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Abstract

Visual tracking is a challenging problem in computer vi-

sion. Most state-of-the-art visual trackers either rely on

luminance information or use simple color representations

for image description. Contrary to visual tracking, for ob-

ject recognition and detection, sophisticated color features

when combined with luminance have shown to provide ex-

cellent performance. Due to the complexity of the tracking

problem, the desired color feature should be computation-

ally efficient, and possess a certain amount of photometric

invariance while maintaining high discriminative power.

This paper investigates the contribution of color in a

tracking-by-detection framework. Our results suggest that

color attributes provides superior performance for visual

tracking. We further propose an adaptive low-dimensional

variant of color attributes. Both quantitative and attribute-

based evaluations are performed on 41 challenging bench-

mark color sequences. The proposed approach improves the

baseline intensity-based tracker by 24% in median distance

precision. Furthermore, we show that our approach out-

performs state-of-the-art tracking methods while running at

more than 100 frames per second.

1. Introduction

Visual object tracking, where the objective is to estimate

locations of a target in an image sequence, is one of the most

challenging problems in computer vision. It plays a crucial

role in many applications, especially for human-computer

interaction, surveillance and robotics. Several factors, such

as illumination variations, partial occlusions, background

clutter and shape deformation complicate the problem. In

this paper we investigate to what extent the usage of color

can alleviate some of these issues.

Most state-of-the-art trackers either rely on intensity or

texture information [7, 27, 11, 5, 20]. While significant

progress has been made to visual tracking, the use of color

information is limited to simple color space transforma-

tions [19, 17, 18]. In contrast to visual tracking, sophisti-
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Figure 1: Comparison of our approach with state-of-the-

art trackers in challenging situations such as illumination

variation, occlusion, deformation and in-plane rotation. The

example frames are from the Ironman, Bolt and Soccer se-

quences respectively. The results of Struck [7], EDFT [6],

CSK [9], LSHT [8] and our approach are represented by

blue, grey, cyan, magenta and red boxes respectively.

cated color features have shown to provide excellent per-

formance for object recognition and detection [21, 14, 26,

22, 13]. Exploiting color information for visual tracking

is a difficult challenge. Color measurements can vary sig-

nificantly over an image sequence due to variations in illu-

minant, shadows, shading, specularities, camera and object

geometry. Robustness with respect to these factors has been

studied in color imaging, and successfully applied to image

classification [21, 14], and action recognition [12]. There-

fore, we evaluate existing color transformations for the task

of visual object tracking.

There exist two main approaches to handle visual track-

ing, namely generative and discriminative methods. The

generative methods [2, 15, 16] tackle the problem by

searching for regions that are most similar to the target

model. The models in these methods are either based

on templates or subspace models. The discriminative ap-

proaches [7, 27, 5, 9] aim at differentiating the target from



the background by posing tracking as a binary classifica-

tion problem. Unlike generative methods, discriminative

approaches use both target and background information to

find a decision boundary for differentiating the target ob-

ject from the background. This is employed in tracking-by-

detection methods [7, 9], where a discriminative classifier

is trained online using sample patches of the target and the

surrounding background. Recently, a comprehensive evalu-

ation of online tracking algorithms has been performed by

Wu et al. [25]. In this evaluation, a tracking-by-detection

approach, called CSK [9], is shown to provide the high-

est speed among the top ten visual trackers. The method

explores a dense sampling strategy while showing that the

process of taking subwindows in a frame induces circulant

structure. Due to its competitive performance, while achiev-

ing the best speed, we base our method on the CSK tracker.

Contributions: In this paper we extend the CSK tracker

with color attributes, which have shown to obtain excellent

results for object recognition [14] due to their good balance

between photometric invariance and discriminative power.

The updating scheme of the CSK tracker was found to be

sub-optimal for multi-channel (color) signals. To solve this

problem, we adapt the update scheme and experimentally

verify its importance for multi-channel tracking. The high

dimensionality of color attributes results in an increased

computational overhead, which might limit its application

in areas such as real-time surveillance and robotics. To

overcome this problem, we propose an adaptive dimension-

ality reduction technique which reduces the original eleven

dimensions to only two. We show that this allows the

tracker to operate at more than 100 frames per second with-

out significant loss in accuracy. An extensive evaluation

against other color representations, popular in object recog-

nition, shows that color attributes obtains superior perfor-

mance. Finally, we show that our tracker achieves state-

of-the-art performance in a comprehensive evaluation over

41 image sequences. Figure 1 presents tracking results in

challenging environments where our approach performs fa-

vorably against several state-of-the-art algorithms.

2. The CSK Tracker

We base our approach on the CSK tracker [9], which

has shown to provide the highest speed among the top ten

trackers in a recent evaluation [25]. The CSK tracker learns

a kernelized least squares classifier of a target from a sin-

gle image patch. The key for its outstanding speed is that

the CSK tracker exploits the circulant structure that appears

from the periodic assumption of the local image patch. Here

we provide a brief overview of this approach [9].

A classifier is trained using a single grayscale im-

age patch x of size M × N that is centred around

the target. The tracker considers all cyclic shifts xm,n,

(m,n) ∈ {0, . . . ,M − 1} × {0, . . . , N − 1} as the train-

ing examples for the classifier. These are labelled with a

Gaussian function y, so that y(m,n) is the label for xm,n.

The classifier is trained by minimizing the cost function (1)

over w.

ǫ =
∑

m,n

|〈φ(xm,n), w〉 − y(m,n)|2 + λ〈w,w〉 (1)

Here φ is the mapping to the Hilbert space in-

duced by the kernel κ, defining the inner product as

〈φ(f), φ(g)〉 = κ(f, g). The constant λ ≥ 0 is a regular-

ization parameter. The cost function in (1) is minimized by

w =
∑

m,n a(m,n)φ(xm,n), where the coefficients a are:

A = F{a} =
Y

Ux + λ
. (2)

Here F is the DFT (Discrete Fourier Transform) operator.

We denote the DFT:s with capital letters, i.e. Y = F{y}
and Ux = F{ux}, where ux(m,n) = κ(xm,n, x) is the

output of the kernel function κ. Eq. 2 holds if κ is shift

invariant, i.e. κ(fm,n, gm,n) = κ(f, g) for all m, n, f and

g. This holds for the Gaussian RBF kernel employed by the

CSK tracker.

The detection step is performed by first cropping out a

grayscale patch z of size M ×N in the new frame. The de-

tection scores are calculated as ŷ = F−1{AUz}, where

Uz = F{uz} is the Fourier transformed kernel output

uz(m,n) = κ(zm,n, x̂) of the example patch z. Here x̂
denotes the grayscale patch of the target appearance, which

is learned over multiple frames. The target position in the

new frame is then estimated by finding the translation that

maximizes the score ŷ. The work of [9] showed that the

kernel outputs ux and uz can be computed efficiently using

FFT:s. For more details, we refer to [9].

3. Coloring Visual Tracking

To incorporate color information, we extend the CSK

tracker to multi-dimensional color features by defining an

appropriate kernel κ. This is done by extending the L2-

norm in the RBF kernel to multi-dimensional features. The

features extracted from an image patch are represented by

a function x : {0, . . . ,M − 1} × {0, . . . , N − 1} → R
D,

where x(m,n) is a D-dimensional vector consisting of all

the feature values at the location (m,n). In the conven-

tional CSK tracker, a grayscale image patch is preprocessed

by multiplying it with a Hann window. We apply the same

procedure for each feature channel. The final representation

is obtained by stacking the luminance and color channels.

3.1. Color Attributes for Visual Tracking

The choice of color feature is crucial for the overall suc-

cess of a visual tracker. Recently, color attributes [23] ob-



tained excellent results for object recognition, object detec-

tion and action recognition [14, 13, 12]. Here, we investi-

gate them for the visual tracking problem. Color attributes,

or color names (CN), are linguistic color labels assigned

by humans to represent colors in the world. In a linguistic

study performed by Berlin and Kay [3], it was concluded

that the English language contains eleven basic color terms:

black, blue, brown, grey, green, orange, pink, purple, red,

white and yellow. In the field of computer vision, color

naming is an operation that associates RGB observations

with linguistic color labels. We use the mapping provided

by [23], which is automatically learned from images re-

trieved with Google-image search. This maps the RGB val-

ues to a probabilistic 11 dimensional color representation

which sums up to 1.

The conventional CSK tracker normalizes the grayscale

values to [−0.5, 0.5]. This counters the distortion due to

the windowing operation, that affects the L2-distances in

the kernel. We investigate two different normalization tech-

niques for color names. In the first case, the color names are

centered by simply subtracting 1/11 from each color bin.

This projects the color names to a 10-dimensional subspace,

since the color bins sum up to zero. In the second case, the

normalization is performed by projecting the color names to

an orthonormal basis of this 10-dimensional subspace. This

projection centers the color names and simultaneously re-

duces the dimensionality from 11 to 10. The choice of this

orthonormal basis has no importance for the CSK tracker, as

discussed in section 3.3. We found the second technique to

obtain better performance and therefore use it to normalize

the color names.

3.2. Robustifying the Classifier for Color Features

To achieve visual tracking that is robust to appearance

changes, it is necessary that the target model is updated over

time. In the CSK tracker, the model consists of the learned

target appearance x̂ and the transformed classifier coeffi-

cients A. These are computed by only taking the current

appearance into account. The tracker then employs an ad-

hoc method of updating the classifier coefficients by simple

linear interpolation: Ap = (1 − γ)Ap−1 + γA, where p
is the index of the current frame and γ is a learning rate

parameter. This leads to sub-optimal performance, since

not all the previous frames are used simultaneously to up-

date the current model. Contrary to the CSK method, the

MOSSE tracker [4] employs a robust update scheme by di-

rectly considering all previous frames when computing the

current model. However, this scheme is only applied to lin-

ear kernels and one dimensional features. Here, we gener-

alize the update scheme of [4] to kernelized classifiers and

multi-dimensional color features.

To update the classifier, we consider all extracted appear-

ances {xj : j = 1, . . . , p} of the target from the first frame

till the current frame p. The cost function is constructed

as the weighted average quadratic error over these frames.

To keep the simplicity of the training and detection tasks,

the solution is restricted to only contain one set of classi-

fier coefficients a. Each frame j is weighted with a constant

βj ≥ 0. The total cost is then expressed as:

ǫ =

p
∑

j=1

βj

(

∑

m,n

|〈φ(xj
m,n), w

j〉 − yj(m,n)|2+

λ〈wj , wj〉
)

, where wj =
∑

k,l

a(k, l)φ(xj
k,l) (3)

This cost function is minimized by,

Ap =

∑p

j=1 βjY
jU j

x
∑p

j=1 βjU
j
x(U

j
x + λ)

(4)

As in (2), we define the Fourier transformed kernel out-

put U j
x = F{uj

x} where uj
x(m,n) = κ(xj

m,n, x
j). The

weights βj are set by using a learning rate parameter γ.

The total model is updated using (5). The numerator Ap
N

and denominator Ap
D of Ap = Ap

N/Ap
D in (4) are updated

separately. The object appearance x̂p is updated as in the

conventional CSK tracker.

Ap
N = (1− γ)Ap−1

N + γY pUp
x (5a)

Ap
D = (1− γ)Ap−1

D + γUp
x (U

p
x + λ) (5b)

x̂p = (1− γ)x̂p−1 + γxp (5c)

Note that this scheme allows the model to be updated

without storing all the previous appearances. Only the cur-

rent model {Ap
N , Ap

D, x̂p} needs to be saved. The model

is then updated in each new frame using (5). This also en-

sures that the increase in computations has a negligible ef-

fect on the speed of the tracker. As in the conventional CSK,

the learned appearance x̂p is used to compute the detection

scores ŷ for the next frame p+ 1.

3.3. Lowdimensional Adaptive Color Attributes

The computational time of the CSK tracker scales lin-

early with the feature dimensions. This is a problem for

high-dimensional color features such as color attributes. We

propose to use an adaptive dimensionality reduction tech-

nique that preserves useful information while drastically re-

ducing the number of color dimensions, thereby providing

a significant speed boost.

We formulate the problem of finding a suitable dimen-

sionality reduction mapping for the current frame p, by min-

imizing a cost function of the form:

ηptot = αpη
p
data +

p−1
∑

j=1

αjη
j
smooth. (6)



Where ηpdata is a data term that depends only on the cur-

rent frame and ηjsmooth is a smoothness term associated with

frame number j. The impact of the terms are controlled by

the weights α1, . . . , αp.

Let x̂p be the D1-dimensional learned appearance. The

dimensionality reduction technique finds a D1 × D2 pro-

jection matrix Bp with orthonormal column vectors. This

matrix Bp is used to compute the new D2-dimensional

feature map x̃p of the appearance by the linear mapping

x̃p(m,n) = BT
p x̂

p(m,n), ∀m,n. The data term consists

of the reconstruction error of the current appearance.

ηpdata =
1

MN

∑

m,n

∥

∥x̂p(m,n)−BpB
T
p x̂

p(m,n)
∥

∥

2
(7)

The minimization of the data term (7) corresponds to per-

forming Principal Component Analysis (PCA) on the cur-

rent appearance x̂p. However, updating the projection ma-

trix using only (7) deteriorates the quality of the target

model, since the previously learned classifier coefficients

Ap become outdated.

To obtain a robust learning of the projection matrix, we

add the smoothness terms in (6). Let Bj be a projection

matrix that has been computed for an earlier frame (j < p).

The smoothness term only adds a cost if the column vectors

in the new projection matrix Bp and in the earlier projection

matrix Bj do not span the same feature subspace. This is

motivated by the fact that the inner product and RBF ker-

nels are invariant under unitary operations. Therefore, the

particular choice of basis is unimportant provided it spans

the same feature subspace. The smoothness term is:

εjsmooth =

D2
∑

k=1

λ
(k)
j

∥

∥

∥b
(k)
j −BpB

T
pb

(k)
j

∥

∥

∥

2

. (8)

Eq. 8 is the reconstruction error of the earlier basis vectors

Bj in the new basis Bp. The importance of each basis vector

b
(k)
j in Bj is determined by a weight λ

(k)
j ≥ 0.

Using the data term (7) and smoothness terms (8), the

total cost (6) is minimized under the constraint BT
pBp = I .

This is done by performing an eigenvalue decomposi-

tion (EVD) of the matrix Rp = αpCp +
∑p−1

j=1 αjBjΛjB
T
j .

Here Cp is the covariance matrix of the current appearance

and Λj is a D2 × D2 diagonal matrix of the weights λ
(k)
j .

The projection matrix Bp is selected as the D2 normalized

eigenvectors of Rp that corresponds to the largest eigenval-

ues. We set the weight λ
(k)
j in (8) to the eigenvalue of Rj

that corresponds to the basis vector b
(k)
j . The weights αj in

(6) are set using a learning rate parameter µ. This ensures an

efficient computation of the matrix Rp, without the need of

storing all the previous matrices Bj and Λj . The procedure

is summarized in Algorithm 1.

Algorithm 1 Adaptive projection matrix computation.

Input:

Frame number p; Learned object appearance x̂p

Previous covariance matrix Qp−1; Parameters µ, D2

Output:

Projection matrix Bp; Current covariance matrix Qp

1: Set x̄p = 1
MN

∑

m,n x̂
p(m,n)

2: Set Cp = 1
MN

∑

m,n(x̂
p(m,n)− x̄p)(x̂p(m,n)− x̄p)T

3: if p = 1 then

4: Set R1 = C1

5: else

6: Set Rp = (1− µ)Qp−1 + µCp

7: end if

8: Do EVD Rp = EpSpE
T
p , with sorted eigenvalues in Sp

9: Set Bp to the first D2 columns in Ep

10: Set [Λp]i,j = [Sp]i,j , 1 ≤ i, j ≤ D2

11: if p = 1 then

12: Set Q1 = B1Λ1B
T
1

13: else

14: Set Qp = (1− µ)Qp−1 + µBpΛpB
T
p

15: end if

4. Experiments

Here we present the results of our experiments. Firstly,

we perform a comprehensive evaluation of color features

(popular in object recognition) for visual tracking. Sec-

ondly, we evaluate the proposed learning scheme for color

features. Thirdly, we evaluate our adaptive low-dimensional

color attributes. Finally, we provide both quantitative and

attribute-based comparisons with state-of-the-art trackers.

4.1. Experimental Setup

Our approach is implemented1 in native Matlab. The ex-

periments are performed on an Intel Xenon 2 core 2.66 GHz

CPU with 16 GB RAM. In our approach, we use the same

parameter values as suggested by [9] for the conventional

CSK tracker. The learning rate parameter µ for our adap-

tive color attributes is fixed to 0.15 for all sequences.

Datasets: We employ all the 35 color sequences2 used in

the recent evaluation of tracking methods [25]. Addition-

ally, we use 6 other color sequences3 namely: Kitesurf,

Shirt, Surfer, Board, Stone and Panda. The sequences used

in our experiments pose challenging situations such as mo-

tion blur, illumination changes, scale variation, heavy oc-

clusions, in-plane and out-of-plane rotations, deformation,

1The code is available at: http://urn.kb.se/resolve?urn=

urn:nbn:se:liu:diva-105857.
2The sequences together with the ground-truth and matlab

code is available at: https://sites.google.com/site/

trackerbenchmark/benchmarks/v10.
3The details are provided in the supplementary material.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105857
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-105857
https://sites.google.com/site/trackerbenchmark/benchmarks/v10
https://sites.google.com/site/trackerbenchmark/benchmarks/v10


Int Int + RGB LAB YCbCr Int + rg Opponent C HSV Int + SO Int + Opp-Angle Int + HUE Int + CN

median DP 54.5 49.1 65.9 48.6 50.6 57.6 58.8 63.4 31.0 38.6 14.1 74.0

median CLE 50.3 39.3 19.4 46.3 38.5 25.5 26.4 24.6 64.1 56.2 151 16.9

Table 1: Comparison of different color approaches for tracking. The best two results are shown in red and blue fonts. The

conventional intensity channel (Int) is added to color representations with no inherent luminance component. The results are

presented using both median distance precision (DP) (%) and center location error (CLE) (in pixels) over all 41 sequences.

In both cases the best results are obtained by using the color names (CN).

out of view, background clutter and low resolution.

Evaluation Methodology: To validate the performance of

our proposed approach, we follow the protocol2 used in

[25]. The results are presented using three evaluation met-

rics: center location error (CLE), distance precision (DP)

and overlap precision (OP). CLE is computed as the aver-

age Euclidean distance between the estimated center loca-

tion of the target and the ground-truth. DP is the relative

number of frames in the sequence where the center loca-

tion error is smaller than a certain threshold. We report DP

values at a threshold of 20 pixels [9, 25]. The results are

summarized using the median CLE and DP values over all

41 sequences. We also report the speed of the trackers in

median frames per second (FPS). The median results pro-

vide robust estimates of the overall performance.

We also present precision and success plots [25]. In the

precision plot the distance precision is plotted over a range

of thresholds. The trackers are ranked using the DP scores

at 20 pixels. The success plot contains the overlap precision

(OP) over a range of thresholds. OP is defined as the per-

centage of frames where the bounding box overlap exceeds

a threshold t ∈ [0, 1]. The trackers are ranked using the area

under the curve (AUC). Both the precision and success plots

show the mean precision scores over all the sequences.

4.2. Color Features

In addition to evaluating tracking based on color at-

tributes, we perform an extensive evaluation of other color

representations. The motivations of these color features

vary from photometric invariance and discriminative power

to biologically inspired color representations.

RGB: As a baseline algorithm we use the standard 3-

channel RGB color space.

LAB: The LAB color space is perceptually uniform, mean-

ing that colors at equal distance are also perceptually con-

sidered to be equally far apart.

YCbCr: YCbCr are approximately perceptually uniform,

and commonly used in image compression algorithms.

rg: The rg color channels are the first of a number of pho-

tometric invariant color representations which we consider.

They are computed with (r, g) =
(

R
R+G+B

, G
R+G+B

)

and

are invariant with respect to shadow and shading effects.

HSV: In the HSV color space, H and S are invariant for

shadow-shading and in addition H also for specularities.

10 

20 
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40 
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Original update scheme 

Proposed update scheme 

Figure 2: Comparison of original update scheme with the

proposed learning method using median distance precision

(DP) (%). Our method improves the performance on most

of the color approaches. The best results are obtained with

color names using the proposed learning method.

Method Dimensions median DP median CLE median FPS

CN 10 81.4 13.8 78.9

CN2 2 79.3 14.3 105

Table 2: Comparison of adaptive color names (CN2) with

color names (CN). We provide both median DP (%) and

CLE (in pixels) results. Note that CN2 provides a significant

gain in speed with a minor loss in accuracy.

Opponent: The image is transformed according to:
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This representation is invariant with respect to specularities.

C: The C color representation adds photometric invariants

with respect to shadow-shading to the opponent descriptor

by normalizing with the intensity. This is done according to

C =
(

O1
O3

O2
O3 O3

)T
[21].

HUE: The hue is a 36-dimensional histogram representa-

tion [22] of H = arctan
(

O1
O2

)

. The update of the hue his-

togram is done with the saturation S =
√
O12 +O22 to

counter the instabilities of the hue representation. This rep-

resentation is invariant to shadow-shading and specularities.

Opp-Angle: The Opp-Angle is a 36-dimensional histogram

representation [22] based on angO
x

= arctan
(

O1x
O2x

)

,

where the subscript x denotes the spatial derivative. It is

invariant to specularities, shadow-shading and blur.

SO: Finally, we consider the bio-inspired descriptor of

Zhang et al. [26]. This color representation is based on cen-

ter surround filters on the opponent color channels.



CT [27] LSST [24] Frag [1] L1APG [2] LOT [18] ASLA [10] TLD [11] SCM [28] EDFT [6] CSK [9] DFT [20] CXT [5] CPF [19] LSHT [8] Struck [7] CN2 CN

Median CLE 78.4 78.4 70.8 62.9 60.9 56.8 54.4 54.3 53.5 50.3 47.9 43.8 41.1 32.3 19.6 14.3 13.8

Median DP 20.8 23.4 38.7 28.9 37.1 42.2 45.4 34.1 49.0 54.5 41.4 39.5 37.1 55.9 71.3 79.3 81.4

Median FPS 68.9 3.57 3.34 1.03 0.467 0.946 20.7 0.0862 19.7 151 9.11 11.3 55.5 12.5 10.4 105 78.9

Table 3: Quantitative comparison of our trackers with 15 state-of-the-art methods on 41 challenging sequences. The results

are reported in both median distance precision (DP) and center location error (CLE).4 We also provide the median frames per

second (FPS). The best two results are shown in red and blue fonts. The two proposed approaches CN and CN2 achieve the

best performance. Note that our CN2 approach is the second best both in terms of speed and accuracy.

4.3. Experiment 1: Color Feature Evaluation

Table 1 shows the results5 of the color features discussed

in section 4.2. All color representations are appropriately

normalized. We add an intensity channel to color represen-

tations with no luminance component. The intensity chan-

nel is computed using the Matlab’s “rgb2gray” function.

The conventional CSK tracker with intensity alone provides

a median distance precision (DP) of 54.5%. The 36 di-

mensional HUE and Opp-Angle obtain inferior results. The

best results are achieved by using the 10 dimensional color

names (CN) with a significant gain of 19.5% over the con-

ventional CSK tracker. Similarly, the intensity-based CSK

tracker provides a median center location error (CLE) of

50.3 pixels. Again, the best results are obtained using color

names with a median CLE of 16.9 pixels.

In summary, color does improve the performance when

combined with luminance. However, a careful choice of

color features is crucial to obtain a significant performance

gain. The best results are obtained using CN.

4.4. Experiment 2: Robust Update Scheme

This experiment shows the impact of the proposed up-

date scheme for multi-channel color features. We refer to

the color features as a combination of color and intensity

channels from here onwards. Figure 2 shows the perfor-

mance gain in median distance precision obtained using the

proposed update scheme5. In 9 out of 11 evaluated color

features, the proposed update scheme improves the perfor-

mance of the tracker. The improvement is especially appar-

ent for high dimensional color features such as HUE and

opp-Angle. Consequently, the best performance is again

achieved using CN, where the results are improved from

74% to 81.4% with the new update scheme.

4.5. Experiment 3: Lowdimensional Adaptive
Color Attributes

As mentioned earlier, the computational cost of a tracker

is a crucial factor for most real-world applications. How-

ever, a low computational cost is desirable without a signif-

icant loss in accuracy. In this paper, we also propose low-

dimensional adaptive color attributes. The dimensionality

4A similar trend in the results was obtained with average DP and CLE.
5Due to space limitation, we only report the median scores over the 41

sequences. Per video results are provided in the supplementary material.
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Figure 3: Precision and success plots over all 41 sequences

(best-viewed on high-resolution display). The mean pre-

cision scores for of each tracker are reported in the leg-

ends. Our two approaches are shown in bold. Note that our

CN tracker improves the baseline CSK tracker by 14.8% in

mean distance precision. In both cases our approach per-

forms favorably to state-of-the-art tracking methods.

reduction technique introduced in section 3.3, is applied to

compress the 10 dimensional color names to only 2 dimen-

sions6. Table 2 shows the results obtained using the pro-

posed low-dimensional adaptive color attributes (CN2) and

its comparison with the color names. The results clearly

show that CN2 provides a significant gain in speed while

maintaining competitive performance.

4.6. Comparison with Stateoftheart

We compare our method with 15 different state-of-the-

art trackers shown to provide excellent results in literature.

The trackers used for comparison are: CT [27], TLD [11],

DFT [20], EDFT [6], ASLA [10], L1APG [2], CSK [9],

SCM [28], LOT [18], CPF [19], CXT [5], Frag [1], Struck

[7], LSHT [8] and LSST [24]. The code or binaries for all

trackers except LSST, LSHT and EDFT, are provided with

the benchmark evaluation2.

Table 3 shows a comparison with the mentioned state-of-

the-art methods on 41 challenging sequences using median

CLE and DP. We also report the speed in median frames

per second (FPS). The best two results are shown in red and

blue fonts respectively. Our approach CN significantly im-

proves the baseline intensity-based CSK tracker with a rel-

ative reduction in the median CLE by 72%. Moreover, our

CN tracker improves the median DP of the baseline method

6We performed an experiment to compress color names together with

the intensity channel. However, inferior results were obtained. We also

vary the number of desired dimensions. However, no significant gain was

observed by using more than 2 dimensions.



50 100 150 200 250 300 350
0

100

200

300

400

500

bolt

Frame Number

C
e

n
te

r 
E

rr
o

r 
(p

ix
e

ls
)

200 400 600 800
0

20

40

60

80

100

shirt

Frame Number
C

e
n

te
r 

E
rr

o
r 

(p
ix

e
ls

)

100 200 300
0

50

100

150

200

250

300

350

soccer

Frame Number

C
e

n
te

r 
E

rr
o

r 
(p

ix
e

ls
)

100 200 300 400
0

50

100

150

200

250

300

350

skating1

Frame Number

C
e

n
te

r 
E

rr
o

r 
(p

ix
e

ls
)

100 200 300
0

20

40

60

80

100
shaking

Frame Number

C
e

n
te

r 
E

rr
o

r 
(p

ix
e

ls
)

Ours Struck LSHT EDFT CSK

Figure 4: A frame-by-frame comparison of our CN2 approach with existing methods on 5 example sequences. The plots

show the center location error in pixels. Our approach provides promising results compared to the state-of-the-art methods.

from 54.5% to 81.4%. Struck, which has shown to obtain

the best performance in a recent evaluation [25], also out-

performs the other existing methods in our evaluation. De-

spite the simplicity of our CN tracker, it outperforms Struck

by 10% in median DP while operating at more than 7 times

higher frame rate. Finally, the results also show that our

CN2 tracker further improves the speed (over 100 in median

FPS) without significant loss in accuracy.

Figure 3 shows the precision and success plots contain-

ing the mean distance and overlap precision over all the 41

sequences. The values in the legend are the mean DP at 20

pixels and the AUC respectively. Only the top 10 trackers

are displayed for clarity. In the precision plot, the two best

methods are CN and CN2 proposed in this paper. Our CN

method outperforms Struck by 3.5% and the baseline CSK

tracker by 14.8% in mean distance precision at the thresh-

old of 20 pixels. It is worthy to mention that the baseline

CSK tracker does not estimate scale variations. Despite this

inherent limitation, our two approaches provide promising

results compared to state-of-the-art methods in mean over-

lap precision (success plot). Figure 4 shows a frame-by-

frame comparison of our CN2 tracker with existing track-

ers in terms of central-pixel errors on 5 example sequences.

Our approach performs favorably compared to other track-

ers on these sequences.

Robustness to Initialization: It is known that visual track-

ers can be sensitive to initialization. To evaluate the initial-

ization robustness, we follow the protocol proposed in the

benchmark evaluation [25]. The trackers are evaluated by

initializing both at different frames (referred to as tempo-

ral robustness, TRE) and at different positions (referred to

as spatial robustness, SRE). For SRE, 12 different initial-

izations are evaluated for each sequence, where as for TRE

each sequence is partitioned into 20 segments.

We select the top 5 existing trackers in the distance and

overlap precision plots (Figure 3) for TRE and SRE exper-

iments. The results comparing our approach with the se-

lected trackers are shown in Figure 5. In both evaluations,

our CN and CN2 trackers obtain the best results.

We also evaluated the trackers according to the VOT

challenge7 evaluation methodology, which is similar to the

7http://www.votchallenge.net/vot2013/
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Figure 5: Precision plots for TRE and SRE. Our approaches

achieve the best performance in both evaluations.

TRE criterion. On the 41 sequences, the mean number of

tracking failures is lower (1.05) for our approach than for

Struck (2.64).

Attribute-based Evaluation: Several factors can affect the

performance of a visual tracker. In the recent benchmark

evaluation [25], the sequences are annotated with 11 dif-

ferent attributes, namely: illumination variation, scale vari-

ation, occlusion, deformation, motion blur, fast motion,

in-plane rotation, out-of-plane rotation, out-of-view, back-

ground clutter and low resolution. We perform a compari-

son with other methods on the 35 sequences annotated with

respect to the aforementioned attributes [25]. Our approach

performs favorably on 7 out of 11 attributes: background

clutter, motion blur, deformation, illumination variation, in-

plane rotation, out-of-plane rotation and occlusions.

Figure 6 shows example precision plots of different at-

tributes. Only the top 10 trackers are displayed for clarity.

For illumination variation sequences, both CN and CN2 pro-

vide superior results compared to existing methods. This is

due to the fact that color attributes possess a certain degree

of photometric invariance while preserving discriminative

power. Currently our tracker does not account for out-of-

view cases, where the LOT tracker provides the best results.

5. Conclusions

We propose to use color attributes for tracking. We

extend the learning scheme for the CSK tracker to multi-

channel color features. Furthermore, we propose a low-

dimensional adaptive extension of color attributes. Several

existing trackers provide promising accuracy at the cost of

http://www.votchallenge.net/vot2013/
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Figure 6: Precision plots of different attributes namely: illumination variation, in-plane rotation, motion blur and background

clutter (best-viewed on high-resolution display). The value appearing in the title denotes the number of videos associated

with the respective attribute. The two methods proposed in this paper perform favorably against state-of-the-art algorithms.

significantly lower frame-rates. However, speed is a cru-

cial factor for many real-world applications such as robotics

and real-time surveillance. Our approach maintains state-

of-the-art accuracy while operating at over 100 FPS. This

makes it especially suitable for real-time applications.

Even though color was frequently used in early tracking

literature, most recent works predominantly apply simple

color transformations. This paper demonstrates the impor-

tance of carefully selecting the color transformation and we

hope that this work motivates researchers to see the incor-

poration of color as an integral part of their tracker design.
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