
Adaptive Color Classification for Structured Light Systems

Philipp Fechteler and Peter Eisert

Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institute

Image Processing Department,

Einsteinufer 37, D-10587 Berlin, Germany

{philipp.fechteler / peter.eisert}@hhi.fraunhofer.de

Abstract

We present a system to capture high accuracy 3D models

of faces by taking just one photo without the need of special-

ized hardware, just a consumer grade digital camera and

beamer. The proposed 3D face scanner utilizes structured

light techniques: A colored pattern is projected into the face

of interest while a photo is taken. Then, the 3D geometry is

calculated based on the distortions of the pattern detected

in the face. This is performed by triangulating the pattern

found in the captured image with the projected one.

The main focus of our work lies in the enhancement of

the systems robustness with respect to environment illumi-

nation, color cross-talk, reflectance characteristics of the

scanned face etc. For this purpose the color classification

of the proposed system is made adaptive to the character-

istics of the captured image to compensate for such distor-

tions. Further improvements are concerned with enhancing

the quality of the resultant 3D models. Therefore we replace

the typical general-purpose image preprocessing with spe-

cialized low-level algorithms performing on raw CCD sen-

sor data.

The presented system is suitable for generating high

speed scans of moving objects because it relies only on one

captured image. Furthermore, due to the adaptive nature of

the used color classifier, it generates high quality 3D models

even under perturbing light conditions.

1. Introduction

The construction of 3D models out of 2D views on a

scene is a field of ongoing research for some decades now.

One common way of approaching this problem is Stereo

Vision. In this case the corresponding points of two or more

different views are triangulated to create a 3D model. A

good overview and evaluation on such algorithms is given

in [6].

Very similar to the Stereo Vision approach is the Struc-

Figure 1. top: Resulting 3D models as wire frame model, surface

and textured surface, down: input images

tured Light method which is used in this work. Here the

task is simplified by using controlled illumination. There

are various different structured light approaches, for exam-

ple: in [12] a real-time system is proposed which runs on

specialized hardware; in [7] a method is presented for gen-

erating high resolution depth maps of complex scenes by us-

ing multiple projectors, cameras and several snapshots per

camera; in [9] a method is shown which uses just one pro-

jector and one camera without any modifications running

on a typical PC. This last mentioned work has motivated

us to develop a structured light 3D scanner specialized for

faces [2], which poses the foundation of the presented sys-

1



tem.

In recent research significant effort has been made to en-

hance the performance of such systems with respect to the

resulting 3D models. In [10] high quality depth maps are

generated by a spacetime stereo technique which is based on

a video stream captured while the projected pattern changes.

In [11] the authors present an approach to capture high res-

olution 3D models of faces utilizing several synchronized

video cameras.

The major contribution of the presented work lies in the

improvement of structured light systems with respect to ro-

bustness to ambient light and reflectance characteristics of

the object to be scanned. Additionally we present low level

image processing algorithms suited for the generation of

high accuracy 3D models.

2. Framework and Architecture

A 3D model of a face is computed by first projecting

a simple colored stripe pattern onto the face. The depth

information is then calculated by taking into account the

distortion of the stripes in the face caused by its shape. To

measure the degree of distortion, correspondences between

projected and detected stripes are established. The depth is

evaluated for all correspondences with respect to the focal

point of the camera. After having a cloud of 3D points it

is converted into a mesh of triangles. This mesh constitutes

the surface of the 3D model. Optionally the mesh can be

textured with a picture taken additionally with regular white

light.

Figure 2. Devices and setting used in this framework

The hardware used by our framework consists of reg-

ular devices: a digital camera and a projector (see figure

2). Both devices are controlled by a typical PC running the

framework. The devices are mounted so that their image

centers are one upon the other.

In order to generate a 3D model of a face the following

steps are performed:

1. take image Iinput of the face illuminated with a color

stripe pattern Ipattern and optionally capture an image

Iregular with regular white light

2. extract prospective stripes

3. extract colors corresponding to prospective stripes

4. match the prospective stripes with the projected ones

5. calculate 3D coordinates of correspondences

6. create a triangle mesh from the 3D point cloud

7. optionally project Iregular onto the surface as texture

To create a 3D model of a face, the goal is to find the

most probable correspondences between Ipattern and Iinput

among all possibilities. This is achieved by performing

a global optimization after having extracted hypothetical

stripes in Iinput as well as their colors.

2.1. Offline Pattern Creation

The pattern projected onto faces should allow an easy

assignment of imaged parts to parts of the pattern. There-

fore we have chosen a stripe pattern with horizontal lines

having fully saturated colors with empty (black) spaces in

between. This reduces the search for correspondences to a

1D search along the corresponding scan columns. The col-

ors in the resulting pattern image Ipattern are (see figure

3): red, green, blue, white, cyan, magenta and yellow. To

ease the unique assignment of detected stripes to projected

ones we have chosen a series of stripe colors with a big pe-

riod. Besides that, we introduced the constraint that two

consecutive stripes have to differ in at least two channels.

With this latter constraint we achieve an enhanced delimi-

tation of successive stripes, and the unique identification is

simplified. This is the reason why we do not use de Bruijn

sequences [3], which are often used in similar contexts to

generate sequences with big periods. The smaller periodic-

ity due to the additional constraint in our case is no problem,

as long as the period of the pattern is smaller than the largest

jump in depth. Taking this into account the pattern Ipattern

can be determined with a simple depth-first search.

Figure 3. A cut-out of the used pattern rotated by 90
◦

3. Detection of Stripes

After capturing an image Iinput of a face illuminated

with the pattern Ipattern the stripes corresponding to the

projected pattern stripes are detected in Iinput. First of all,

the region of interest in the image is defined with a simple

face shaped model. All the pixels outside are set to black, so

that all subsequent steps will ignore them. The remaining

image of the face will be searched for the projected stripes.



Figure 4. Different cases of parabola fitting through pixel values along scan columns; vertical line indicates maximum of parabola

3.1. SubPixel Resolution

To achieve a highly accurate 3D model the stripes are

detected with sub-pixel resolution.

Therefore all the ”general-purpose” image preprocess-

ing in the camera is skipped, which is generally ”special-

purpose” to generate visually appealing images: Bayer in-

terpolation, gamma correction, white balancing etc. In-

stead, the presented framework uses the plain CCD sensor

values with full 12-bit resolution instead of the typical 8

bits. Among others, this means, we treat the pixel values

differently depending on which sensor type they were mea-

sured on, red, green or blue.

As the input image is in raw CCD sensor format, there

are no de-bayered RGB pixels, but columns of single-

channel pixels with alternating color sensitivity: RGR-

GRG. . . and GBGBGB. . .

Extracting the prospective stripes is done separately for

all three color channels as well as for every scan column.

A pixel is taken as a stripe candidate if the values of the

preceding and succeeding pixels are not bigger. This results

in three lists of stripe candidates, one for each sensor color

type.

We are interested in sub-pixel resolution. So we deter-

mine the centers of the stripe candidates by fitting parabo-

las through their intensities, the pixel values: p(x) = ax2 +
bx+ c, with a, b, c being the parameters of the parabola p(·)
and x the pixel location along the scan column, again for

all three color channels separately. The center of the stripes

is assumed to be at the maximum point of the parabola, its

mode. Fitting the parabolas is performed via squared dis-

tance minimization: minp(X · p− y)2, with the parameter

vector p = (a, b, c)T , the matrix X holding the different

powers of the pixels locations along the scan column, and y

containing the actual pixel values.

In the regular case with one pixel value bigger than its

two vertical neighbours, the parabola is fitted through these

three points. In cases where two adjoining pixels hold the

same value bigger than the two surrounding ones, these four

pixels are used for this. If there are more than two equal

valued pixels, the inner most pixels are ignored. In this case

the parabola is fitted with respect to the two starting and the

two closing pixels of that interval. The latter case occurs

when the sensor is saturated, e.g. too much light. See figure

4 for illustration of all these cases.

Most projected stripes produce responses in more than

one kind of color sensor, e.g. magenta light should excite

the sensors for red and blue. And even if a sensor gets illu-

minated with light it is not sensitive to, a response is mea-

surable with probability bigger than zero. This is formally

known as color-cross talk. That’s why one projected stripe

often results in several detected stripes which are found in

the lists corresponding to the different sensor types.

In order to get one common list with all stripes found in

the input image Iinput the three lists are fused to one single

set. Thereby detected stripes of different lists (emerging

from different sensor types) which belong to one projected

stripe are combined to one common representation. The

common center ccommon is calculated as a weighted sum of

the two original centers c1 and c2:

ccommon =
c1a1 + c2a2

a1 + a2

,

weighted with their ”sharpness” parameter in the parabola

equation p(x) = ax2 + bx+ c. Here again a scan column is

Figure 5. Two parabolas resulting in one common center



Figure 6. Colors of prospected stripes in RGB space, left: picture taken under ideal conditions, right: picture taken under bad illumination

processed one after another, but now under consideration of

the two different color channels present. Every two parabo-

las in a single scan column from the two different sensor

types are fused together if their centers are not to far apart,

see figure 5.

For establishing correspondences the colors are com-

pared between the projected stripes and the detected ones.

Therefore every prospective stripe is a color assigned using

sub-pixel Bayer interpolation. This means, that stripe candi-

dates get their red, green and blue values by assigning them

as a weighed mean of their neighboring sensor values. The

weights used here are inverted Euclidean distances between

the stripes’ centers and the pixel locations.

3.2. Probability of Stripes

At the later over-all-optimization, detected stripes which

deviate from the pattern sequence order to much and which

are not bold enough are cancelled out. For this purpose ev-

ery detected prospective stripe is assigned a likelihood of

being a correctly recovered projected stripe. This likelihood

is proportional to the same ”sharpness” parameter of the fit-

ted parabola as the one mentioned above.

All the parabolas are opened to the lower side, so a < 0.

And parabolas with a low absolute value of a near zero are

flatter then the ones with more negative values of a. To nor-

malize the derived likelihoods pi,valid of a stripe candidate

pi to be a valid stripe to a range of [0, 1] the sharpness pa-

rameter ai is divided by the lowest value of all a’s among

all parabolas of the same sensor type.

pi,valid =
ai

amin

This means, that indistinct stripes will correspond to flatter

fitted parabolas which in turn results in lower probability

weights.

4. Color Classification of Detected Stripes

The result of the previous steps is a list of all the stripe

candidates. Each stripe candidate is specified by a scan col-

umn index, a position along that scan column and a RGB

color value. For every detected stripe the likelihoods of be-

ing projected with the different colors of the pattern are de-

rived. Hence every stripes pixel is assigned one probability

value for each projected color, seven in our case.

4.1. Classifying the Detected Colors

Experiments have shown that projected colors, reflected

by skin and recorded by cameras encounter various dif-

ferent distortions. Additionally, sensor noise as well as

color-cross talk is detected between the projector spectra

and the sensor filters. In figure 6 two RGB space repre-

sentations of prospective stripes are depicted: one captured

under controlled conditions, the other one in a usual office

environment. Color clusters are roughly identifiable cor-

responding to the projected colors, without a clear separa-

tion between them. The visible clusters are approximately

shaped along more or less straight lines which seem to be

slightly displaced versions of the black→red, black→cyan

etc. axes. The plots in figure 6 show how crucial the light

conditions of the environment are. Without any disturbing

light sources in the environment, the clusters are identifiable

quite clearly. But with increasing ambient light the clusters

become more and more fuzzy until there is only one big

blob of data points in RGB space.

4.2. Adaptation to Statistics in Captured Image

In order to determine the color each detected stripe pixel

was projected with, straight lines gc : oc + xrc are fitted

through these clusters to form prototypes of these clusters;

one line for each pattern color c ∈ {r, g, b, c, y, m, w}. The

classification of data point pi (a stripes’ color) is then per-

formed by calculating the distances d(pi, gc) of that point



pi to all the prototype lines gc, and assigning the color of

the prototype with the smallest distance.

This fitting of straight 3D lines through clusters is a form

of orthogonal distance regression (ODR), and the classifi-

cation of the projected colors is a form of model selection.

The parameters for this mixture model (the straight lines gc)

are determined out of the measured data. For this purpose

the KMeans algorithm [5] is adapted. The classical KMeans

method works broadly in the following way:

1. initialize the parameters of the classifier, the mixture

of straight 3D lines

2. repeat until no changes in labeling are registered

* label the data with current classifier parameters

* adapt classifier parameters

There are efficient general-purpose initialization meth-

ods for the standard KMeans method, e.g. [1]. These meth-

ods are not applicable for our adapted KMeansLineFit be-

cause here the cluster means are not in the same space as

the data, but in parameter space of straight lines. However,

by knowing the originally projected colors, our initial guess

of classifier parameters are straight lines, originating from

black (0, 0, 0) and pointing to the fully saturated colors red

(1, 0, 0), magenta (1, 0, 1) etc.

The labeling step means to assign every stripe the color

label it was most probably projected with according to the

current classifier. This is the color of the prototype line gc

with the smallest distance to the stripes color pi.

The adaptation step is slightly more complex: Every pro-

totype line gc is moved into the center of the data points

which are currently labeled with the same color. At a first

glance this can be done for every cluster independently. The

calculation of a straight line gc in 3D space is performed by

searching the offset point oc and a direction vector rc. The

parameters minimizing the squared distance to the given

data are the datas’ mean as the offset point oc, and rc can

be determined by using Eigenvalue decomposition of the

datas’ covariance matrix.

Experiments have shown that the resulting lines do not

lie in the cluster centers, because all the clusters are fused

together at dark colors. The prototype lines do not pass from

dark colors near black to lighter colors near the fully satu-

rated ones and they do not cross the clusters in their cen-

ter. To overcome this, an artificial constraint has been intro-

duced, that all the prototype lines must contain one common

point near black, which is also adapted by the KMeansLin-

eFit algorithm. This seems to be plausible as it is the pixels’

value achieved when dimming any color more and more.

The problem of finding all prototype lines passing

through one common point poses a system of coupled equa-

tions which are not solvable in closed form. Therefore it is

Figure 7. Prototype lines found by adapted KMeansLineFit in

RGB space

solved approximately by first calculating the direction vec-

tor rc for every color c, and then determining the common

offset point o best fitting all the new prototypes gc to the

corresponding data. The former is again the same Eigen-

value decomposition problem. The later problem can be

solved by minimizing the sum of squared distances for each

given data point pi and its corresponding prototype line gc:

minD =

C∑

c=1

Nc∑

i=1

d2(pci, gc) =

C∑

c=1

Nc∑

i=1

‖rc × (pci − o)‖2

The offset o minimizing this squared distance D can be cal-

culated by deriving D with respect to o’s components and

setting them to zero. The resulting three equations, resolved

for o’s components can be combined into an equation sys-

tem of the form A · o = b which can be solved with stable

matrix inversion.

After having iterated over the labeling-adaptation-loop

until no changes in labeling are registered, the classifier is

adapted to the statistical characteristics of the input image.

For every stripe the distance to the different prototype lines

is defined. Figure 7 shows the results of an example.

4.3. Probability of Color Assignments

These distance measurements are transformed into like-

lihoods by utilizing a softmax like function. The distance

measurements are inverted and normalized to the range of

[0..1] with the sum of the reciprocal of all distances:

pi,color =
d−1(pi,color, gcolor)∑C

c=1
d−1(pi,c, gc)

Special care has to be taken for RGB pixel values close to o

to ensure that no division by zero occurs.



To speed up the convergence an intelligent initialization

can be used: Fit an origin passing line through the complete

data set and let it be the white representative. The remaining

prototypes are put aside the white prototype into the direc-

tion of the fully saturated axes, depending on the expansion

of the whole data point cloud.

With the presented method we have a soft color classi-

fier which assigns probabilities in contrast to absolute val-

ues. Additionally by utilizing the proposed non-parametric

KMeansLineFit method the soft color classifier is adapted

to the characteristics of the given input image Iinput in

terms of color-cross talk, albedo etc. without explicitly

modeling these effects.

5. Matching Detected Stripes with Projected

Ones

During the previous steps a list has been achieved con-

taining all the detected stripe candidates. Each one is spec-

ified by a location (scan column index and position along

that one), a likelihood to be a valid stripe and the likelihoods

to be projected with the pattern colors. The current task

is to establish correspondences between projected and de-

tected stripes and to skip all invalid stripe candidates which

have been emerged due to non-optimal light, skin and sen-

sor conditions. This constitutes the probabilistic over-all-

optimization.

This matching is a typical combinatorial optimization

problem (COP): Which combination of correspondences

fits best. We follow the usual way to solve such tasks by

setting up an objective function which has to be maximized

in order to find the best combination. The objective function

takes all the available information for all stripe candidates

into account, which is:

• likelihood to be a valid stripe (pi,valid)

• likelihood to be projected with the different pattern

colors (pi,color)

• deviation of detected sequence from projected pattern

(pi,sequence)

This problem is solved for each vertical scan column sepa-

rately. The objective function we have developed is the sum

over all the available probabilistic weights. We distinguish

between the two cases of stripe candidates are matched

(p ∈ M ) and skipped (p /∈ M ):

L =
∑

∀i∈M pi,color + pi,valid + pi,sequence

+
∑

∀i/∈M 1 − pi,valid

L contains the probability of being invalid for every rejected

stripe candidate. For every successfully matched stripe it

contains the sum of the likelihood of being a valid stripe,

the likelihood that this stripe was projected with the cor-

responding pattern color and the likelihood that this color

occurs in this sequence in the projected pattern. The latter

term is often called a jump weight because it assigns good

scores for stripes being in order with the pattern and bad

scores for incoherent sequences.

This COP is solved efficiently with the Dynamic Pro-

gramming (DP) method [8]. The typical Dynamic Program-

ming approach is to set up a table containing scores for the

assignments and traversing through it. Afterwards the best

score achieved is traced back and all the encountered cor-

respondences are found respectively the prospective stripes

marked as invalid are skipped.

6. Experimental results

Figure 8. Results of stripe detection, color classification and stripe

matching without any post-processing

The final depth of every correspondence is evaluated by

triangulating the 3D point cloud. Therefore the projection

matrices of the camera and projector are needed, which we

get by calibration.

The depth calculation is done by calculating the intersec-

tion of the two lines of sight through the focal points and the

image points of the camera respective projector [4].

In our experiments we use a DLP projector ”Projection

Design F1+” with a SXGA+ resolution (1400 x 1050) and

a camera ”Canon EOS 20D” with a resolution of 8.2 mega

pixel (3522 x 2348). The pattern contains stripes with a

width of 2 pixels and 3 pixels intersection.

The C++ running time for generating a 3D model of a

face lies in the range of a minute on a 3 GHz Pentium-4

computer. It depends on the amount of detected vertices.

The KMeansLineFit algorithm converges in 5 to 15 itera-

tions for optimal light conditioned scenes. With captured

images of non-ideal scenes the amount of required itera-

tions rises up to 50.

Many experiments have been performed with the 3D face

scanner. Figure 1 shows the results of a typical scenario.

Two pictures have been taken, one with regular white light

and one with the structured light pattern shown in figure 3.

After selecting the interesting region, the system has set up

a color classifier suitable for the given scene (shown in fig-

ure 7). After classifying the detected stripes and establish-



ing correspondences the 3D model of the face is calculated

and optionally presented as wire frame model, surface or

textured 3D face.

In figure 8 a region around the mouth is depicted to

demonstrate the main stripe matching including stripe de-

tection and color classification. Here no post processing

has been performed which is normally done to remove resp.

align outliers. Despite the bad quality and the partial satu-

rated color channels in the input image the system produces

good results.

7. Conclusion and Future Work

We have presented a system for high resolution 3D face

scanning based on single captured images. The system gen-

erates high accuracy 3D models by exploiting specialized

low-level algorithms performing on raw CCD sensor data.

Additionally the 3D face scanner has been made robust in

terms of light conditions, skin, color-cross talk etc. This is

achieved by adapting the color classification to the charac-

teristics of the captured image utilizing the proposed non-

parametric KMeansLineFit algorithm without the need to

explicitly model any of these disturbing effects.

Experiments with scanned faces under non-ideal light

conditions are presented to demonstrate the systems perfor-

mance.

The simple setup and its easy usage make the presented

system ideal suited for various 3D model creation scenarios,

e.g. virtual environments like 3D games or human machine

interfaces.

Interesting for future work could be to use a global op-

timization for the whole input image, which does not han-

dle every scan column separately. E.g. Dynamic Program-

ming could match all scan columns simultaneously by tak-

ing all the possible combinations of current stripe matches

as a single state. Another interesting enhancement could be

to adapt the color classifier to local regions instead of the

whole image. Additionally a significant speed up could be

gained by running several parts of the system in parallel ex-

ploiting todays multi-core processors.

8. Acknowledgement

The work presented in this paper has been developed

with the support of the European Network of Excellence

VISNET II (Contract IST-1-038398).

References

[1] D. Arthur and S. Vassilvitskii. k-means++: the advantages of

careful seeding. In Symposium on Discrete Algorithms, Pro-

ceedings of the eighteenth annual ACM-SIAM symposium

on Discrete algorithms, pages 1027 – 1035, New Orleans,

Louisiana, USA, 2007.

[2] P. Fechteler, P. Eisert, and J. Rurainsky. Fast and High Res-

olution 3D Face Scanning. In Proc. of the International

Conference on Image Processing ICIP, San Antonio, Texas,

USA, September 2007.

[3] H. Fredricksen. The lexicographically least debruijn cycle.

Journal of Combinatorial Theory, 9:509–510, 1970.

[4] R. Goldman. Intersection of Two Lines in Three Space, page

304. Academic Press, 1990.

[5] J. B. MacQueen. Some methods for classification and anal-

ysis of multivariate observations. In Proceedings of 5-th

Berkeley Symposium on Mathematical Statistics and Prob-

ability, pages 281–297, Berkeley, 1967.

[6] D. Scharstein and R. Szeliski. A taxonomy and evaluation

of dense two-frame stereo correspondence algorithms. IJCV

47(1/2/3), pages 7–42, April-June 2002.

[7] D. Scharstein and R. Szeliski. High-accuracy stereo depth

maps using structured light. In IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR

2003), volume 1, pages 195–202, Madison, WI, June 2003.

[8] D. B. Wagner. Dynamic programming. The Mathematica

Journal, 1995.

[9] L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisi-

tion Using Color Structured Light and Multi-pass Dynamic

Programming. In The 1st IEEE International Symposium on

3D Data Processing, Visualization, and Transmission, pages

24–36, Padova, Italy, June 2002.

[10] L. Zhang, B. Curless, and S. M. Seitz. Spacetime Stereo:

Shape Recovery for Dynamic Scenes. In IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition (CVPR), Madison, Wisconsin, June 2003.

[11] L. Zhang, N. Snavely, B. Curless, and S. M. Seitz. Space-

time Faces: High-Resolution Capture for Modeling and An-

imation. In ACM Annual Conference on Computer Graph-

ics (SIGGRAPH Proceedings), pages 548–558, Los Angeles,

CA, August 2004.

[12] S. Zhang and P. S. Huang. High-resolution real-time 3-d

shape measurement. Optical Engineering, 45(12), December

2006.


