations
(trial-to-trial covariation of spike counts of a cell pair) between pairs
of nearby neurons (n5 423 pairs). We confirmed previous findings16

that noise correlations are independent of stimulus orientation; only
5% of the pairs exhibited a significant relationship between the cor-
relation coefficient and stimulus orientation (see Methods).

Figure 1b shows an example of a pair of cells preferring nearby
orientations that exhibit a strong reduction in correlations after
adaptation (the pre-adaptation condition is labelled ‘control’).
Across the population, we found an overall post-adaptation decrease
in the absolute correlation coefficients that was significant both for
positive (mean reduction 22%, P, 1028, Wilcoxon signed rank test)
and for negative (mean reduction 74%, P, 1025) coefficients
(Fig. 1c; the post-adaptation reduction in correlations is significant
in eachmonkey, Supplementary Fig. 2). This reduction in correlation
strength is also found in cells that exhibit positive correlations before
adaptation and negative correlations after adaptation (mean reduc-
tion 73%, P, 1026) and negative correlations before adaptation
and positive correlations after adaptation (mean reduction 42%,
P, 0.005). Overall, correlation coefficients decayed exponentially
with the difference (Dh) in the cells’ preferred orientation22; Supple-
mentary Fig. 3a shows that adaptation reduces the peak and slope
of the exponential decay of correlation coefficients. We further
examined whether the decrease in correlations after adaptation could
be due to the small (5.8%), but significant (P, 1026), reduction in
mean firing rates (Supplementary Fig. 1). However, we found no
relationship between the mean changes in firing rates after adapta-
tion and the changes in correlation coefficients23 (Fig. 1d, P. 0.3,
Pearson correlation).

Because adaptation is an orientation-specific phenomenon2,3,10,11,
we reasoned that the degree of decorrelation would depend on the
relationship between the adapting stimulus and the preferred ori-
entation of the cells in a pair. We therefore selected the cell pairs that
preferred nearby orientations (Dh, 30u), and compared the mean
correlation coefficients before and after adaptation to stimuli of dif-
ferent orientation; we defined Dw as the minimum difference
between the adapting stimulus and the preferred orientation of each
cell in a pair (Fig. 1e; see Methods and Supplementary Fig. 4). There
is a strong reduction in correlations (Fig. 1f) for adapting stimuli
near (Dw# 30u, 31%, P, 0.005; Wilcoxon rank sum test) and far
(Dw. 60u), 43%, P, 0.0005) relative to the orientation of the cell
pair, but intermediate adaptation (30u,Dw# 60u) was ineffective at
reducing correlations (19%; P. 0.1).
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These results indicate that brief adaptation reduces the strength of
correlations in an orientation-asymmetric manner. We quantified
the orientation dependency of this decorrelation by estimating the
probability density function (pdf) of correlations, before and after
adaptation, as a function of Dh and Dw using the kernel density
estimation technique (see Supplementary Information). Contrary
to the common belief that adaptation would only influence the res-
ponses of cells of similar preferred orientation (but consistent with
Fig. 1f), we found a non-monotonic decorrelation profile (Fig. 2a)—
that is, cells of similar (Dh, 30u) and largely dissimilar (Dh. 60u)
orientation preference exhibit significant decorrelation, whereas
cells with Dh between 30u and 60u show only a weak decrease in
correlations, both for near and far adaptation. This is shown in
Fig. 2b, in which an adaptation decorrelation index is used to repre-
sent the magnitude of post-adaptation changes in absolute correla-
tions; Supplementary Fig. 5 demonstrates the temporal stability of
the decorrelation.

The changes in correlation structure after adaptation are described
not only by changes in mean correlation coefficients but also by
changes in the variability of correlations. Although it has been
theoretically suggested that a small variability of correlations could
increase coding efficiency24, exactly how the variability of correla-
tions influences population coding is unknown. Figure 3 shows that
adaptation reduces not only the strength but also the variability of
correlations (see also Supplementary Fig. 3b), both for near and for
far adaptation. We explored this issue by estimating the pdf of

correlations for pairs of cells with Dh between 0u and 30u (small
Dh), between 30u and 60u (intermediate Dh), and between 60u and
90u (large Dh). Figure 3d–f illustrates representative examples in
which the adapting stimulus is near the preferred orientation of at
least one of the cells in the pair (Dw# 30u) or far from both cells
(Dw. 30u). For smallDh (Fig. 3d), the post-adaptation pdf is sharper
and shifted to the left relative to the pdf before adaptation. That is,
there is both a significant decorrelation (P, 0.0001) and a reduction
in correlation variability after adaptation. For intermediate Dh (Fig.
3e), only far adaptation (Dw. 30u) induces a significant decorrela-
tion (P, 0.001). Contrary to expectation, for large Dh (Fig. 3f), the
adaptation-induced reduction in the mean and variability of correla-
tions is even larger than that observed in cells preferring nearby
orientations.

Together, these results raise the issue of whether the changes in the
strength and variability of noise correlations after adaptation would
affect the efficiency of the population code. We therefore computed
network efficiency by estimating the Fisher information as the upper
limit with which any decoding mechanism can extract information
about stimulus orientation17,18. Consistent with the fact that second-
order statistics are able to capture most of the variability of the
population response25, we assumed that the joint neuronal responses
to stimulus orientation can be described by a multivariate gaussian
defined by the mean firing rate and covariance matrix17,18. Fisher
information was computed by assuming, first, that adaptation
changes only the mean correlations, and second, both the mean

q
1

q
2

f
a

r = 0.67 (control) 

r = 0.38 (adaptation) 

Adaptation

400 ms

35

30

25

1.00

0.75

0.50

0.25

0

–0.25

–0.50

–0.75

–1.00

1.00

0.75

0.50

0.25

0

–0.25

–0.50

–0.75

0.4

0.3

0.2

0.1

0

Control Adaptation

C
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t

–1.00 –0.50 0 0.50 1.00

20

15

10

5

0 30 40 50

Firing rate of cell 1 (Hz)

Correlation coefficient (control)

–1.00 –0.50 0 0.50 1.00

Mean firing rate change

C
o

rr
e
la

ti
o

n
 c

o
e
ff

ic
ie

n
t 

(a
d

a
p

ta
ti
o

n
)

C
o

rr
e
la

ti
o

n
 c

h
a
n
g

e

F
ir
in

g
 r

a
te

 o
f 

c
e
ll 

2
 (
H

z
)

60 70 80

1.86 s

Test

a

b

c

d

e

f

*
**

∆f ≤ 30°

∆f
∆q

30° < ∆f ≤ 60° ∆f > 60°

Figure 1 | Adaptation-induced response decorrelation in V1. a, Schematic
representation of the stimulus sequence: an adapting stimulus of fixed
orientation was presented for 400ms and was followed by a 60-Hz test
stimulus of random orientation presented for 1.86 s. b, Scatter plot showing
the trial-by-trial responses of two cells recorded simultaneously. Each dot
represents the firing rates of both cells in a given trial. The dotted ellipses
represent the two-dimensional gaussian fits of the firing rate distributions
during control and adaptation (crosses represent the means). ‘r’ represents
the correlation coefficient. c, Correlation coefficients for the population of
cell pairs. Each dot represents the correlation coefficient for a pair of cells

during control and adaptation (irrespective of the difference in preferred
orientation). d, The post-adaptation changes in correlations cannot be
attributed to the changes in the geometric mean firing rates of the cells in a
pair (P. 0.3). The light blue line represents the linear regression fit.
e, Schematic representing the preferred orientations of the cells in a pair (h1
and h2) and the adapting orientation (wa). Dh and Dw are defined in the text.
f, The reduction in themean correlation coefficients after adaptationdepends
on the adapting orientation (for pairs for which Dw, 30u). All panels are
based on the correlation analysis of n5 423 cell pairs (Dh, 30u, 223 pairs;
Dh. 30u, 200 pairs). Error bars represent s.e.m. (*P, 0.005; **P, 0.0005).
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and variability of correlations (using the pdfs in Fig. 3a–c). Figure 4a
shows that whereas the post-adaptation reduction in mean correla-
tions caused a 25% improvement in the network orientation discri-
minability threshold, if both the changes in the mean and variability
of correlations are taken into account the post-adaptation discrim-
ination threshold is improved by 40%. Interestingly, for small popu-
lations, the post-adaptation network performance is slightly better
than that of uncorrelated (independent) neurons, possibly due to a
reduction in correlation variability24.

The fact that adaptation changes interneuronal correlations in an
orientation-asymmetric manner (Fig. 2) could cause the network
efficiency to depend on the relationship between the adapting and
test orientations. Indeed, we found that test stimuli similar or largely
dissimilar with respect to the adapting orientation cause the largest
improvement in coding efficiency. As shown in Fig. 4b, brief adapta-
tion caused an almost fourfold increase in Fisher information when
the network discriminated stimuli of similar and largely dissimilar
orientation relative to the adapting stimulus, and a threefold increase
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in Fisher information for the discrimination of intermediate orienta-
tions. This is consistent with the larger reduction in the mean and
variability of correlations for small and large Dh (,30u and .60u)
relative to intermediate orientations (Dh between 30u and 60u;
Fig. 3d–f). Although these results may seem surprising, they are in
agreement with human psychophysical data reporting that brief
adaptation improves orientation discrimination near and far from
the adapting orientation2,13. Importantly, we also found that the
increase in population coding efficiency through decorrelation
would be equivalent to an overall post-adaptation increase in firing
rates of approximately 55%.

In addition to noise correlations, the population code is also char-
acterized by signal correlations26—correlations in the neurons’ aver-
age responses to a stimulus set. Rapid adaptation causes repulsive
shifts in the neurons’ orientation tuning curves and changes in firing
rates2,11 (Supplementary Fig. 6) to influence signal correlations. By
examining the affect of the adaptation-induced changes in noise and
signal correlations on coding efficiency (Fig. 4b), we found that, in
agreement with psychophysical studies2,13,14, the enhancement in net-
work performance after adaptation is orientation-specific. Although
these results have been obtained by computing correlations through-
out the stimulus presentation, they also hold when noise correlations
are measured on the timescale of visual fixation, during the first

400ms of stimulus presentation (Supplementary Fig. 7). Thus, the
post-adaptation improvement in network performance may influ-
ence sensory coding during natural viewing.

We have demonstrated the functional significance of rapid adapta-
tion by V1 networks for the coding of image features. Theoretically,
adaptation has been proposed to reduce redundancy in sensory
neurons, possibly by decorrelating responses, to improve coding
efficiency1,4. However, in addition to the lack of experimental sup-
port, theories proposing the decorrelation hypothesis were unable to
predict the changes in correlations across the entire network engaged
in sensory computations. We provide empirical evidence that adap-
tation causes both a selective reduction in the strength and variability
of correlations and an improvement in the efficiency of population
coding. These results are consistent with the ‘efficient coding hypo-
thesis’1,4—that is, sensory neurons are adapted to the statistical pro-
perties of the stimuli that they are exposed to (Supplementary Fig. 8a,
b)—and with psychophysical changes in human discrimination
performance after adaptation (Supplementary Fig. 8c). We further
propose that adaptation takes advantage of the rapid sequence of
fixations during natural viewing to optimize image-discrimination
performance in real time2,27.

Our results argue that the visual system uses a metabolically inex-
pensive solution (selective decorrelation) to adapt neural responses
to the statistics of the input stimuli and to improve coding efficiency.
This raises the issue of whether decorrelation is an advantageous
coding strategy in the visual cortex. Whereas selective decorrelation
improves sensory discriminations by increasing network efficiency
and possibly the organization of cell ensembles (Supplementary Fig.
9), it could be detrimental for other types of information processing.
For instance, theoretical studies have suggested that temporally
decorrelated inputs are transmitted less efficiently than correlated
inputs28. Indeed, it is well known that in addition to sensory discri-
minations, the visual system is often required to perform other com-
plex computations, such as contour grouping29 or figure-ground
segregation30, which may require strong correlations between
neurons. Hence, the fact that we did not observe a complete, homo-
geneous, decorrelation of responses in V1 could constitute a trade-off
between distinct optimization goals during sensory processing6.

METHODS SUMMARY

All experiments were performed in accordance with protocols approved byNIH.
Multiple single-unit recordings were performed from V1 of two fixating mon-
keys (Macacamulatta). Stimuli were presented so that they covered the centre of
the neurons’ receptive fields. In control trials, movie strips2 were presented for
,1.86 s (16 orientations3 7 repeats at 60Hz; random spatial phase). In adapta-
tion trials, movies were preceded by a 400-ms grating of fixed orientation. The
Pearson correlation coefficient of spike counts, Rsc, of two cells is defined as:

Rsc~

P

N

i~1

r i1{�rr1
� �

: r i2{�rr2
� �

s1:s2

where N is the number of trials, r ij is the firing rate of cell ‘j’ in trial ‘i’ averaged

over the entire stimulus sequence, and s is standard deviation of the responses.
Correlation coefficients after adaptation depend on three variables: the adapting
orientation, wa, and the preferred orientation of the cells in a pair, h1 and h2. To
ensure that the parameter space is adequately sampled, the distance between the
adapting orientation and the preferred orientation of one of the cells was held
constant while varying the relative difference between the two cells’ preferred
orientations (Dh). We defined Dw as the minimum difference between the
adapting stimulus and the preferred orientation of each cell in a pair, that is,
Dw5min(jwa – h1j, jwa – h2j).We define an adapting stimulus ‘near’ to a cell pair
when the adapting orientation is,30u relative to at least one of the cells in the pair.
Similarly, a ‘far’ adapting stimulus is oriented at least 30u away from both cells.

We calculated a decorrelation index as the percentage change in absolute
correlation coefficient:

DI~
Rcontrolj j{ Radaptation

�

�

�

�

Rcontrolj j

where Ri represents the correlation coefficients measured in condition ‘i’. The
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Monte Carlo simulations, kernel density estimation and Fisher information
calculations are explained in the Methods and Supplementary Information.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Electrophysiological recordings. We used standard methods for single-unit
extracellular recording as described previously2. Microelectrodes (tungsten/
glass, 1–2MV at 1 kHz, FHC Inc.) were advanced transdurally through stainless
steel guide tubes into V1. We recorded up to 8 units simultaneously in each
session at depths between 200mm and 400mm. Recording sites were located
between 1mm and 2mm of each other; most of the neurons (.80%) were
recorded on different electrodes. More than 80% of cells were complex cells.
Single-unit isolation was assessed offline using waveform clustering based on
parameters such as spike amplitude, timing, width, valley and peak.When a unit
was isolated, its receptive field was mapped using an automatic procedure while
the animal maintained fixation. Receptive field eccentricities ranged between 2u
and 6u from the centre of gaze (receptive field positions were reconfirmed at the
end of the experiments).
Monkeys were trained to fixate on a small spot (0.1u) presented on a video

monitor placed 57 cm in front of the monkey. Once the animal achieved stable
fixation for 100ms, the visual stimulus was presented.Monkeys were required to
hold fixation throughout stimulus presentation to earn a juice reward; the trial
was automatically aborted if fixation instability exceeded 0.25u at any time dur-
ing stimulus presentation. Eye position was continuously monitored using an
infrared eye tracking system operating at 250Hz (Iscan). The stimulus presenta-
tion, behavioural trials, and eye position control and recording were done with
the Cortex software package (NIH). Stimuli were movie strips in which each
frame consisted of a 53 5u sine-wave grating of 2 cycles per degree spatial fre-
quency and 75% contrast presented binocularly. In control trials, movies were
presented for ,1.86 s (16 orientations3 7 repeats at 60Hz; random spatial
phase for each orientation); in adaptation trials, movies were preceded by a
400-ms grating of fixed orientation (we used between 250 and 300 control and
adaptation trials). To increase the effectiveness of adaptation, we used drifting
sine-wave gratings (temporal frequency of 3Hz; similar spatial characteristics to
the movie gratings) as adapting stimuli. (In pilot experiments, we found that
drifting gratings typically evoked stronger adaptation than flashed stimuli.)
Control and adaptation trials were grouped in blocks of trials; adaptation trials
were followed by ‘recovery’ trials that were identical to the control trials. For our
population of cell pairs, the control and recovery correlation coefficients were
indistinguishable (P. 0.1, Wilcoxon signed rank test). Our choice of oriented
stimuli (as opposed to natural images) is motivated by the fact that Fisher
information and the efficiency of population coding can only be assessed by
using parametric stimuli. To examine whether our results were affected by dif-
ferences in the quality of fixation between control and adaptation conditions, we
calculated the deviation of eye position and velocity along the vertical and
horizontal axes during the movie sequence presentation. The average standard
deviation of these measures was not statistically different in the control and
adaptation conditions, P. 0.1, Student’s t-test.
The cells’ preferred orientation and orientation selectivity index (OSI) were

computed every 8ms using the reverse correlation method2 (the mean OSI
across the population was 0.29 and was similar to that reported in previous
V1 studies2,3,11). The distribution of preferred orientations for the cells in our
population and the range of adapting orientations ensured a uniform sampling
of the orientation space (Supplementary Fig. 4).
Noise correlations. We presented the same movie stimulus (that is, the same
pseudo-random orientation sequence, or ‘frozen noise’) in each control and
adaptation trial. We measured the correlation coefficient for each of the 16
orientations at a given time lag (varied every 8ms) and the geometric mean
firing rate of the cell pair. We found that only 5% of pairs exhibited a significant
relationship between the correlation coefficient (converted to Z-score through
the Fisher transformation) and the evoked firing rate of the cell pair. Our
stimulus allowed us to calculate noise correlations by pooling the neuronal
responses to all the orientations present in the stimulus16 (see Supplementary

Information). Our choice of complex stimuli instead of simple oriented gratings

is justified by our focus on rapid adaptation. Computing correlations by mea-

suring neuronal responses using briefly flashed test stimuli of fixed orientation

(lasting hundreds of milliseconds) would be inappropriate because these

stimuli would significantly reduce firing rates (the neurons would adapt to the

stimulus itself) to contaminate the noise correlation coefficients. Extracting

only the (unadapted) spikes generated during the first 100ms of stimulus pre-

sentation would not solve this problem because cells with low firing rates

(,20Hz) will fire, at most, two spikes to cause an unreliable estimation of the

correlation coefficients. In contrast, our movie stimulus has the advantage that

cells are continuously stimulated with a broad range of orientations, thus pre-

venting the neurons to reduce their firing rates substantially during stimulus

presentation.

Except for Fig. 1f, we binned our data into two groups: near (Dw# 30u) and far

(Dw. 30u) adaptation. This is justified by the definition of Dw, which implies

that not all (Dh,Dw) pairs are possible. For instance, forDh5 90u, themaximum

Dw is 45u. We explored other alternative measures forDw—for example, the sum

of the differences between the adapting stimulus and the preferred orientations

of each cell in a pair, or the distance between the adapting orientation and the

mean orientation of the two cells in a pair—but did not find a significant

difference from the results reported here (data not shown).

Monte Carlo simulations. We generated populations of cells with idealized

gaussian tuning curves (baseline 5Hz, peak 30Hz, standard deviation 25u) uni-

formly spanning preferred orientations between 0u and 180u; we assumed a

response variability of 15Hz2 that was independent of orientation. These para-

meters are consistent with the average tuning curve parameters of our popu-

lation of V1 cells. In the first set of Monte Carlo simulations, we used only

the mean correlation profile for both control and adaptation conditions. We

assumed that the mean correlations depend only on the difference in the pre-

ferred orientation of the cells in a pair.We computed Fisher information for 500

populations of different size (between 10 and 500 neurons). In the second set of

Monte Carlo simulations, we used the distribution probability of correlations

(mean and variance) instead of themean correlations. For eachDh, we estimated

the correlation density function p(RSCjDh ) in the control case. In the adaptation
condition, correlations depend on the difference between the adapting stimulus

and the preferred orientation of the cells in a pair. We were therefore able to

estimate the post-adaptation correlation density function p(RSCjDh , Dw), and

then sampled these distributions to obtain a set of covariance matrices for which

we computed Fisher information.

Fisher information. The inverse of the Fisher information represents the lower

limit of the variance of an unbiased estimator of stimulus orientation h (the

Cramer-Rao31 bound). When the joint neural response is described by a multi-

variate gaussian (our assumption), Fisher information can be computed as31,32:

J hð Þ~f 0 hð ÞTC{1 hð Þf 0 hð Þz
1

2
Tr C 0 hð ÞC{1 hð ÞC 0 hð ÞC{1 hð Þ

� �

where J(h) is the Fisher information, f 9(h) is the derivative of the tuning curve,

C(h) is the covariancematrix,Tr is the trace, andC9 and f 9 are the first derivatives

with respect to h. The second term of the equation depends on the derivative of

the covariance matrix C9(h), and represents the information about the stimulus

encoded in the variance of the neural responses. Because we found that the

correlation matrix was independent of h, and we assumed an additive gaussian

noise model, the second term was ignored.

31. Kay, S. M. Fundamentals of Statistical Signal Processing. Prentice-Hall signal-

processing series (PTR Prentice-Hall, Englewood Cliffs, 1993).

32. Dayan, P. &Abbott, L. F. Theoretical Neuroscience: Computational andMathematical

Modeling of Neural Systems 108–113 (Massachusetts Institute of Technology,

Cambridge, Massachusetts, 2001).
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