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Abstract: We tackle the problem of building adaptive estimation proce-
dures for ill-posed inverse problems. For general regularization methods
depending on tuning parameters, we construct a penalized method that se-
lects the optimal smoothing sequence without prior knowledge of the regu-
larity of the function to be estimated. We provide for such estimators oracle
inequalities and optimal rates of convergence. This penalized approach is
applied to Tikhonov regularization and to regularization by projection.
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Introduction

We are interested in recovering an unobservable signal x0 based on observations

y(ti) = Tx0(ti) + εi, (1)

where T : X → Y is a known compact linear operator between Hilbert spaces
X, Y . We cannot observe our target function x0 directly, but rather through
a blurred (by the linear filter T ), noise corrupted sample of y over a collection
of discrete observation points ti, i = 1, . . . , n. Throughout the paper, we shall
denote y = (y(ti))

n
i=1.

We assume that the observations y(ti) ∈ R and that the observation noise εi

are i.i.d. realizations of a certain random variable ε.
We will say the problem is ill-posed if the generalized inverse operator T+ :

Y → X defined by (T ∗T )−1T , where T ∗ stands for the transpose operator, is
unbounded. We In this case, this inverse operator needs to be, in some sense,
regularized.

Regularization methods replace an ill-posed problem by a family of well-posed
problems. Their solution, called regularized solutions, are used as approxima-
tions of the desired solution of the inverse problem. These methods always in-
volve some parameter measuring the closeness of the regularized and the original
(unregularized) inverse problem. Rules (and algorithms) for the choice of these
regularization parameters as well as convergence properties of the regularized
solutions are central points in the theory of these methods.

The statistical problem has been extensively studied, although in general
efficient regularization-parameter choice is still under active research. Two main
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kinds of estimators have been considered in the literature. First regularized
estimators such as Tikhonov type estimators, and second non linear thresholded
estimators. The first approach has been studied in great detail. An interesting
early survey of this topics are provided in [20, 19]. In this setting, the main
issues are, what kind of regularization functional should be considered, and,
closely related, what the relative weight of the selected regularization functional
should be. More recently, Mair and Ruymgaart in [18] or Bissantz et al. in [3]
studied different regularized inverse problems and proved the optimality of the
rate of convergence for their estimators assuming the regularity of the target
function x0 to be known. Special attention has been devoted in this setting when
considering a Singular value decomposition (SVD) of operator T . We cite the
recent work in this direction in [7, 6]. The second approach has its most popular
version in the wavelet-vaguelet decomposition introduced in [9]. In this case the
main issue is finding an appropriate basis over which T+, the generalized inverse,
is almost diagonal. This idea is further developed in [12] who introduce mirror
wavelets. Closely related, Cohen et al. in [8] construct an adaptive thresholded
estimator based on Galerkin’s method. We also cite the recent work in [14],
where they combine an SVD approach with a thresholding technique over a
certain new basis.

Reconstructing the unknown target function x0 is related to four issues. To
the filter T , to the probabilistic structure of the noise, to the fact we are only
observing T (x0) over a finite observation scheme and finally to the regularity of
x0. In order to unify notation, our assumptions will be presented in terms of an
underlying basis of Y , {ψj}j∈N, and the increasing sequence of approximating
spaces Ym :=< ψj >j∈dm

. The ill-posedness of T will then be defined in terms
of these subspaces Ym and the discrete observation scheme. As is usual in the
numerical literature, the regularity of x0 will be defined in terms of operator T
(for a detailed discussion see [11] or [13]).

Our goal in this article is to develop algorithms providing estimators of x0

that achieve optimal rates of convergence within the regularization method when
the smoothness of the true solution is not known a priori. For this, we focus on
model selection techniques for regularization procedures. As in the work of [5],
[15] or [16], we choose the best regularization scheme among a set of regular-
ization operators by minimizing a contrast and a well chosen penalty. Since the
choice of a penalty is crucial, we provide a very general way of calibrating the
penalty with respect to the regularization operators. This enables us to build
optimal estimators, within the chosen regularization method, for inverse prob-
lems for two general classes of estimators, Tikhonov estimators and projection
estimators.

The article is divided into four main parts. In Section 1 we describe the
general framework and provide several assumptions. In Section 2 we build a
general penalty which leads to an oracle inequality for regularization operators
and shows optimality of the adaptive procedures. In Section 3 we apply the above
results to Tikhonov regularization operators and projection operators. Section
4 is devoted to technical lemmas providing deviation bounds which are used in
order to obtain non asymptotic bounds for the quadratic risk of our estimator.
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1. Model description and general assumptions

In this section we introduce our general notation and assumptions.
We want to estimate a function x0 : R → R based on the blurred and noisy

observations
y(ti) = Tx0(ti) + εi, : i = 1, . . . , n.

It is important to stress that the observations depend on a fixed design (t1,
. . . , tn) ∈ Rn. This will require introducing an empirical norm based on this
design. Let Qn be the empirical measure of the co-variables Qn = 1

n

∑n
i=1 δti

,
where δ is the Dirac function. The L2(Qn)-norm of a function y ∈ Y is then
given by

‖y‖n =

(
∫

y2dQn

)1/2

,

and the empirical scalar product by < y, ε >n=
1

n

n
∑

i=1

εiy(ti). Remark that this

empirical norm is defined over the observation space Y . Over the solution space
X we will consider the norm given by the Hilbert space structure. For sake
of simplicity, we will write ‖.‖X = ‖.‖ when no confusion is possible. Over a
finite dimensional space, the norm ‖.‖ will always stand for the Euclidean norm
and if v ∈ Rd, vt will stand for the transpose vector. Likewise for any matrix
A ∈ Rd×r , At will stand for the transpose matrix and A+ := (AtA)−1At for the
generalized inverse. Considered as an operator, we will write A∗ for the adjoint
of the corresponding operator.

We also introduce certain standard assumptions on the observation noise

AN moment condition for the errors
ε is a centered random variable satisfying the moment condition E(|ε|q/σq) ≤
q!/2 for all q ≥ 1, with E(ε2) = σ2.

As usual in statistics, assume that X satisfies a certain smoothness condition.
In this paper, we assume the following source assumption encountered typically
in the inverse problems literature.

SC source condition
There exists ν > 0 such that x0 ∈ Range((T ∗T )ν) := R((T ∗T )ν)

Moreover consider

Aν,ρ = {x ∈ X, x = (T ∗T )νω, ‖ω‖ 6 ρ}

where 0 6 ν 6 ν0, ν0 > 0 and use the further notation

Aν =
⋃

ρ>0

Aν,ρ = R((T ∗T )ν) (2)

These sets are usually called source sets, x ∈ Aν is said to have a source
representation.



J.-M. Loubes and C. Ludeña/Adaptive complexity regularization 664

Remark 1.1. Such condition is usual in analysis of inverse problems (see [11]).
It links the decay of the eigenvalues of the operator with the decay of the
coefficients of the decomposition of the function in the SVD basis. Thus, the
parameter ν can be seen as a smoothness parameter providing a restriction over
the regularity of the function to be recovered. Indeed, let (λj, φj, ϕj)j>1 be the
singular value decomposition of the operator T , in the sense that the following
decomposition holds

T ∗Tx =

∞
∑

j=1

λ2
j < x, φj > φj.

Hence, x0 ∈ Aν if and only if

∑

j>1

| < x0, φj > |2
λ2+4ν

j

< +∞.

The parameter ν is not known a priori, hence adaptation results will be provided
with respect to this smoothness parameter.

Estimating over all X is in general not possible because we can only observe
Tx0 over the fixed design (t1, . . . , tn). Thus we assume that we are equipped with
a sequence of nested linear subspaces whose union is dense in Y , Y1 ⊂ Y2 . . . ⊂
Ym . . . ⊂ Y . We assume dim(Ym) = dm. We are interested in a subcollection of
these spaces generated by a set of indices Mn. In this paper, we will use these
approximation spaces as projection spaces in order to study the data. So, denote
the projection of any space W over any subspace Z by ΠZW . Let Πn

Ym
stands

for the projection in the empirical norm. Set also the corresponding projected
operator Tm = Πn

Ym
T .

Using a sieve of the space Y , we consider the corresponding approximation
spaces in the space X, defined as Xm = T ∗

mY . By construction

ΠXm
= (Πn

Ym
T )+Πn

Ym
T.

We point out that both Tm and its adjoint operator T ∗
m depend on the observa-

tion sequence ti. However, we will usually drop this fact from the notation. To
illustrate this assertion, consider the following example.

Example 1.1. if Ym is generated by some orthonormal basis φ = (φ1, . . . , φdm
),

with respect to the L2 norm over Y , and T = Id, then

Πn
Ym
y =

dm
∑

j=1

yj,nφj,

where yj,n =< Πn
Ym
y, φj >n are the solution to the projection problem under

the empirical measure Qn. Set Gm = (φj(ti))i,j, i = 1, . . . , n and j = 1, . . . , dm.
Thus, we may write in matrix notation

Πn
Ym

y = (Gt
mGm)−1Gt

m(y(t1), . . . , y(tn)).
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An important issue is that, as above, we can always define Tm in matrix
notation and thus T t

my always makes sense. Moreover, if u ∈ Y , we will use
indistinctly T t

mu ∈ Rdm and T ∗
mu ∈ Xm, the latter in operator notation.

Now, define p the degree of ill-posedness of the forward operator T . In our
case we will relate this parameter to the approximation properties of the spaces
Ym, i.e with the projection operator Πn

Ym
as follows.

IP ill-posedness of the operator Let Mn be an index set. For m ∈ Mn

there exists a parameter p > 0 such that

γ(m) := ‖(I − Πn
Ym

)T‖ = O(d−p
m ).

p is denoted the index of ill-posedness of the forward operator. In the
following, this parameter is supposed to be known.

To illustrate this condition we include the following example

Example 1.2. The above assumption can be seen to hold under certain condi-
tions over operator T and matrix Gm defined in example (1.1). Let (λj , φj, ϕj)j

be the singular value decomposition of the forward operator T and assume that
there exists p > 0 such that λj = O(j−p). This parameter is in the statistical
literature often considered as an index of ill-posedness, since the difficulty of
the estimation in inverse problem usually comes from the difficulty to invert the
operator due to the decrease of its eigenvalues. But, if we let Ym be the linear
subspace generated by {ϕj}1≤j≤dm

, then assume that the fixed observation de-
sign ti, i = 1, . . . , n is such that this basis is also orthogonal in the empirical
norm. Assume also that supj=1,...,dm

‖ϕj‖∞ <∞. Then,

I − Πn
Ym

= I − ΠYm
+ Πn

Ym
(I − ΠYm

),

where
‖I − ΠYm

‖ = O(d−p
m )

and

‖Πn
Ym

(I − ΠYm
)u‖ =‖Πn

Ym
(I − ΠYm

)u‖n

≤‖(I − ΠYm
)u‖n ≤ sup

j=1,...,jm

‖ϕj‖∞‖(I − ΠYm
)u‖,

leading to the approximation property provided in [IP]. If the forward operator
acts in a smoothing way as integrating p times, for example, the eigenvalues λj

satisfy the required decay rates (see [13]).

Define
νm := ‖T+

mΠn
Ym

‖.
This quantity controls the amplification of the observation error over the solution
space Xm. Consider

γm := inf
v∈Ym,‖v‖=1

‖T ∗
mv‖,
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which expresses the effect of operator T ∗
m over the approximating subspace Ym.

We have as in [13], νm ≥ γm.
On the other hand this term is related to the goodness of the approximation

scheme. Following the proof in [13], it can be seen that

γm+1 ≤ ‖T ∗(I − Πn
Ym

)‖ = ‖(I − Πn
Ym

)T‖.

The next assumption requires that γm and γ(m) are of the same order, which
will be written γm ∼ γ(m).

AS amplification error
We assume

γm = O(d−p
m ). (3)

Moreover assume there exists a positive constant U such that

γ(m)

γm
≤

√
U.

In the estimation procedure, we will first project the data onto a large enough
approximation space indexed by m0, to be selected later in this paper. For this
fixed m0, let (λj , φj, ϕj)j = 1, . . . , dm0

be the singular value decomposition

of operator Tm0
. For any u ∈ Y we can write T ∗

m0
u =

∑dm0

j=1 λjφj < u, ϕj >n,

which depends only on u = (u(x1), . . . , u(xn))t. As previously recall that Gm0
∈

Mdm0
,n is defined by G = (ϕj(xi))j,i, i = 1, . . . , n, j = 1, , dm0

. Thus, abusing

notation we may write T t
m0

= D(Gm0
Gt

m0
)−1Gm0

: Rn → Rdm0 , where D =
D(λj )j=1,...,dm0

is the diagonal matrix with entries λj. Since T t
m0

u = T ∗
m0
u the

latter in operator notation, both interpretations will be used indistinctly. On
the other hand, for x ∈ Xm0

, identified with a dm0
dimensional vector, we can

think of (Tm0
x(t1), . . . , Tm0

x(tn)) = Gt
m0
Dx. So that in matrix notation also

T ∗
m0
Tm0

= D2.
We also introduce the following assumptions

SV There exist positive constants k1 < k2 such that k1j
−p ≤ λj ≤ k2j

−p.
SF Let νj, j = 1, . . . , dm0

be the eigenvalues of matrix GtG, then there exist
constants a1 < a2 such that a1n ≤ νj ≤ a2n.

Remark 1.2.

• Assumption AS thus establishes that the worst amplification of the error
over Xm is roughly equivalent to the best approximation over Ym in the
empirical norm. This yields a uniform bound on the operator TT+

mΠn
Ym

, so
that regularization by T compensates the bad condition of the approxima-
tion T+

mΠn
Ym

to T+ (see [11] or [13] for further comments). Notice T+
mΠn

Ym
T

is just the projection operator over Xm so it is a bounded operator.
• Assumption SV is slightly stronger than AS as it establishes the exact

order of the γm. It is seen to hold, for instance, in example (1.2). Assump-
tion SF is necessary to assure convergence results further on. It holds also
in example (1.2).
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• We point out that the Assumptions are met as soon as the approximation
spaces are constructed as in example (1.2), i.e called truncated SVD where
the spaces are defined as Ym = span{ϕj, j = 1, . . . , dm}, where we recall
that ϕj are eigenfunctions corresponding to the eigenvalues of T ∗T sorted
in decreasing order. Since eigenfunctions are often hard to obtain explic-
itly, for practical purpose we are more interested in the usual piecewise
polynomial projection bases or wavelet bases, though, as in [13].

2. Adaptive choice for regularized estimator

Consider a class of regularized estimators built using a projection and a regu-
larization procedure. Namely let Ym0

be a big enough space in the sense that
m0 is such that

‖(I − ΠXm0
)x0‖ ≤ inf

m∈Mn

[‖(I − ΠXm
)x0‖ +

√

dm

n

1

γm
].

This quantity can be chosen so as not to depend on the unknown regularity of
the solution x0. Under assumption SC the above inequality is satisfied if the
dimension of the set is such that

d2νp
m0

≥ n
2νp

4νp+2p+1 .

Thus it is enough to choose m0 such that dm0
≥ n1/(2p+1).

For Kn a set of indices, consider {R̃k, k ∈ Kn} a collection of regularization
operators which depend on different values of the smoothing parameters. For
instance consider Tikhonov regularization operators which rely on the choice of
a smoothing sequence, Landweber iteration operators which rely on the choice
of a stopping index, or other general smoothing operators described in [10].
Consider the corresponding estimators

x̂k := R̃kΠn
Ym0

y = Rky, (4)

where we have written Rk := R̃kΠn
Ym0

. The behavior of such general estimators

depends on the choice of the regularization sequence. From the theory of inverse
problems, we know that it is possible to choose a regularization operator for
which the corresponding estimator achieves the optimal rate of convergence,
but this choice depends on ν defined in SC, which characterizes the regularity
of the solution.

Our aim is building a method that picks, according to the data, an optimal
Rk, among all the Rk, k ∈ Kn in such a way that optimal rates are maintained.
This choice must also not depend on a priori regularity assumptions. We point
out that selecting the optimal smoothing parameter in a collection of sequences,
belongs to model selection theory since it is equivalent as selecting a good model
among a collection of sets.
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For this consider the following penalized procedure. For a given constant
r > 2 and weights Lk, k ∈ Kn to be chosen, define the penalty as

pen(k) := rσ2(1 + Lk)[Tr(Rt
kRk) + ρ2(Rk)],

where Tr(Rt
kRk) is the trace and ρ(Rt

kRk) = ρ2(Rk) is the spectral radius.

Finally k̂ is selected as the solution of

k̂ := arg min
k∈Kn

{

‖Rk(y − T (x̂k))‖2 + pen(k)
}

, (5)

which defines the estimator x̂k̂ = Rk̂y. Let xk = RkTx0 be the regularized true
function, which measures the accuracy of the estimation procedure without
observation noise. The following result states the asymptotic behaviour of the
estimator x̂k̂.

Theorem 2.1. Assume AN and SF are satisfied. There exists a constant C
which depends on r and on T , such that the following inequality holds true

E‖x̂k̂−x0‖2 ≤ 2‖(I−ΠXm0
)x0‖2+C inf

k∈Kn

[

‖xk − x0‖2 + 2pen(k)
]

+
Σ(d)

n
, (6)

where we have set

Σ(d)=
∑

k∈Kn

2

[
√

dTr(Rt
kRk)

ρ2(Rk)
+1

]

[

d

ρ2(nRk)

]−1

e−
√

dLk[Tr(Rt
k
Rk)+ρ2(Rk)]/ρ2(Rk),

for d as in lemma 4.3.

Hence, the estimator is optimal in the sense that the adaptive estimator
achieves the best rate of convergence among all the regularized estimators, up
to an error of order pen(k) and Σ(d)/n. This bound is non asymptotic and the
rate of convergence depends on both previous terms.

We point out that the constant r and the weights must be chosen in order to
control respectively the penalization term and the constant Σ(d). The weights
are technically introduced to achieve the so called Kraft inequality, Σ(d) < +∞
and hence to control the size of the set of parameters Kn.

We also point out that under SF ρ2(nRk) and Tr(Rt
kRk)/ρ

2(Rk) do not
depend on n.

Proof. For any xk and any k ∈ N, the mere definition of the estimator x̂k̂ implies
that

‖Rk̂(y − T x̂k̂)‖2 + pen(k̂) 6 ‖Rk(y − Txk)‖2 + pen(k)

and

‖Rk(y − Txk)‖2 = ‖RkT (x0 − xk)‖2 + 2〈RkT (x0 − xk), Rkε〉 + ‖Rkε‖2
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Thus, following standard arguments we have

‖Rk̂T (x0 − x̂k̂)‖2

6 ‖RkT (x0 − xk)‖2 − 2 < Rk̂T (x0 − x̂k̂), Rk̂ε >

+2 < RkT (x0 − xk), Rkε > −‖Rk̂ε‖2 + ‖Rkε‖2 + pen(k) − pen(k̂).

Let 0 < κ < 1. Since 2ab 6 κa2 + 1
κ
b2, for any a, b we have for any k and

xk ∈ Xm

(1 − κ)‖Rk̂T (x0 − x̂k̂)‖2

6 (1 + κ)‖RkT (x0 − xk)‖2 +

(

2 +
1

κ

)

pen(k)

+ 2 sup
k∈Kn

{(

1 +
1

κ

)

‖Rkε‖2 − pen(k)

}

,

On the other hand, using that 1 6 RkT 6 C, we have that for any xk ∈ Xm0

and any k ∈ N,

(1 − κ)‖x0 − x̂k̂‖2 ≤ C(1 − κ)‖x0 − xk‖2

+

(

2 +
1

κ

)

pen(k) + 2C1 sup
k∈Kn

{

‖Rkε‖2 −
(

1 +
1

κ

)−1

pen(k)

}

.

The proof then follows directly from Lemma 4.3 which characterizes the supre-
mum of the empirical process under the linear application as defined by the
regularization family. The choice of κ will depend on r in the penalty.

3. Applications to standard regularization operators

Penalized estimators are widely used to solve linear inverse problems and can
be written in the form (4). Indeed for k ∈ K, consider a sequence of (diagonal)
matrices Ak ∈ Mm0×m0

(R). Then, define for a chosen sequence Ak the following
penalized estimator

x̂k := arg min
x∈Xm

[

‖Πn
Ym0

(y − Tx)‖2 + ‖Akx‖2
]

. (7)

Note that, for each fixed Ak, the expression (7) can be written in the following
way:

x̂k = (T ∗
m0
Tm0

+At
kAk)−1T t

m0
y, (8)

In practice the second expression is more complicated (the matrix to invert
might be big), but it is simpler to deal with in order to show our results con-
cerning the selection of Ak. With this notation set the smoothing operator

Rk := (T ∗
m0
Tm0

+ At
kAkIm0

)−1T t
m0
.

We point out that choosing the smoothing sequence Ak is the key point since
it balances the two terms: if ‖Ak‖ is large the solution will be smooth but
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will not, in general, comply to the observations. On the other hand, if ‖Ak‖ is
small, the solution might be too close to the noisy observations to yield a good
approximation of x0.

Remark that we can write Rk = (D2 +At
kAkIm0

)−1D(GGt)−1G, as a matrix,
with Rt

k its transpose matrix.

3.1. Tikhonov regularization

Consider the choice Ak =
√
αkIm0

, where αk is a positive decreasing sequence.
In this case, the estimator (7) can be written as

x̂k = arg min
x∈Xm0

[

‖Πn
Ym0

(y − Tx)‖2 + αk‖x‖2
]

. (9)

Where we recognize the usual expression of the Tikhonov estimator. Assume
AN holds true. Hence Theorem 2.1 can be written in the following way, using
the approximation properties of the Tikhonov regularization scheme,

Proposition 3.1. Assume that Kn is such that dm0
≥ supk∈Kn

α
−1/(2p)
k . Then,

by direct calculation of the trace and spectral radius of Rk under SF and SV,
we have, for ν ≤ 1

Tr(Rt
kRk)

ρ2(Rk)
= O(α

−1/(2p)
k ).

Also under IP and SC, standard approximation results (see for example [11],
Chapter 1) the following inequality holds true

E‖x̂k̂ −x0‖2 ≤ 2‖(I −ΠXm0
)x0‖2 +C inf

k∈Kn

[α2ν
k +2(α

1+1/2p
k n)−1] +

Σ(d)

n
, (10)

Hence under IP the above inequality yields, for ν ≤ 1,

E‖x̂k̂ − x0‖2 ≤ Cn− 4pν

1+4pν+2p . (11)

Interpreting this rate in the statistical literature reads s = 2νp: the regularity
depends on the ill-posedness of the problem. In the ill-posed literature the error
is not related to the underlying dimension so that rates are different. Typically
in a Hilbert scale setting, if the true solution x0 belongs to the Hilbert space Hs,
optimal rates are of order O(n−s/(2s+2p+1)), see for example [7]. So, Equation

10 implies that the penalized Tikhonov estimator x̂k̂, with k̂ selected as in (5),
achieves the best rate of convergence over all the possible choices of smoothing
sequences αk, k ∈ Kn. Moreover, if the input data is not too smooth, i.e for
ν 6 1, Equation 11 implies that the penalized estimate achieves the minimax
rate of convergence for this problem.

To overcome the restrictions induced by the use of Tikhonov estimate, we
turn to model selection estimators in the following part.
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3.2. Regularization by projection

Consider the projection estimator xm over Xm. That is, xm is chosen in such
a way as to minimize ‖ΠYm

(y − Txm)‖n. The estimation error can thus be
bounded by

‖x0 − xm‖ ≤ ‖(I − ΠXm
)x0‖ +

‖Πn
Ym
ǫ‖

νm
. (12)

Since Ym is a sequence of linear subspaces E‖Πn
Ym
ǫ‖2 = O(dm

n ). So rates of
convergence are of order

‖(I − ΠXm
)x0‖ +

d
1/2
m

n1/2γm
.

This rate depends on the ill-posedness of the operator and the approximation
properties of Xm. Indeed, following [13] and under SC we have if ν ≤ 1/2,

‖(I − ΠXm
)x0‖ ≤ ‖(I − Πn

Ym
)T‖2ν = O(d−2νp

m ),

for a certain p. An optimal choice of the dimension (depending on ν) leads to
the rate

‖xm − x0‖ = OP(n− 2νp

4νp+2p+1 ). (13)

We aim at using Theorem 2.1 to select the best projection space among a col-
lection of spaces. For this, consider a collection of index sets m = (j1, . . . , jm)
such that m ⊂ m0. For each m, define formally Am = (aij) with

∀i 6= j, aij = 0 ∀i ∈ m, aii = 0, ∀i * m, aii = ∞.

Then we obtain a model selection estimator which can be written as

x̂m̂ = arg min
(m,x)∈Mn×Xm

‖Am0
(y − Tx)‖2 + pen(m) (14)

where Am0
= T+

m0
Πn

Ym0
and pen(m) is defined as follows. Let λm,j be the eigen-

values of the matrix ΠXm
Am0

(ΠXm
Am0

)t and {Lm}m⊂m0
a collection of weights

such that

Σ(d) := 2
∑

m⊂m0

[
√

d
∑

j∈m λm,j

supj∈m λm,j
+ 1

]

[

d

n supj∈m λm,j

]−1

× e
−

√

dLm

∑

j∈m
λm,j+supj∈m λm,j

supj∈m λm,j <∞

for d as in lemma 4.3. As above, under SF, Σ(d) does not depend on n. Then,
for some θ > 0, and r = 2 + θ, set

pen(m) = r(1 + Lm)σ2
∑

j∈m

λm,j + sup
j∈m

λm,j .
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Proposition 3.2. Under conditions AN, SF, SV, IP and SC, there exists a
constant C which depends on r, T, c1 and c2 such that with high probability

‖x̂m̂−x0‖2
6 2‖(I−ΠXm0

)x0‖2 +C inf
m∈Mn

[d−2pν
m +2(d1+2p

m n)−1]+
Σ(d)

n
. (15)

Hence the penalized model selection estimator is optimal in the sense that
it achieves the best rate among the collection of projection estimators. This
leads to optimal rates also, as long as there exists a model m ∈ Mn with
dm = n1/(4νp+2p+1), as shown in Equation (13).

We also have the following interpretation for this estimator which offers an
important insight. Note that (14) is equivalent to minimizing

x̂m̂ = arg min
m⊂m0

arg min
xm∈Xm

{−2 < Am0
y, Am0

Txm > +‖Am0
Txm‖2} + pen(m)

= arg min
m⊂m0

arg min
xm∈Xm

{−2 < ΠXm
Am0

y, xm > +‖xm‖2} + pen(m).

Let {ej}j∈m be the canonical base over Xm. Define for each m,

xm,j =< Am0
y, ej >=< y, At

m0
ej >, j = 1, . . . , m.

Thus, m is selected by minimizing

−
∑

j∈m

x2
m,j + rσ2(1 + Lm)

[

∑

j∈m

λm,j + sup
j∈m

λm,j

]

.

We can recognize a hard thresholding scheme, defined in [2], highlighting the
equivalence between model selection and penalized M-estimation with an ℓ0

penalty, as is also quoted in [17].

4. Appendix

In this section we give some technical lemmas. The next lemma characterizes
the supremum of an empirical process by the norm of an orthogonal projection.

Lemma 4.1.

sup
y∈Ym, ‖y‖n=1

| < ε, y >n | = ‖Πn
Ym
ε‖n (16)

Proof. Using the definition of an orthogonal projector, we have

‖ε− 1

‖Πn
Ym
ε‖n

Πn
Ym
ε‖2

n = min
{y∈Ym, ‖y‖n=1}

‖ε− y‖2
n.

As a consequence we can write:

‖ε‖2
n − 2 < ε,

1

‖Πn
Ym
ε‖n

Πn
Ym
ε >n +

1

‖Πn
Ym
ε‖2

n

‖Πn
Ym
ε‖2

n

= min
{y∈Ym, ‖y‖n=1}

‖ε‖2
n − 2 < ε, y >n +1
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2 < ε− Πn
Ym
ε,

1

‖Πn
Ym
ε‖n

Πn
Ym
ε >n +2 < Πn

Ym
ε,

1

‖Πn
Ym
ε‖n

Πn
Ym
ε >n

= 2 sup
{y∈Ym, ‖y‖n=1}

| < ε, y >n |

‖Πn
Ym
ε‖n = sup

{y∈Ym, ‖y‖n=1}
| < ε, y >n |,

which ends the proof.

The next result is a deviation inequality based on a functional exponential
inequality (Theorem 7.4) due to [4] 2003.

Lemma 4.2. Set η(A) = sup‖u‖=1

∑n
i=1 εi(A

tu)i for A : Rn → Rk. Let

v = E
n

∑

i=1

sup
‖u‖=1

(Atu)2i
ρ(AtA)

(

εi

σ

)2

+ 2Eη(A)/(σρ1/2(AtA)).

Then,

P

(

η(A)

σρ1/2(AtA)
> E

η(A)

σρ1/2(AtA)
+
√

2vx+ x

)

≤ e−x.

Proof. Since the application u → Atu is continuous, we have η(A) =
supu∈S

∑n
i=1 εi(A

tu)i for S some countable subset of the unit ball. On the other
hand,

sup
‖u‖=1

[Atu]i ≤ sup
‖u‖=1

‖Atu‖ ≤ ρ(A).

Thus sup‖u‖≤1 |(Atu)i/ρ
1/2(AtA)| ≤ 1. Also, following the proof of Corollary

5.1 in [1]

sup
‖u‖=1

(Atu)2i
ρ(AtA)

≤ sup
‖u‖=1

(
∑m

j=1 uj(A
tej)

2
i )

ρ(AtA)

≤ sup
‖u‖=1

(
∑m

j=1(A
tej)

2
i )

∑m
j=1 u

2
j

ρ(AtA)

:= zi.

Set Z = Z(ε1 , . . . , εn) = η(A)/(σρ1/2(AtA)). Let Ej stand for the conditional
expectation given εi for i 6= j. Hence, in the proof of Theorem 7.4 in [4] we may
bound

|Z − EjZ|q ≤ |εj |q
σq

sup
‖u‖=1

(Atu)2j
ρ(AtA)

sup
‖u‖=1

max
i

(

(Atu)2i
ρ(AtA)

)q−2

≤ (|εj |/σ)qzj.

Thus, E|Z − EjZ|q ≤ zjq!/2. Finally, note that

n
∑

j=1

zj =
Tr(AtA)

ρ(AtA)
.
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Thus, the proof follows from Theorem 7.4 in [4].

As a corollary, we have the following lemma

Lemma 4.3. • There exists a positive constant d that depends on r such that
the following inequality holds

P (η2(A) ≥ σ2[Tr(AtA) + ρ(AtA)]r/2(1 + L) + σ2u) (17)

≤ exp{−
√

d(1/ρ(AtA)u + r/2L[Tr(AtA)/ρ(AtA) + 1])}

• Set k1 = d/(ρ(AtA)σ2) and k2 = dr/2L[Tr(AtA)/ρ(AtA)+1]. Then, there
exists a constant Cq, which depends only on q, such that,

E[η2(A) − σ2[Tr(AtA) + ρ(AtA)]r/2(1 + L)]q+ (18)

≤ Cqk
−q
1 [k

q−1/2
2 + kq−1

2 ]e−
√

k2

holds.

Proof. As a first step we will bound v. Since EZ ≤ E1/2Z2, we have

v ≤ E
n

∑

i=1

zi

(

εi

σ

)2

+ 2

√

√

√

√E
n

∑

i=1

zi

(

εi

σ

)2

≤ (1 + ν)E
n

∑

i=1

zi

(

εi

σ

)2

+ Tr(AtA)/ρ(AtA).

Moreover, following, [1] p. 480, for all q > 2, the following version of Rosenthal’s
inequality holds:

Eq/2
n

∑

i=1

zi

(

εi

σ

)2

≤ 2q/2Tr(AtA)/ρ(AtA)E
|ε1|q
σq

.

Hence, we have

v ≤ (1 + ν)Tr(AtA)/ρ(AtA) +
1

ν

and

v2 ≤ 2

[

22(1 + ν)2Tr(AtA)/ρ(AtA)E
|ε4|
σ4

+

(

1

ν

)2]

.

Set 0 < α < 1. Choose δ and β such that if

224!δ2(1 + 1/α)(1− ν)2 < c1,

2δ2(1 + 1/α)(
1

ν
)2 < c2
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and c = max((1 + β)max(c1, c2), (1 + β)(1 + α)), then r/2 > c. Let u > 0 and
without loosing generality, assume σ = 1. Thus,

P (η2(A) ≥ (Tr(AtA) + ρ(AtA))r/2(1 + L) + u)

≤ P (η2(A) ≥ (Tr(AtA)(1 + α) + (1 + 1/α)δ2ν2ρ(AtA))(1 + β)

+[r/2− c](Tr(AtA) + δ2v2ρ(AtA)) + r/2L(Tr(AtA) + ρ(AtA)) + u)

≤ P (η2(A) ≥ (Tr(AtA)(1 + α) + (1 + 1/α)δ2ν2ρ(AtA))(1 + β)

+r/2L(Tr(AtA) + ρ(AtA)) + u)

Set

x′ =

(

1 +
1

β

)−1 [

r

2L

(

Tr(AtA)

ρ(AtA)
+ 1

)

+
u

ρ(AtA)

]

.

The last term is equal to

P

(

η2(A)

ρ(AtA)
≥

(

Tr(AtA)

ρ(AtA)
(1 + α)

+ (1 + 1/α)v2δ2
)

(1 + β) + r/2L
Tr(AtA)

ρ(AtA)
+ 1

)

+ u

)

= P

(

η2(A)

ρ(AtA)
≥

(

Tr(AtA)

ρ(AtA)
(1 + α) + (1 + 1/α)v2δ2

)

(1 + β) + (1 + 1/β)x′
)

Finally, we may bound

≤ P

(

η2(A)

ρ(AtA)
≥

(

E
η(A)

ρ1/2(AtA)
+ δv

)2

(1 + β) + (1 + 1/β)x′
)

≤ P

(

η2(A)

ρ(AtA)
≥

(

E
η(A)

ρ1/2(AtA)
+ δv +

√
x′

)2)

= P

(

η(A)

ρ1/2(AtA)
≥ E

η(A)

ρ1/2(AtA)
+ δv + (1 + 2/δ)x′′

)

≤ P

(

η(A)

ρ1/2(AtA)
≥ E

η(A)

ρ1/2(AtA)
+

√
2vx′′ + x′′

)

≤ e−x
′′

= e−
√

g(A),

where we have used repeatedly that for any constant c > 0, ca2 + 1/cb2 ≥ 2ab
and set

g(A) = ((1 + 1/β)−1(1 + 2/δ)2)(r/2L[Tr(AtA)/ρ(AtA) + 1] + u/ρ(AtA)).

Set also d = [(1 + 1/β)−1(1 + 2/δ)2]−1 and b(A) = Tr(AtA)/ρ(AtA). Thus we
have shown the first part of the lemma.

Moreover, using the above inequality,

E[η2(A) − σ2(Tr(AtA) + ρ(AtA))r/2(1 + L)]q+

≤
∫ ∞

0

σ2qquq−1e−
√

dr/2L[b(A)+1]+du/(ρ(AtA))du.
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Consider the change of variable w = du/(ρ(AtA)) + dr/2L[b(A)+ 1], so that

E[η2(A) − σ2(Tr(AtA) + ρ(AtA))r/2(1 + L)]q+

≤
(

σ2ρ(AtA)

d

)q ∫ ∞

dr/2L[b(A)+1]

(w − dr/2L[b(A) + 1])q−1e−
√

wdw.

The last expression is in turn bounded by

(

σ2ρ(AtA)

d

)q ∫ ∞

dr/2L[b(A)+1]

e−
√

w[wq−1 + (dr/2L[b(A) + 1])q−1]dw

≤ Cqk
−q
1 [k

q−1/2
2 + kq−1

2 ]e−
√

k2 ,

ending the proof.
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