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Abstract 

Reaching population immunity against COVID-19 is proving difficult even in countries with high 

vaccination levels. We demonstrate that this in part is due to heterogeneity and stochasticity 

resulting from community-specific human-human interaction and infection networks. We address 

this challenge by community-specific simulation of adaptive strategies. Analyzing the predicted 

effect of vaccination into an ongoing COVID-19 outbreak, we find that adaptive combinations of 

targeted vaccination and non-pharmaceutical interventions (NPIs) are required to reach population 

immunity. Importantly, the threshold for population immunity is not a unique number but strategy 

and community dependent. Furthermore, the dynamics of COVID-19 outbreaks is highly community-

specific: in some communities vaccinating highly interactive people diminishes the risk for an 

infection wave, while vaccinating the elderly reduces fatalities when vaccinations are low due to 

supply or hesitancy. Similarly, while risk groups should be vaccinated first to minimize fatalities, 

optimality branching is observed with increasing population immunity. Bimodality emerges as the 

infection network gains complexity over time, which entails that NPIs generally need to be longer 

and stricter. Thus, we analyze and quantify the requirement for NPIs dependent on the chosen 

vaccination strategy. Our simulation platform can process and analyze dynamic COVID-19 

epidemiological situations in diverse communities world-wide to predict pathways to population 

immunity even with limited vaccination. 

 

In response to the COVID-19 pandemic major efforts have been carried out to provide models and data 

driven support for public health and government decision making1–12. These have predominantly 

focused on individual countries13–17 whilst others have aimed to integrate worldwide high-resolution 

demographic and mobility data to simulate the disease18–20. However, even in countries with strong 

public health governance there is often a discrepancy between what is required for specific, effective 

and fast decision making and what models can actually offer7,21,22. This is in part due to the fact that 



 

 

many models are based on population-wide assertions and not human individuals23,24. In contrast, virus 

outbreaks are non-linear, stochastic, network-based and localized. The propagation between human 

individuals depends on the specific geospatial and demographical context as well as contact patterns 

between groups of individuals25,26. Consequently, the spread of SARS-CoV-2 in the population is a 

complex system and must be analyzed accordingly.  

Thus, here we explore whether essential aspects of the system’s behavior (e.g. stochasticity and 

bimodality) may be missed if the system is assumed to be homogeneous or modelled deterministically. 

We hypothesize that different types of epidemiological models may be useful at different phases of a 

pandemic. For example, in phases with high infection numbers a homogenous mixing model may well 

predict relevant effects, whilst in early or late phases of a pandemic or with new variants emerging it 

may be vital to capture stochasticity and structural heterogeneity within the system.  

These possibilities are perhaps most important to consider in the pursuit of population immunity for 

COVID-19. Even in countries like Israel with relatively high vaccine uptake27 reaching population 

immunity is proving elusive; or in the case of the Seychelles, a nation among the fastest to vaccinate 

its population (>70% received at least one vaccine dose by May 12th 2021), which has subsequently 

experienced a surge in infection cases28. These challenges are further emboldened by the relatively 

high attack-rate that has been demonstrated for SARS-CoV-229, and the fact that many countries 

around the world are faced with limited vaccine supply or vaccine hesitancy. 

Thus, there is an urgent need to explore a new paradigm for epidemiological governance based on 

community-specific spatio-temporal adaptive combinations of NPIs and targeted vaccination. To keep 

vulnerable citizens, heterogeneous and diverse societies safe, e.g. from new variants, while allowing 

economic and social activity to resume, governments may have to continuously adapt and combine 

NPIs and vaccination strategies in order to reach and maintain population immunity and avoid 

fatalities. Therefore, it is an open question whether adaptive approaches may be required in order for  

societies to reach and maintain population immunity in an increasingly NPI fatigued world. 

Here, we present a globally applicable platform to analyze the effect of adaptive population immunity 

strategies in different communities. Based on precision simulation of individualized, real-world, spatio-

temporal SARS-CoV-2 transmission networks the methodology can determine adaptive combinations 

and optimality in intervention strategies. By enabling prediction of the effects of combining vaccination 

strategies with NPIs in an adaptive and context specific manner we demonstrate how it is possible to 

reach and maintain population immunity. The platform is readily applicable to diverse communities 

world-wide and offers the ability to identify key aspects of COVID-19 outbreaks that epidemiological 

homogenous mixing models cannot detect. 

 

 

Results 

 

Heterogeneous model of human-human interaction networks enables precision-simulation 

of COVID-19 outbreaks 

Human-human interaction networks (HHIN) are formed by physical proximity between individuals in 

time and space and depend on the typical or exceptional behavior of humans (Fig. 1). The spreading 

of respiratory diseases, such as COVID-19, can be described as a sub-network of infection HHIN (iHHIN) 



 

 

within a HHIN consisting of infection emitters and receivers. As a result, these networks are stochastic 

and evolve over time in a non-linear manner and their analysis requires models that can both capture 

this complexity and human behavior. We developed a detailed agent-based geospatial model30, where 

each agent represents a human individual within a real-world community (Fig. 1, Online Methods, 

Supplementary Material, Supplementary Figs. 1-32, Supplementary Tables 1-26). We complemented 

a classical SIR model with the clinically described stages of SARS-CoV-2 infection31 and COVID-19 (Fig. 

1f, Online Methods) and incorporated georeferenced information32,33, demographic data32,33 and 

realistic weekly schedules (Fig. 5). This enables the model to reflect the current state of the pandemic 

and to simulate realistic scenarios within concrete human populations; the respective HHIN and iHHIN 

can be reconstructed from the simulations (Fig. 1a). We first simulated a baseline scenario, i.e. the 

spread of infection from one/few individuals through the population without any NPIs. Then, we 

simulated various NPIs such as full lockdown, closure and reopening of selected locations, non-

compliance with interventions as well as the effect of different values of infectivity (where lowering 

mimics social distancing or mask wearing, while new strains can lead to an increase). Here, we applied 

the approach to communities in Germany, Israel, United Kingdom and Sweden, including the German 

town Gangelt, which witnessed one of the first outbreaks and has been thoroughly monitored during 

the pandemic34.  

 

 

Fig. 1: The nonlinear network effects of SARS-Cov-2 outbreaks are quantified with non-homogenous spatio-

temporal models of individual human behavior. a, Human-human interactions create dynamic stochastic 

networks in space and time. b, The model uses data from real-world communities with annotated buildings, 

demographics, and statistics on daily occupations (Movie 1). c, Individuals move between locations to meet other 

individuals, enabling infection transmission. d, Schedules define typical behavior and where-abouts of individuals 

per hour. e, Individuals, locations, and time span a multidimensional space for stochastic simulations. f, An 

individual’s health status can be susceptible - S, infected - I, recovered - R, deceased - D, and infection sub-states 

a- or presymptomatic (plain I), diagnosed (Id), hospitalized (Id
H), in intensive care (Id

ICU). g, Simulation of 

uncontrolled baseline scenario for a town (here the German town Gangelt with 10.351 individuals), starting from 

4 infected individuals; dynamics of states S, I, R, and D over approx. 12 weeks (100 replicates, colors as in f). h, 

Dynamics of I, Id, Id
H, and Id

ICU (colors as in f). i, The R-value as emergent model property for different values of 

the model parameter infectivity, which may change with NPIs such as mask wearing or social distancing. j, 



 

 

Simulated performance of an NPI: lockdown (8 days after first infection) and reopening (after 5 weeks). k, 

Compliance (in % of population) with the lockdown leads to less total infection. l, Bimodality: whether lockdown 

and reopening lead to high or low infection numbers depends on the reopening time. For a range of reopening 

times, high/low I are obtained in a certain ratio, indicating uncertainty in the outcome. Parameter values: 

infectivity kI = 0.3 (if not stated otherwise in i), interaction frequency μ = 2. 

 

 

Community-specificity of SARS-CoV-2 outbreak dynamics determined by heterogeneous 

groups of emitters and receivers  

We set out to determine how interaction and infection networks could provide the means to quantify 

routes of SARS-CoV-2 spreading and thus serve as a decision basis for NPIs. The HHIN encompass three 

different classes of interactions, namely those that: (i) cannot lead to transmission of infection (e.g. 

between two S or between two I), (ii) can potentially result in transmission (interaction between S and 

I without successful transmission), and (iii) result in transmission of infection from I to S, which defines 

the iHHIN (Supplementary Fig. S18). 

Thus, we simulated the German community Gangelt (G) and the Israeli community Zikhron Ya’akov 

(ZY) to analyze the dynamic networks and to find community-specific differences in the baseline 

scenario without NPIs (Fig. 2). The two communities have different demographics (e.g. more children 

in ZY), a different geography and composition of locations (e.g. more schools in ZY, Fig. 2a), and while 

the average household size in Germany is 1,9 it is 3,2 in Israel. 

The HHIN and iHHIN are age- and occupation dependent. The distribution of interactions per 

occupation reveals that underaged in general have more interactions than others, even than public 

workers (Fig. 2b). Comparing G and ZY, we find more small clusters in G and a (slightly) stronger 

accumulation around a value of two interactions per hour in ZY (note that 2 per hour is the chosen 

value of the global interaction rate). Figure 2c provides interaction and infection patterns for a 

homogeneous mixing scenario as comparison to appreciate of the location- and demographics-based 

effects.  

Analysis of age-specific interaction patterns reveals strong interactions within households, indicated 

by the relative strength of interactions within and between adjacent age cohorts (partnerships) and 

parent-child related age-cohorts (Fig. 2d and e, center and off-center diagonals). Underaged 

individuals, as well as the working population, show stronger interactions with members of the same 

group, as apparent from rectangular interaction patterns representing schools and workplaces. This 

resembles real-world interaction patterns8,38, but strongly differs from predictions for homogeneous 

mixing assumptions with same age distribution (Fig. 2c, Supplementary material). Fig 2f highlights the 

differences between G and ZH indicating that both working adults and children have more contacts in 

G. The latter is due to the fact that G has only two schools, thus a higher number of students per school 

than ZY.  

The infection transmission in the baseline scenario reflects the interaction patterns yielding high 

infection transmission numbers within households and within the group of underaged, medium 

infection transmission between working adults and lower infection rates among pensioners, when 

sorted by age (Fig. 2g,h). This holds in general for both communities. In contrast, the infection patterns 

(like the interactions) in homogeneous mixing are solely determined by the prevalence of different 

age-cohorts and not by social structure (Fig. 2c). Fig 2i elucidates that infection transmission among 



 

 

underaged but also between underaged and their parents is clearly stronger in ZH than G, which can 

be explained by the higher proportion of underaged individuals in the Israeli demographic structure.  

Sorting infections according to occupation uncovers that underaged most likely infect other underaged 

and adults, while adults predominantly emit to other adults, and pensioners mostly infect each other. 

However, public workers emit towards other public workers and pensioners and, hence, create an 

infection hub between the groups (Fig. 2j for Gangelt). Fig. 2k shows that in ZY compared to G the 

larger ratio of underaged makes underaged more likely as receiver of an infection, except for medical 

personnel as emitter due to the lower likelihood of hospital admission for the underaged.  

We also find that underaged are clearly overrepresented as emitters, followed by adults, while 

pensioners are underrepresented. Public workers are slightly underrepresented as emitters, while 

teachers and medical professionals belong to the average. These interaction and infection patterns 

can change significantly when NPIs are applied (Supplementary material, section 4.5). 

The stochasticity within the iHHIN can be recognized from the impact of an individual infection event, 

which may either not give rise to further infection events or further grow the network. We observed 

that 70% of infections originate from only 20% of the infected population and that 70% of infected do 

not spread the infection further. The iHHNI exhibits emergent patterns, which help to understand 

infection spread and provide a basis to efficiently interrupt infection transmission, as discussed below. 

 

 

Fig. 2: Geolocation and demographics alter the interaction networks and the routes of SARS-CoV-2 spreading, 

exemplified for Gangelt (DE) and Zikhron Ya’akov (IL). Simulations of Gangelt (G, N=10.296 agents) and Zikhron 

Ya’akov (ZY, N=17.764 agents) predict different spread of infections despite similar initial conditions and 

parameters, because both differ w.r.t. demographics and number/types of geolocations. a, Distribution of 

building types (excluding homes for visibility) and of age groups in G and ZY. b, Distribution of average hourly 



 

 

interactions for different population groups. Unique interactions are given in Supplementary Figure S29. c, 

Results of a homogenous mixing model (neglecting daily routines) for comparison of total and unique 

interactions and interaction and infection patterns between age cohorts (demographics correspond to Gangelt). 

d, e, f, Patterns of average daily interactions for d G and e ZY between age groups exhibiting superposition 

between intra-household interactions (diagonal patterns) and location type specific interactions (square 

patterns) f, The difference between d and e reflects the increased interactions of children in ZY g, h, i, Patterns 

of daily infections between age groups per 10.000 individuals for the baseline scenario in g G and h ZY displaying 

a strong contribution of intra- household infections. i Difference between g and h showing the shift of infections 

towards younger cohorts in ZY. j, k, Likelihoods to transmit the infection from emitters to receivers sorted by 

occupation for j G and k the difference between G and ZY. UA - Underaged, AD - adults (age groups 20-65 

excluding PW, MP, and TE), PW - public workers, MP - medical professionals, TE - teachers, PE - pensioners. 

Parameter values: infectivity kI = 0.3, interaction frequency μ = 2. 

 

Outcomes from interventions can be like flipping a coin 

We hypothesized that the stochastic nature of infections and non-linearity that pursues may create 

basins of attractions or attractor states that are highly context dependent. This would mean that even 

with identical initial conditions the same community may with a certain likelihood end up with 

opposite outcomes following NPIs. 

This possibility is perhaps best illustrated in the case of airliners: The NPIs on most flights are identical 

(negative tests, masks, distributed seating, air filtering etc). As a result ,most flights neither contribute 

significantly to new outbreaks nor see significant transmission onboard -- but not all flights. There are 

several spectacular known incidents where due to the stochastic nature of who sits next to whom and 

even within the controlled environment of an airliner major transmission networks emerge as a result 

of the flight35. This unique phenomenon in a complex system is known as bimodality36 and the 

corresponding distributions are poorly characterized by traditional statistical metrics such as mean and 

variance 37. 

Our model predicts bimodality in multiple situations: For example, a strict lockdown with reopening 

after a given period T can lead to either termination of an ongoing outbreak or - the opposite - a 

subsequent wave of infection within a certain window of T (Fig. 1j). Likewise, selective reopening of 

either schools, public or workplaces after lockdown can result in bimodal behavior of the system (Fig. 

1j and Supplementary Fig. S12-S15 for variation of reopening time points). Also, the dynamics after 

introduction of a few initial infections can either cease or lead to an outbreak (Supplementary Fig. 

S17). The bimodality, however, also implies that early lifting of NPIs does not necessarily lead to a 

second outbreak, which can be observed across the different simulated communities (Supplementary 

Fig. 12). Bimodality demonstrates that effective NPIs require strict execution (stringency) and careful 

temporal control (timing), because the likelihood of a following wave decreases with increasing length 

of the lockdown. Thus, even in an ideal situation with 100% covering sentinel and surveillance data 

available in real-time it would not be possible to predict the optimal strategy without a model that 

captures both stochasticity and non-linearity of the transmission network. Moreover, this challenge 

may scale differently across communities with, e.g. different numbers of inhabitants and social 

structure (Supplementary Fig. S31). Therefore, community and location-specificity of the 

epidemiological model deployed is essential for accurate prediction of adaptive and optimal strategies. 

 



 

 

Quantifying the effect of targeted immunization strategies 

Hitherto, NPIs alone have not been sufficient to stop the COVID-19 pandemic. We hypothesize that 

this, at least partially, may be due to the observed bimodality and community-specificity. Therefore, 

we set out to determine how strategic targeting of vaccination may be required to reach population 

immunity. 

Given that effective vaccines are now available, but not for everybody at the same time, we can use 

the model that has been trained for different communities and for different NPI scenarios to analyze 

the effect of pharmaceutical interventions. To this end, it is critical to define which specific objective 

applies when searching for optimal targeted immunization strategies for its communities39. Here, we 

analyze four alternatives: (i) minimize the number of fatalities, (ii) reduce the number of infections 

(attack rate), (iii) reduce the number of hospitalizations or individuals requiring intensive-care 

treatment to prevent a collapse of the health system, (iv) robustness to future outbreaks. 

We simulated seven vaccination strategies (Fig. 3, Supplementary Figure S25-S27), where individuals 

were either sorted by descending age, by descending interaction frequency, according to their 

infection time in previous unaltered simulations (forecasted) or not sorted at all (random). 

Additionally, we defined a combined strategy, where individuals above age 60 were prioritized and the 

rest were chosen from the most interactive individuals. The strategies were compared with respect to 

the attack rate (ratio of infected individuals to all, Fig. 3a, the proportion of fatalities (Fig. 3b), the 

likelihood of an emerging infection wave, which also provides a measure for the robustness of strategy 

against infection waves (Fig. 3c), and the maximum number of individuals simultaneously requiring an 

ICU (Fig. 3d) for different fractions of vaccinated individuals. Here, we discuss this for an infectivity of 

0.15, corresponding to an R0-value of 2.7, which is in the reported range of 2.3 - 3.4 for Germany; 

variation of R0-values would modify the quantitative, but not the qualitative outcomes 

(Supplementary Figure S26).   

For high vaccination levels (here more than about 60% of the population is immunized), the strategy 

to vaccinate the most interactive individuals first is most effective for all four objectives. For lower 

vaccination levels, we identify a clear tradeoff between different strategies depending on the 

objective, i.e. attenuation of the infection wave, preventing fatalities, or avoiding ICU overload. Aiming 

for a reduced number of infections, it is most effective to prioritize the most interactive individuals, as 

it reduces the probability for an emerging infection wave and, thus, increases systemic robustness. It 

outperforms vaccination by forecasting of infected individuals in a pre-simulated baseline scenario. 

Random vaccination underperforms compared to the other two strategies, in agreement with7,40, but 

outperforms sorted-by-age vaccination. While most strategies reduce the fraction of infection down 

to zero at 90% vaccination or lower, this is not achieved by age-sorted vaccination. The reason is that 

young individuals always keep interacting, leading to high connectivity among the remaining 

susceptibles. In general individuals of the same cohort form sub-networks that remain unperturbed by 

vaccination of other individuals who do not belong to that same age group. 

To reduce fatalities, the age-sorted strategy is very effective at low vaccination levels and is only 

outperformed by the “combined” strategy (Supplementary Fig. 24). However, for the high vaccination 

levels at which other strategies display population immunity, those strategies surpass both strategies, 

vaccination by age (first the interactives, then the forecasted and random strategies), since this 

strategy is not able to suppress deaths completely before 100% population immunity is reached. The 

“combined” strategy integrates the two strategies that either best reduce infections (i.e. by 

interaction) or death toll (by age), however it outperforms neither. 



 

 

The simulations also clearly reveal a problem of strategies that focus on vaccination only (Fig. 3d): with 

the objective to reduce the occupancy of ICUs, vaccination by age (or the combined strategy) performs 

best at less than ∼40% but vaccination by interactivity is best above this level. However, below ∼50% 

vaccination, none of these strategies is able to prevent overload of ICU capacity, without additional 

NPIs. Importantly, our model has not implicitly included an increased death rate if ICUs are overloaded. 

Hence, the death toll would be even higher than predicted if ICU demands cannot be met. While the 

ICU capacities may vary in different locations, the problem remains that ICU demand and capacity 

differ widely for all strategies at stages of partial vaccination. This implies NPIs remain to be considered 

to accompany the vaccination process in order to prevent the collapse of the healthcare system. 

For the random strategy the attack rate approaches zero and the likelihood for a subsequent infection 

wave is halved at the herd (population) immunity threshold (HIT) calculated for the corresponding  R0, 

showing that our approach is comparable to the established methods41 for random vaccination and 

that different vaccination strategies can drastically alter the outcome. 

In summary, as long as we cannot ensure vaccination of about 60% of the population, it is not possible 

to serve all objectives to reduce deaths, ICU demand and infection levels at the same time equally well 

with vaccinations only. Above this value, vaccination of individuals sorted by their interactivity shows 

to be most successful for all three objectives. 

 

 

Fig. 3: Vaccination strategies alter attack rate, population immunity threshold, death toll and burden on the 

health care system. Compared vaccination strategies are: random - individuals are selected randomly, forecasted 

- individuals are selected according to their infection order in a previous simulation, interaction - individuals are 

selected by descending interaction frequency, age - individuals are selected by descending age, and combined - 

individuals are first selected by descending age (>60), the rest was ordered by their interaction frequency. a-d 

Impact of a newly introduced infection on a partially immunized population (10%-90%): a fraction of the 

population selected by the named criteria was set to be immunized, then four new infections were introduced. 

Population effect: a, Attack rate, b, Fraction of simulation runs, which exhibited an infection wave (l> 80 

subsequent infections) after the vaccination. For comparison, triangles indicate the population immunity 

threshold calculated from the estimated R0 of 2.71 for the chosen infectivity of 0.15, which coincides with our 

random strategy. c, Death toll: fraction of deceased relative to susceptible at start, d, Burden on health care 



 

 

system: Maximum number of individuals simultaneously requiring an ICU treatment. The black line indicates the 

capacity of ICU beds (assuming the German number of roughly 30.000 per 82 million inhabitants). a, c, d). Lines 

and shaded areas represent mean values and confidence intervals, respectively (CI=95%, N=100). e-g: Effect of 

roll out rate on e attack rate, f death toll, and g population immunity, assuming immunization starts 

concomitantly with introduction of infections. Average European roll out speed (dashed line) and min max range 

(shaded area) from 01/02/2021 to 20/06/2021. h-j: Onset of immunization: Effect of shift between introduction 

of infection and start of immunization at 1%/day on h attack rate, i death toll and j population immunity for the 

strategy random. All simulations are based on the German municipality Gangelt with 10.351 agents. Parameter 

values: infectivity kI = 0.15, interaction frequency μ = 2. 

 

We observe bimodality also for vaccination, i.e. systematic vaccination of the population can lead to 

either termination or recurrence of outbreaks with a certain likelihood - depending on strategy in the 

range of between 60% and 90% people vaccinated (Fig. 3b). This means that in these ranges it depends 

essentially on luck whether a community will experience another wave. During these “windows” - 

either periods of time or sets of NPIs or ratios of vaccinated individuals - , decision makers have to 

adapt and (i) use precision simulations to see whether a community is in such a window or if the 

situation is controlled, and (ii) combine vaccinations with NPIs in order to at the same time keep the 

outbreak down and ease the conditions for the population by preventing unnecessary lockdowns or 

school closures. 

As a result, there is not a single number for a vaccination percentage <100% ensuring population 

immunity. Instead, this number depends entirely on the chosen strategy. Importantly, it also depends 

both on the heterogeneity of the population and on the specific virus, its virulence and infectiousness. 

In particular, lower infectivity will decrease the required vaccination coverage to achieve population 

immunity (Supplementary Fig. 25). Note that the attack rate and the population immunity threshold 

(Fig. 3a) are different concepts, which was also shown for SARS-CoV-2 spreading in Brazil,  where >70% 

of a population has been infected during an uncontrolled outbreak, a fraction above the reported 

theoretical population immunity threshold of below 66% for R0 < 3 29. Our model predicts that 

depending on the vaccination strategy, the attack rate can be smaller or even larger than the 

population immunity threshold.  

Since vaccination is not mandatory in most countries, high levels of vaccination of the population can 

only be reached if people comply. Lack of commitment of the population would be partially 

comparable to lack of compliance to NPIs (Fig. 1k): if 25% of the population refuse vaccination 

(irrespective of the reason), the effects are similar to non-sufficient dose numbers with the same 

strategy-dependent effects on infection spreading, ICU overload, or fatalities. 

 

 

 



 

 

 

Fig. 4: Comparing adaptive interventions with real-world epidemiological data. Simulations demonstrate the 

combination of NPIs and vaccinations as well as the predictive power of the model reproducing the infection 

dynamics in Gangelt from 01/15/2021 to 05/15/2021 in comparison to data from the enclosing district Heinsberg 

and all of Germany. Simulations started with 117 infected individuals (corresponding to the incidence numbers 

on 01/15/2021) and drastically reduced contacts (by 75% at public places, by 75% at schools, and by 40% at 

workplaces) representing the applied NPI (lockdown). The increase in prevalence of the 𝛽-variant from 10% to 

90% during that period was modeled by a linearly increasing infectivity until day 75, assuming a 50% higher 

infectivity of the 𝛽-variant. To reflect vaccination individuals were immunized by decreasing age (0.25% per day 

starting with the oldest). a Simulated daily new cases of (diagnosed) individuals, exhibiting bimodality by showing 

either a new infection wave (blue; mean +/- standard deviation; next wave here for 54 out of 96 simulations) or 

extinction of infection (black, mean +/- SD, 42 out of 96 simulations) after the initial decline in cases. b/c 

Comparison of the (non-extinct) simulations from a to data for Heinsberg (b) or Germany (c) (red dots: 4-day-

sliding window per 10000 inhabitants). Green line indicates the fraction of immunized individuals. d Comparison 

of calculated (blue, mean +/- SD) and reported R-values (gray line) for Germany, exhibiting weekly oscillations. 

Red line indicates the development of simulated infectivity. e/f Tests of the effect of e immunization and f 

contact limitations on the epidemic progress still exhibited bimodal outcomes. Simulations without vaccination 

(e) show infection waves in 50 out of 96 cases and simulations with lifted NPI (f) in 66 cases of 96, respectively. 

g Comparison of simulated spread of detected new cases and fatalities within age cohorts with data obtained for 

the Heinsberg. Parameter values: infectivity kI = 0.065, interaction frequency μ = 2. 

 

Reaching and maintaining population immunity requires adaptive combinations of NPIs and 

vaccination strategies 



 

 

To demonstrate the capabilities of the model in the light of real-world data, we compared the 

simulated course of infection between early January 2021 and end of May 2021 in the municipality 

Gangelt to data from the enclosing district Heinsberg and Germany (Fig. 4). Here, we considered (i) 

the incidence value in the area in early January 2021 according to RKI data, (ii) the appearance of the 

𝛽(UK)-variant and its roughly linear relative increase in the infected population, and (iii) the increasing 

immunization rate (2nd vaccine dose) in Germany. We modelled vaccination according to age as 

described above since this best matches the situation in Germany during that period. Under these 

conditions, the simulations again exhibit bimodality (subsiding infections in about 40% of the 

simulations, a new wave of infections in April in the other simulations). The dynamics of the five-day 

rolling average of reported daily new cases (Fig. 4 b, c) matches the rolling average of the simulated 

newly diagnosed individuals and the relative occurrence in different age cohorts (Fig. 4g) in simulations 

showing a new infection wave. Moreover, even the value, tendency, and weekly oscillation of the 

derived R-value (Fig. 4d) are in agreement with the reported estimates for R, too. 

Note that a few aspects not considered here can have influence on the real-world trajectory. The 

assumed roll-out strategy age is an idealized version of the strategy applied in Germany, leading to 

strong reduction of infections in the cohorts 60+. Data show that also vulnerable individuals of other 

age groups and health care persons were vaccinated. Consequently, we obtained an underestimation 

of the death numbers since the 60+ cohort has a significantly increased fatality rate. This, in turn, 

demonstrates the effectiveness of age strategy to reduce fatalities. Furthermore, fatalities occurred in 

the data during the simulated period (Fig. 4g) may also be the consequence of prior infection events 

and thus not captured by the simulation. 

The increasing rate of testing, the potential seasonal dynamics of the virus42, and the exchange of 

infected individuals with other communities may also play a role. Since no extinction of local infection 

waves was observed in the various German districts in this period (no systematic data for individual 

municipalities), exchange of infected individuals may have stabilized the infection wave.  

Using the model with infectivity adjusted to the real course of infection in the period Jan-May 2021, 

we show the effect of individual NPI by not including either vaccination (Fig 4 e) or NPIs (Fig 4f). It is 

obvious that both NPI and increasing numbers of vaccinations were relevant in keeping the infection 

wave under control, where lifting of NPI had a stronger effect in the considered period.  

 

Discussion 

Vaccination of the human population against COVID-19 is an immense logistical challenge that 

necessitates careful prioritization in order to swiftly reach maximal suppression of the disease and also 

save lives43. Limits on production and distribution renders it absolutely necessary to prioritize and 

structure the vaccine deployment39,44,45. The European Commission concluded that “the successful 

deployment and a sufficient uptake of such vaccines is equally important” rendering it critical to be 

able to “monitor the performance of the vaccination strategies”46. Thus, the challenge for the scientific 

community is  to develop platforms that can provide precise, context specific and adaptive predictions 

of the quantitative effect and requirements of such strategies in close to real-time. Here, we have 

responded to this challenge by developing a data-driven geospatial, temporal, network-based model 

of integrated individual human behavior. This made it possible to quantify non-linear effects of NPIs 

and compare the impact of targeted immunization strategies. Remarkably, the heterogeneous model 

offers insight into the bimodal behavior of SARS-CoV-2 infection dynamics and demonstrates that 



 

 

effective interventions require strict execution (stringency) and careful temporal control (timing). We 

demonstrate that COVID-19 infection networks (iHHIN) are sparse and small compared to the overall 

population interaction network (HHIN). Therefore, models based on homogenous mixing or averaging 

statistical models are likely to be of limited use23,24 especially during phases of low to moderate 

infection or emergence of new variants, since they fail to capture heterogeneity,  nonlinearity, and 

complexity emerging from stochastic and sparse events influenced by individual human behavior 15–

17,47.  

Our work shows there is a tradeoff between different strategies for low levels of vaccination: 

vaccination by age minimizes fatalities, while vaccination by interactivity reduces infection events. 

However, at high vaccination coverage, vaccination by interaction prevails. It is important to note that 

the vaccination level giving rise to population immunity is not a unique number but depends on the 

chosen vaccination strategy. These conclusions depend on the demographic structure and the 

heterogeneity in the interactions and it can be assumed that the stronger the heterogeneity the better 

vaccination by interaction will perform. 

Targeted immunization “into” an ongoing outbreak may become relevant as we enter the fall of 2021. 

This approach likely performs differently to other strategies, since infection spreading might already 

reach the vulnerable subgroups and spread further in these sub-networks. Vaccination of the 

population is a process in time, especially in the global context. But locally, significant vaccination 

coverage may be achieved fast in some countries or regions. The optimal vaccination strategy depends 

on the supply of vaccines, the demographic structure, local behavioral costumes, and the capacity to 

realize a specific strategy. In future, forecasting of the effect of vaccination shall be combined with 

prior simulation of the ongoing surge of infections and the effect of hitherto applied NPIs to precisely 

model the situation in specific communities at the time when vaccines become available. 

We propose that our work suggests that in order to reach a post-Covid world, communities and 

governments world-wide will have to deploy adaptive and real-time based simulation support for 

decision making. This is the only path that can ensure continued education, economic and research 

activity, healthcare and other society functions during new outbreaks by minimizing the catastrophic 

socio-economic impact of lockdowns, travel bans, and civil non-compliance. To fully achieve this, new 

paradigms for modeling of infection networks that capture the nonlinear complexity and stochasticity 

will be important, beyond what we have demonstrated here. 

 

Online Methods 

The detailed concept of geospatial demographic heterogeneous agent-based model, the estimation of 

parameters for the stochastic transitions between states, and additional simulation results are 

represented in the Supplementary materials.  

 

Model Design - Locations, Agents, Health states 

To reduce complexity of the HHIN, each human individual (agent) is associated with a specific physical 

location at each time point. These locations are specific for the community such as homes, workplaces, 

schools, hospitals, and public places48 (Fig. 1b). Since transmissions outdoors or in public transport are 

of less importance49, these places are not explicitly included, although movement between locations 

is included. The entire population is initialized with demographic census data resulting in 

representative age distributions and household compositions. An individual is defined by its household 



 

 

membership, age, weekly schedule, and health status. The weekly schedule (hourly resolution, 

discriminating between weekdays and weekends) specifies the individual’s presence in different 

locations (Fig. 1c-e). Schedules change with health states and with NPIs. The health states for 

individuals are defined as: susceptible (S), infected (I), recovered (R) or deceased (D). Infected 

individuals (I) can obtain sub-states specifying their condition as pre- or asymptomatic (plain I), 

diagnosed (Id), hospitalized (Id
H), or being in an ICU (Id

ICU) (Fig. 1f).  

 

Model Dynamics - HHIN and Infection Transmission 

When two agents are present at the same location at the same hour (co-location network), they can 

interact with a probability that depends on the number of present agents and the parameter 

interactivity µ, which yields the human-human interaction network (HHIN). If two agents interact and 

one of them is infected and the other one susceptible, then the infection can be transmitted with a 

probability that depends on the time-dependent infectiousness of the emitter and on the parameter 

infectivity kI (tunable according to NPI such as mask wearing or distance keeping), establishing the 

iHHIN. 

 

Data Integration and Model Initialization 

All data are taken from publicly available databases32,33 (Figure 5). As a basis, we considered location 

information and information about agents. Model initialization ensures that we simulate the dynamics 

in a community with a number of agents that is about the same as the number of inhabitants of that 

community, representing the statistical information w.r.t. to age, household composition, and 

occupations. For the infection process, we integrated information from the German Robert Koch 

Institute (RKI) factsheets50,51 and from recent publications31,34 to derive hourly conditional probabilities 

for transitions between the health states. The model has only two parameters that can be freely 

chosen or adjusted to observations, i.e. the infectivity kI and the global interaction frequency μ. 

(Detailed description see Supplementary Material). 

 

 



 

 

Fig. 5: Data flow-diagram. The data required to simulate a community includes geospatial information about 

types and position of locations such as homes, workplaces, schools, public places and hospitals. Demographic 

data is used to derive attributes of the agents such as household affiliation, age and schedule. Both data types 

together are used to initialize the model (world init). Information about the outbreak is used to collect health 

state transition probabilities (cumulative probabilities for transitions, e.g. from being diagnosed to getting 

hospitalized). The cumulative probabilities are transformed with Gaussian probability mass function into age-

dependent, time-dependent conditional probabilities for the respective transition (e.g. the likelihood of an agent 

belonging to a specific age group getting into hospital at a specific hour after being diagnosed if that agent has 

not already recovered or got hospitalized before). From the outbreak data, we also derived the time-dependent 

infectiousness Ia(t) of infected agents (in short, it peaks on day 2 after infection before symptoms onset on day 

3) with hourly resolution. The model has two global parameters that can be varied and adjusted to data, i.e. the 

infectivity kI and the global interaction frequency μ. μ determines how likely it is that two agents being at the 

same location at the same time interact. If they interact, the product of the agent-specific Ia(t) and the global kI 

determine infection transmission. 

 

Model Simulation 

During simulations, individuals move between locations according to their schedules in an hourly 

resolution. The individuals’ presence at locations, interactions with other individuals, health states, 

and infection transmissions are recorded at each time step. This makes the stochastic HHIN and iHHIN 

traceable and amenable to theoretical analysis and implementation of different interventions such as 

(time or location-specific) lockdowns and vaccination. In order to evaluate the effect of NPI and 

vaccinations, we simulated a baseline scenario representing an uncontrolled outbreak (Fig. 1g,h). The 

history of infection events defines the basic reproduction number (R-value), and is, thus, an emergent 

property of our model (Fig. 1i). To implement NPIs, we modify the schedules (e.g. stay at home instead 

of visits to the workplace or public places during lockdown) (Fig. 1j), which alters the course of 

infection. Also the level of compliance in the population with interventions influences their effect, e.g. 

on infection numbers in a manner consistent with reality (Fig. 1k, Supplementary Fig. 10). Importantly, 

simulations of specific interventions reveal bimodality, i.e. lead to qualitatively different outcomes for 

repeated simulations with identical initial conditions (the infection ceases in some simulations, while 

generating a strong second wave in others, Fig. 1l).   

 

Code Availability:  The code is available at our GitLab repository (https://tbp-klipp.science/GERDA-

model/) which also contains a manual for the application of the method to other municipalities 

including the required types of data. 
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