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Adaptive Computational Chemotaxis in Bacterial
Foraging Optimization: An Analysis

Sambarta Dasgupta, Swagatam Das, Ajith Abraham, Senior Member, IEEE, and Arijit Biswas

Abstract— In his seminal paper published in 2002, Passino
pointed out how individual and groups of bacteria forage for
nutrients and how to model it as a distributed optimization
process, which he called the bacterial foraging optimization
algorithm (BFOA). One of the major driving forces of BFOA
is the chemotactic movement of a virtual bacterium that models
a trial solution of the optimization problem. This paper presents a
mathematical analysis of the chemotactic step in BFOA from the
viewpoint of the classical gradient descent search. The analysis
points out that the chemotaxis employed by classical BFOA
usually results in sustained oscillation, especially on flat fitness
landscapes, when a bacterium cell is close to the optima. To
accelerate the convergence speed of the group of bacteria near the
global optima, two simple schemes for adapting the chemotactic
step height have been proposed. Computer simulations over sev-
eral numerical benchmarks indicate that BFOA with the adaptive
chemotactic operators shows better convergence behavior, as
compared to the classical BFOA. The paper finally investigates
an interesting application of the proposed adaptive variants
of BFOA to the frequency-modulated sound wave synthesis
problem, appearing in the field of communication engineering.

Index Terms— Bacterial foraging, biological systems, computa-
tional chemotaxis, global optimization, gradient descent search,
swarm intelligence.

I. INTRODUCTION

T
O TACKLE complex search problems of the real world,

scientists have been drawing inspiration from nature and

natural creatures for years. Optimization is at the heart of many

natural processes like Darwinian evolution, group behavior of

social insects, and the foraging strategy of other microbial

creatures. Natural selection tends to eliminate species with

poor foraging strategies and favor the propagation of genes

of species with successful foraging behavior since they are

more likely to enjoy reproductive success.

Since a foraging organism or animal takes necessary action

to maximize the energy intake per unit time spent for foraging,

considering all the constraints presented by its own physiology

such as sensing and cognitive capabilities, environment (e.g.,

density of prey, risks from predators, physical characteristics

of the search space), the natural foraging strategy can lead to
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optimization and essentially this idea can be applied to solve

real-world optimization problems [1]. Based on this concept,

Passino proposed an optimization technique known as the

bacterial foraging optimization algorithm (BFOA) [1], [2]. To

date, BFOA has successfully been applied to real-world prob-

lems such as optimal controller design [1], [3], harmonic esti-

mation [4], transmission loss reduction [5], active power filter

synthesis [6], and learning of artificial neural networks [7].

One major step in BFOA is the simulated chemotactic

movement. Chemotaxis is a foraging strategy that implements

a type of local optimization, where the bacteria try to climb

up the nutrient concentration to avoid noxious substance and

search for ways out of neutral media. This step has much

resemblance with a biased random walk model [8].

This paper provides a mathematical analysis of the sim-

ulated chemotaxis in the light of the classical gradient de-

scent search [9], [10] algorithm. The analysis reveals that

a chemotactic step height varying as the function of the

current fitness value can lead to better convergence behavior

as compared to a fixed step height. The adaptation schemes,

proposed for automatically adjusting the step height, are

simple and impose no additional computational burden on

the BFOA in terms of excess number of function evaluations

(FEs). At this point, we would like to mention that several

researchers have investigated the adaptation of step size in

both stochastic and deterministic gradient descent optimization

algorithms [11]–[16] mostly in the context of training neural

networks. However, unlike the works cited in [11]–[16], the

adaptation schemes proposed in this paper for the chemotactic

step height are not based on complex calculus techniques,

does not require computationally intensive operations such as

Hessian matrix evaluation [17], [18], and is general enough

for widespread use with BFOA as a black-box optimization

technique. They are solely based on the fitness information

of each individual member of the bacterial population and

accelerate the convergence of the bacterium to an optimum,

avoiding any oscillatory behavior around the optimum.

The proposed adaptive BFOA (ABFOA) schemes have been

compared with their classical counterpart, a very popular

swarm-intelligence algorithm known as the particle swarm

optimization (PSO) [19] and a standard real-coded genetic

algorithm (GA) [20], [21] over a test suite of ten numerical

benchmarks with respect to the following performance mea-

sures: solution quality, convergence speed, and the frequency

of hitting the optimal solution. This paper also investigates

an interesting application of the ABFOA schemes to the

parameter estimation of frequency-modulated sound waves.
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The rest of the paper is organized as follows. In Section II,

we outline the classical BFOA in sufficient details. Sec-

tion III reviews the state-of-the-art research works on BFOA.

Section IV provides a mathematical analysis of the chemo-

tactic movement of a simple 1-D bacterium and proposes

the adaptive chemotactic operators for BFOA. Section V

provides detailed comparison between the classical BFOA

and its adaptive variants over a test suite of 10 well-known

numerical benchmarks. Section VI describes an application

of the adaptive BFOAs to the parameter estimation problem

for frequency-modulated sound wave. Finally, conclusions

are drawn in section VII. Analysis of the chemotaxis for a

multibacterial system has been presented in Appendix I. It has

also been shown that under certain conditions the mathematical

model of the multibacterial system boils down to that of a

single bacterium.

II. CLASSICAL BFOA ALGORITHM

The bacterial foraging system consists of four principal

mechanisms, namely chemotaxis, swarming, reproduction, and

elimination dispersal [1]. Below we briefly describe each

of these processes and finally provide a pseudo-code of the

complete algorithm.

A. Chemotaxis

This process simulates the movement of an E.coli cell

through swimming and tumbling via flagella. Biologically, an

E.coli bacterium can move in two different ways. It can swim

for a period of time in the same direction, or it may tumble,

and alternate between these two modes of operation for the

entire lifetime. Suppose θ i ( j, k, l) represents i th bacterium at

j th chemotactic, kth reproductive and lth elimination dispersal

step. C(i) is the size of the step taken in the random direction

specified by the tumble (run length unit). Then in compu-

tational chemotaxis the movement of the bacterium may be

represented by

θ i ( j + 1, k, l) = θ i ( j, k, l) + C(i)
�(i)

√

�T (i)�(i)
(1)

where � indicates a vector in the random direction whose

elements lie in [–1, 1].

B. Swarming

An interesting group behavior has been observed for several

motile species of bacteria including E.coli and S. typhimurium,

where intricate and stable spatiotemporal patterns (swarms)

are formed in a semisolid nutrient medium [22], [23]. A

group of E.coli cells arrange themselves in a traveling ring

by moving up the nutrient gradient when placed amidst a

semisolid matrix with a single nutrient chemoeffecter. The

cells, when stimulated by a high level of succinate, release an

attractant aspertate, which helps them to aggregate into groups

and thus move as concentric patterns of swarms with high

bacterial density. The cell-to-cell signaling in E. coli swarm

may be represented by the following function:

Jcc(θ, P( j, k, l)) =
S

∑

i=1

Jcc(θ, θ i ( j, k, l))

=
S

∑

i=1

[−dattractant exp(−wattractant

p
∑

m=1

(θm − θ i
m)2)]

+
S

∑

i=1

[hrepellant exp(−wrepellant

p
∑

m=1

(θm − θ i
m)2)] (2)

where Jcc(θ, P( j, k, l)) is the objective function value to

be added to the actual objective function (to be mini-

mized) to present a time-varying objective function, S is

the total number of bacteria, p is the number of variables

to be optimized that are present in each bacterium, and

θ = [θ1,θ2,...,θp]T is a point in the p-dimensional search do-

main. daatractant , wattractant , hrepellant , wrepellant are different

coefficients that should be chosen properly.

C. Reproduction

The least healthy bacteria eventually die while each of the

healthier bacteria (those yielding lower value of the objective

function) asexually split into two bacteria, which are then

placed in the same location. This keeps the swarm size

constant.

D. Elimination and Dispersal

Gradual or sudden changes in the local environment where

a bacterium population lives may occur due to various reasons:

e.g., a significant local rise of temperature may kill a group of

bacteria that are currently in a region with a high concentration

of nutrient gradients. Events can take place in such a fashion

that all the bacteria in a region are killed or a group is

dispersed into a new location. To simulate this phenomenon

in BFOA, some bacteria are liquidated at random with a very

small probability while the new replacements are randomly

initialized over the search space.

The detailed pseudo-code and a flowchart (Fig. 1) of the

complete algorithm is given below:

The BFOA Algorithm

Step 1. Initialize parameters p, S, Nc, Ns, Nre, Ned , Ped ,

C(i)(I = 1, 2, . . ., S), θ i

where

p: dimension of the search space,

S: total number of bacteria in the population,

Nc: number of chemotactic steps,

Ns : swimming length,

Nre: the number of reproduction steps,

Ned : the number of elimination–dispersal events,

Ped : elimination-dispersal probability, and

C(i): the size of the step taken in the random

direction specified by the tumble.

Step 2. Elimination–dispersal loop: l = l + 1.

Step 3. Reproduction loop: k = k + 1.

Step 4. Chemotaxis loop: j = j + 1.
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Start

Initialize all variables. Set all
loop-counters and bacterium

index i equal to 0.

Increase eliminaiton –
dispersion loop counter

l = l + 1

Increase Reproduction loop
counter k = k + 1

Perform Elimination-
dispersal

(For i = 1, 2... S, with
probability Ped ,

eliminate and disperse
one to a random

location)

Increase Chemotactic loop
counter
j = j + 1

Perform Reproduction
(by killing the worse
half of the population

with higher cumulative
health and splitting the

better half into two)

Stop
No

No

No

Yes

Yes

Yes

X

Y

l < Ned?

k < Nrd?

j < Nc?

(a)

Y

Set bacterium index i = i + 1

Tumble (let the i-th bacterium take a step of
height C(i) along tumble vector Δ(i))

Swim (let the i-th bacterium take a
step of height C(i) along the direction

of the same tumble vector Δ(i))

Compute J (i,j,k,l), adding the cell to cell
attractant effect to nutrient concentration and set

Jlast = J (i,j-1,k,l)

J (i, j, k, l),< Jlast?

Compute  J(i,j+1,k,l), with the cell-to-cell
attractant effect

Set swim counter
m = 0.

m = m + 1.

No

No

No

Yes

Yes

Yes

m < Ns?

Set
m = Ns

i < S ?X

(b)

Fig. 1. Flowchart of the bacterial foraging algorithm.

(a) For i = 1, 2, . . ., S, take a chemotactic step for

bacterium i as follows.

(b) Compute fitness function J (i, j, k, l).

Let, J (i, j, k, l) = J (i, j, k, l)+ Jcc(θ
i ( j, k, l),

P( j, k, l)) (i.e., add on the cell-to cell

attractant–repellant profile to simulate the

swarming behavior) where Jcc is defined in (2).

(c) Let Jlast = J (i, j, k, l) to save this value since

we may find a better cost via a run.

(d) Tumble: generate a random vector �(i) ∈ ℜp

with each element �m(i), m = 1, 2, . . . , p, a

random number on [–1, 1].

(e) Move: Let

θ i ( j +1, k, l) = θ i ( j, k, l)+C(i)
�(i)

√

�T (i)�(i)

this results in a step of size C(i) in the direction

of the tumble for bacterium i.

(f) Compute J (i, j + 1, k, l), and let J (i, j +
1, k, l) = J (i, j, k, l)+Jcc(θ

i ( j+1, k, l), P( j+
1, k, l)).

(g) Swim.

i) Let m = 0 (counter for swim length);

ii) While m < Ns (if have not climbed down

too long);

iii) Let m = m + 1;

iv) If J (i, j + 1, k, l) < Jlast (if doing better),

let Jlast = J (i, j + 1, k, l) and let

θ i ( j + 1, k, l) = θ i ( j, k, l)

+ C(i)
�(i)

√

�T (i)�(i)

And use this θ i ( j + 1, j, k) to compute the

new J (i, j + 1, k, l) as we did in (f);

v) Else, let m = Ns . This is the end of the

while statement.

(h) Go to next bacterium (I + 1) if i �= S [i.e., go

to (b) to process the next bacterium].

Step 5. If j < Nc, go to Step 4. In this case, continue

chemotaxis since the life of the bacteria is not

over.
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Step 6. Reproduction:

(a) For the given k and l, and for each i =
1, 2, . . . , S, let

J i
health =

Nc+1
∑

j=1

J (i, j, k, l) (3)

be the health of the bacterium i (a measure

of how many nutrients it got over its lifetime

and how successful it was at avoiding noxious

substances). Sort bacteria and chemotactic pa-

rameters C(i) in order of ascending cost Jhealth

(higher cost means lower health).

(b) The Sr bacteria with the highest Jhealth values

die and the remaining Sr bacteria with the

best values split (this process is performed by

placing the copies that are made at the same

location as their parent).

Step 7. If k < Nre, go to Step 3. In this case, we have not

reached the number of specified reproduction steps,

so we start the next generation of the chemotactic

loop.

Step 8. Elimination–dispersal: For i = 1, 2 . . . , S with prob-

ability Ped , eliminate and disperse each bacterium

(this keeps the number of bacteria in the population

constant). To do this, if a bacterium is eliminated,

simply disperse another one to a random location on

the optimization domain. If l < Ned , then go to Step

2; otherwise end.

III. RELATED WORKS ON BFOA

Since its advent in 2002, BFOA has attracted researchers

from diverse domains of knowledge. This has resulted in a few

variants of the classical algorithm as well as many interesting

applications of the same to the real-world optimization prob-

lems. In 2002, Liu and Passino [2] incorporated a new function

Jar (θ) in BFOA to represent the environment-dependent cell-

to-cell signaling, such that

Jar (θ) = exp(M − J (θ)).Jcc(θ) (4)

where M is a tunable parameter and Jcc(θ) is given by (2). For

swarming, they considered the minimization of J (i, j, k, l) +
Jar (θ

i ).

Tang et al. [24] proposed a bacterial foraging behavior

in varying environments. Their study focused on the use of

an individual-based modeling (IbM) method to simulate the

activities of bacteria and the evolution of bacterial colonies.

They derived a bacterial chemotaxis algorithm in the same

framework and showed through simulation studies that the

proposed algorithm could reflect the bacterial behaviors and

population evolution in varying environments. Li et al. pro-

posed a modified bacterial foraging algorithm with varying

population (BFAVP) [25] and applied the same to the optimal

power flow (OPF) problems. Instead of simply describing

chemotactic behavior into BFOA, as was done by Passino

[1], BFAVP also incorporates the mechanisms of bacterial

proliferation and quorum sensing, which allow a varying

population in each generation of bacterial foraging process.

Tripathy and Mishra proposed an improved BFO algorithm

for simultaneous optimization of the real power losses and

voltage stability limit (VSL) of a mesh power network [26].

In their modified algorithm, first, instead of the average value,

the minimum value of all the chemotactic cost functions is

retained for deciding the bacterium’s health. This speeds up

the convergence, because in the average scheme described by

Passino [1] it may not retain the fittest bacterium for the

subsequent generation. Second, for swarming the distances

of all the bacteria in a new chemotactic stage are evaluated

from the globally optimal bacterium to these points and not

the distances of each bacterium from the rest of the others,

as suggested by Passino [1]. Simulation results indicated the

superiority of the proposed approach over the classical BFOA

for the multiobjective optimization problem involving the uni-

fied power flow controller (UPFC) location, its series-injected

voltage, and the transformer tap positions as the variables.

Mishra and Bhende used the modified BFOA to optimize

the coefficients of proportional integral (PI) controllers for

active power filters [6]. The proposed algorithm was found to

outperform a conventional GA with respect to the convergence

speed.

Mishra [4] proposed a Takagi–Sugeno-type fuzzy inference

scheme for selecting the optimal chemotactic step size in

BFOA. The resulting algorithm, referred to as “fuzzy bacterial

foraging” (FBF), was shown to outperform both classical

BFOA and a GA when applied to the harmonic estimation

problem. However, the performance of the FBF crucially

depends on the choice of the membership function and the

fuzzy rule parameters [4], and there is no systematic method

(other than trial and error) to determine these parameters for

a given problem. Hence FBF, as presented in [4], may not be

suitable for optimizing any benchmark function in general.

Hybridization of BFOA with other naturally inspired meta-

heuristics has remained an interesting problem for the re-

searchers. In this context, Kim et al. proposed a hybrid

approach involving GA and BFOA for function optimization

[3]. The proposed algorithm outperformed both GA and BFOA

over a few numerical benchmarks and a practical PID con-

troller design problem. Biswas et al. proposed a synergism of

BFOA with another very popular swarm intelligence algorithm

well known as the particle swarm optimization (PSO). The

new algorithm, named by the authors as “bacterial swarm op-

timization” (BSO) [27], was shown to perform in a statistically

significantly better way as compared to both of its classical

counterparts over several numerical benchmarks.

Ulagammai et al. applied BFOA to train a wavelet-based

neural network (WNN) and used the same for identifying the

inherent nonlinear characteristics of power system loads [28].

Munoz et al. [29] used BFOA for the dynamical resource

allocation in a multiple input/output experimentation platform,

which mimics a temperature grid plant and is composed of

multiple sensors and actuators organized in zones. Acharya et

al. proposed a BFOA-based independent component analysis

(ICA) [30] that aims at finding a linear representation of non-

Gaussian data so that the components are statistically inde-

pendent or as independent as possible. The proposed scheme

yielded better mean square error performance as compared
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P

Q

θ

J (θ)

Fig. 2. Continuous 1-D fitness landscape for BFOA. The analysis presented
here holds perfect for regions like the shaded one.

to a constrained genetic algorithm-based ICA (CGAICA).

Chatterjee et al. [31] reported an interesting application of

BFOA to improve the quality of solutions for the extended

Kalman filters (EKFs), such that the EKFs can offer solutions

to simultaneous localization and mapping (SLAM) problems

for mobile robots and autonomous vehicles.

To the best of our knowledge, none of the existing works

has, however, attempted to develop a full-fledged mathematical

model of the bacterial foraging strategies for investigating im-

portant issues related to convergence, stability, and oscillations

of the foraging dynamics near global optima.

IV. SIMPLE ALGEBRAIC ANALYSIS OF THE

COMPUTATIONAL CHEMOTAXIS

Let us consider a single bacterium cell that undergoes

chemotactic steps according to (1) over a 1-D objective

function. The bacterium lives in continuous time and at the

t th instant its position is given by, which is a real number. Let

the objective function to be minimized be J (x) = x2. Below

we list a few assumptions that were considered for the sake

of gaining mathematical insight into the process.

1) The objective function J (x) is continuous and differen-

tiable at all points in the search space. (Note that BFOA

is a derivative-free optimization technique and can in

general handle discontinuous and nondifferentiable func-

tions also. We, however, make the above assumption in

order to simplify the mathematical manipulations.)

2) The chemotactic step size C is not very large (Passino

himself took C = 0.1).

3) The analysis applies to the regions of the fitness land-

scape where gradients of the function are small, i.e., near

the optima.

According to assumption 3), the analysis will be restricted to

within regions like the shaded one in Fig. 2. In Fig. 2, the

dashed line arrow represents velocity of the bacterium and the

blue arrow shows the gradient vector. We note that the velocity

vector does not necessarily coincide with the gradient vector.

Initially, the bacterium was at point P and it moves to point

Q. Here, the vector PQ shows the direction of velocity of the

bacterium.

Iterations

Unit time

Actual Position

Approximation

P
o
si

ti
o
n
 o

f 
b
ac

ta
ri

u
m

1 2 3 4 5

P

Δt

2.5

3

3.5

4

4.5

2

5

6 7 80 9

Fig. 3. Bacterium changing positions instantaneously and its approximated
counterpart.

A. Analytical Treatment

Let the position of an individual bacterium at time t be

θ(t) and value of objective function J (θ). As θ(t) is a

function of time, the value of the objective function associated

with this bacterium J (θ(t)) is also changing with time. The

bacterium may change its position continuously with time.

Computer simulation of the algorithm, however, proceeds

through discrete iterations (chemotactic steps). Certain amount

of processor time is elapsed between two successive iterations.

Thus, in the virtual world of simulations, a bacterium can

change its position only at certain discrete time instants.

This change of position is ideally instantaneous. In between

two successive iterations the bacterium remains practically

immobile. Without losing generality, the time between two

successive iterations may be defined as unit time for the

following derivation. The situation is depicted in Fig. 3, where

the bacterium changes its position instantly at certain discrete

time points. But we have assumed that the bacterium lives in

continuous time, where it is not possible to have instantaneous

position change. Hence, we assume that within two successive

iterations the position shifts continuously and linearly [e.g., for

time intervals (2–3), (4–5), (8–9)]. In practice, time between

two successive iterations, i.e., computational time of iteration,

is very small. This ensures that the linear approximation is

fairly good.

Let us assume that, after an infinitesimal time interval�t ,

its position changes by an amount �θ from θ(t) when

the objective function value becomes smaller for changed

position. Fig. 4 reveals the nature of the time rate of change

of position of the bacterium. We can now define the velocity

of the bacterium as

Vb = Lim
�t→0

�θ

�t
. (5)

Naturally, here we assume the time to be unidirectional (i.e.,

�t > 0).

From Fig. 4 it can be observered that the velocity of

bacterium is a train of pulses occuring at certain points of

time. As the pulse width is diminished its height is increased.

Ideally, position changes instanteneously making height of the

pulse tending toward infinity. Regardless of the pulse width,

area under the rectangle is always equal to step height C (0.1
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Iterations

Actual case

Approximation

V
el

o
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 o

f 
b
ac

te
ri

u
m

0

–1

–0.9

–0.8

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

1 2 3 4 5 6 7 80 9

Fig. 4. Variation of velocity with successive iterations.

in this case). As we assume velocity to be constant over the

complete interval (i.e., the position changes uniformly), its

magnitude becomes C . In Figs. 3 and 4, iterations signify the

successive chemotactic steps taken by the bacterium. Time

between two consecutive iterations is elapsed in necessary

computation associated with one step.

Now, according to BFOA, the bacterium changes its position

only if the modified objective function value is less than the

previous one i.e., J (θ) > J (θ + �θ) i.e., J (θ) − J (θ + �θ)

is positive. This ensures that the bacterium always moves in

the direction of decreasing objective function value. In this

analysis we denote the unit vector along the direction of

tumble by �, i.e., � here is analogous to the unit vector

�(i)/
√

�T (i).�(i) in (1) as used by Passino for a multidi-

mensional fitness landscape. Note that for a 1-D problem, �

is of unit magnitude and hence can assume only two values 1

or −1 with equal probabilities. Thus its value would remain

unchanged after dividing it by square of its amplitude [as done

in Step 4(e) of the classical BFO algorithm]. The bacterium

moves by an amount of C.� if objective function value is

reduced for new location. Otherwise, its position will not

change at all. Assuming uniform rate of position change, if the

bacterium moves C.� in unit time, its position is changed by

(C.�)(�t) in �t seconds. It decides to move in the direction

in which concentration of nutrient increases or, in other words,

the objective function decreases i.e., J (θ) − J (θ + �θ) > 0.

Otherwise, it remains immobile. We have assumed that �t is

an infinitesimally small positive quantity, and thus sign of the

quantity J (θ) − J (θ + �θ) remains unchanged if �t divides

it. So, the bacterium will change its position if and only if

(J (θ) − J (θ + �θ))/�t is positive. This crucial decision-

making (i.e., whether to take a step or not) activity of the

bacterium can be modeled by a unit step function (also known

as Heaviside step function [32]) defined as

u(x) = 1, if x > 0

= 0, otherwise (6)

and thus,

�θ = u

(

J (θ) − J (θ + �θ)

�t

)

.(C.�)(�t). (7a)

Evidently, �θ = 0 if J (θ) ≤ J (θ + �θ) and �θ =
(C.�).�t if J (θ) > J (θ + �θ).

Dividing both sides of (7a) by �t we get

�θ

�t
= u

[

J (θ) − J (θ + �θ)

�t

]

.C.�

⇒ �θ

�t
= u

[

−{J (θ + �θ) − J (θ)}
�t

]

.C.�. (7b)

From (5) we have

Vb = Lim
�t→0

�θ

�t
= Lim

�t→0

[

u

{

− J (θ + �θ) − J (θ)

�t

}

.C.�

]

⇒ Vb = Lim
�t→0

[

u

{

− J (θ + �θ) − J (θ)

�θ

�θ

�t

}

.C.�

]

.

As �t → 0 makes �θ → 0, we may write

Vb = u

{

−
(

Lim
�θ→0

J (θ + �θ) − J (θ)

�θ

)(

Lim
�t→0

�θ

�t

)}

.C.�.

Again, J (x) is assumed to be continuous and differentiable.

Lim
�θ→0

(J (θ + �θ) − J (θ))/�θ is the value of the gradient at

that point and may be denoted by (d J (θ)/dθ) or G. Therefore

we have

Vb = u(−GVb).C.� (8)

where G = (d J (θ)/dθ) = gradient of the objective func-

tion at θ . In (8), the argument of the unit step function is

−GVb. The value of the unit step function is 1 if G and

Vb are of different sign, and in this case the velocity is C�.

Otherwise, it is 0, making the bacterium motionless. So (8)

suggests that the bacterium will move in the direction of

negative gradient. Since the unit step function u(x) has a jump

discontinuity at x = 0, to simplify the analysis further, we

replace u(x) with the continuous logistic function φ(x), where

φ(x) = 1/(1 + e−kx ). We note that

u(x) = Lt
k→∞

φ(x) = Lt
k→∞

1

1 + e−kx
. (9)

Fig. 5 illustrates how the logistic function may be used to

approximate the unit step function used for decision making

in chemotaxis. For analysis purpose, k cannot be infinity. We

restrict ourselves to moderately large values of k (say, k = 10)

for which φ(x) fairly approximates u(x). Section IV-C de-

scribes the error limit introduced by this assumption. Thus, for

moderately high values of k, φ(x) fairly approximates u(x).

Hence from (8)

Vb = C.�

1 + ekGVb
. (10)

According to assumptions 1) and 3), if C and G are very

small and k ∼ 10, then also we may have |kGVb| << 1. In

that case we neglect the higher order terms in the expansion

of ekgvb and have ekgvb ≈ 1 + kGVb. Substituting it in (10)

we obtain

Vb = C.�

2 + kGVb

⇒ Vb = C.�

2

1

1 + kGVb

2
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Fig. 5. (a) Unit step and (b) logistic functions.

⇒ Vb = C.�

2

(

1 − kGVb

2

)

[∵ | kGVb

2 | << 1, neglecting higher terms, (1 + kGVb

2 )−1 ≈
(1 − kGVb

2 )].

After some manipulation we have

Vb = 2C.�

4 + kGC.�
.

⇒ Vb = C.�

2

1

1 + kCG�
4

⇒ Vb = C.�

2

(

1 − kGC�

4

)

(11)

(∵ | kGC�
4 | = | kGC

4 | << 1, as |�| = 1 and neglecting the

higher order terms.)

⇒ Vb = C.�

2
− kGC2�2

8

⇒ Vb = −kC2

8
G + C.�

2
[∵ �2 = 1]. (12)

Equation (12) is applicable to a single bacterium system and

it does not take into account the cell-to-cell signaling effect. A

more complex analysis for the two-bacterium system involving

the swarming effect has been included at the Appendix. It

indicates that a complex perturbation term is added to the dy-

namics of each bacterium due to the effect of the neighboring

bacteria cells. However, the term becomes negligibly small

for small enough values of C(∼ 0.1) and the dynamics under

these circumstances get practically reduced to that described in

(12). In what follows, we shall continue the analysis for single

bacterium system for better understanding of the chemotactic

dynamics.

B. Experimental Verification of Characteristic Equation

of Chemotaxis

The characteristic equation of chemotaxis (12) represents

the dynamics of bacterium taking chemotactic steps. In order

to verify how reliably the equation represents the motion of

the virtual bacterium, we compare results obtained from (12)

with that of BFOA. First, the equation is expressed in iterative

form, which is

Vb(n) = θ(n) − θ(n − 1) = −kC2

8
G(n − 1) + C.�(n)

2

⇒ θ(n) = θ(n − 1) − kC2

8
G(n − 1) + C.�(n)

2
(13)

where n is the iteration index. The tumble vector is also a

function of iteration count (i.e., chemotactic step number) i.e.,

it is generated repeatedly for successive iterations. We have

taken J (θ) = θ2 as the objective function for this experimen-

tation. Bacterium was initialized at −2, i.e., θ(0) = −2, and C

is taken as 0.2. The gradient of J (θ) is 2θ . Therefore G(n−1)

may be replaced by 2θ(n − 1). Finally, for this specific case

we get

θ(n) =
(

1 − kC2

4

)

θ(n − 1) + C.�(n)

2
. (14)

We compute values of θ(n) for successive iterations accord-

ing to above iterative relation. Also, values of positions are

noted following guidelines of BFOA. The current position is

changed by C.� if objective function value decreases for new

position. The results are presented in Fig. 6. Fig. 6(a) shows

the position in successive iterations according to BFOA and

as obtained from (14). Here also we have assumed that the

position of bacterium changes linearly between two consecu-

tive iterations. Mismatch between actual and predicted values

is also shown. In Fig. 6(b), the actual and predicted values of

velocity are shown. Velocity is assumed to be constant between

two successive iterations. According to BFOA, the magnitude

of velocity is either C(0.2 in this case) or 0. The difference

between the actual and predicted velocity is shown as the

error. The time lapsed between two consequent iterations is

spent for computation and is termed as “unit time.” This may

be perceived as the time required by a bacterium to measure

the nutrient content of a new point on the fitness landscape.

Actually, it is the time taken by the processor to perform

numerical computations.

C. Estimation of Error and Limitations of the Analysis

Due to the approximation of the unit step function, a small

error has been introduced in the analysis. Again we have

simplified the function for some special cases [assumptions

2) and 3)]. Here, magnitude of maximum possible value of

error in estimation of Vb equals |(C.�)/2| = C/2. ∵ |�| = 1.

According to (9) we may replace u(x) approximately by the
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Fig. 6. Comparison between actual and predicted motional state of the
bacterium. (a) Actual predicted positions of bacterium and error in estimation
over successive iterations and (b) similar plots for velocity of the bacterium.

logistic function ϕ(x) = 1/(1 + e−kx ) for moderately high

values of k. If x is small, we may again approximate the

logistic function with the following equation of a straight line

as:

ϕ(x) = k

4
x + 1

2
. (15)

These simplifications have already been undertaken in (10)–

(12) of Section IV-A, where x = GVb. The straight line,

which approximates the logistic function as shown in Fig. 7,

intersects the graph of the logistic function at two points

A and B. When |x | > OA or |x| > OC, the error in the

decision-making term of our analysis gradually increases. So

we must restrict the analysis to within the region AC, i.e.,

magnitude of GVb has certain limits. As shown in Fig. 7,

x must lie between A and C, i.e., ϕ(x) should be restricted

within the range [0, 1], or otherwise considerable error creeps

ideal logistic function

A O

ϕ(x)

C

B

x

linear approximation

Fig. 7. Region of error due to approximation of the unit step with the logistic
functions.

into the analysis. After imposing these constraints on (15),

we get

x
k

4
+ 1

2
≤ 1 and x

k

4
+ 1

2
≥ 0. (16)

After solving above couple of inequalities, we finally obtain

|x | ≤ 2

k
. (17)

Substituting x by GVb in (17), we get

|Vb| ≤ 2

k|G| . (18)

From (12) and the above inequality, we get

2

k|G| ≥ |Vb| =
∣

∣

∣

∣

C�

2
− kC2

8
G

∣

∣

∣

∣

. (19)

We know any two numbers a and b, |a − b| ≥ |a| ∼ |b|.
Hence

∣

∣

∣

∣

C�

2
− kC2

8
G

∣

∣

∣

∣

≥
∣

∣

∣

∣

C�

2

∣

∣

∣

∣

−
∣

∣

∣

∣

kC2

8
G

∣

∣

∣

∣

= C

2
− kC2

8
|G|.

[C > 0, k > 0 and � can assume values 1 and −1 randomly,

giving |�| = 1].

Incorporating inequality (19) in the above, we get

2

k|G| ≥
∣

∣

∣

∣

C�

2
− kC2

8
G

∣

∣

∣

∣

≥ C

2
− kC2

8
|G|. (20)

Again, as, |a − b| ≥ |b| − |a|
∣

∣

∣

∣

C�

2
− kC2

8
G

∣

∣

∣

∣

≥
∣

∣

∣

∣

kc2

8
G

∣

∣

∣

∣

−
∣

∣

∣

∣

C�

2

∣

∣

∣

∣

= kC2

8
|G| − C

2
.

Incorporating inequality (19) in above, we further get

2

k|G| ≥
∣

∣

∣

∣

C�

2
− kC2

8
G

∣

∣

∣

∣

≥ kC2

8
|G| − C

2
. (21)

Inequality (20) implies that

2

k|G| ≥ C

2
− kC2

8
|G|

⇒ (k|G|C − 2)2 + 12 ≥ 0

which is trivially true.
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Fig. 8. Sample fitness landscape for studying the computational chemotaxis.

From inequality (21), we get

2

k|G| ≥ kC2

8
|G| − C

2

⇒ k2|G|2C2 − 4k|G|C − 16 ≤ 0

⇒ − 2

k|G| (
√

5 − 1) ≤ C ≤ 2

k|G| (1 +
√

5).

But since C > 0

0 < C ≤ 2

k|G| (1 +
√

5). (22)

Now, let us assume within our domain of analysis that

|G|max is the maximum possible magnitude of gradient. The

2/(k|G|)(1 +
√

5) term is minimized when |G| = |G|max.

Our analysis is valid if the chemotactic step size is less than

or equal to this minimum value, i.e., 2/(k|G|max)(1 +
√

5).

So we define maximum allowable value of chemotactic step

size as Cmax = 2/(k|G|max)(1 +
√

5). If |G|max is large,

the maximum allowable step size almost vanishes making

our analysis invalid for moderately small values of step size.

From this consideration also, we should restrict the domain

of analysis to within the region with moderate value of

gradient.

D. Chemotaxis and the Classical Gradient Decent Search

From (12) of Section IV-A, we get

Vb = −kC2

8
G + C.�

2
⇒ dθ

dt
= −α′G + β ′ (23)

where α′ is (−kC2)/8 and β ′ is (C�)/2. The classical

gradient descent search algorithm is given by the following

dynamics in single dimension [10]:

dθ

dt
= −α.G + β (24)

where α is the learning rate and β is the momentum. The

similarity between (23) and (24) suggests that chemotaxis may

be considered a modified gradient descent search, where α′,
which is a function of chemotactic step-size, can be identified

as the learning rate parameter.

Already we have discussed in Section IV-C that the mag-

nitude of gradient should be small within the region of our

analysis. So we choose point P in the 1-D fitness landscape

shown in Fig. 8 as the operating point for our analysis.

For chemotaxis of BFOA, when G becomes very small, the

gradient descent term α′G of (23) becomes ineffective. But

the random search term (C.�)/2 plays an important role in

this context. From (23), considering G → 0, we have

dθ

dt
= C.�

2
�= 0. (25)

So there is a convergence toward actual minima. Fig. 8

shows a region on the fitness landscape with very a small value

of gradient. The random search or momentum term (C.�)/2

in the RHS of (12) provides an additional feature to the

classical gradient descent search. When the gradient becomes

very small, the random term dominates over gradient decent

term and the bacterium changes its position. But the random

search term may lead to change in position in the direction of

increasing objective function value. If it happens, then again

the magnitude of the gradient increases and dominates the

random search term.

E. Oscillation Problem: Need for Adaptive Chemotaxis

If magnitude of the gradient decreases consistently near the

optima or very close to the optima, α′G of (23) becomes

comparable to β. Then, gradually β becomes dominant. When

|G| → 0, |(dθ)/(dt)| ≈ |β| = |(C�)/2| = C/2 ∵ |�| = 1.

Let us assume the bacterium has reached close to the optimum.

But since we obtain |(dθ)/(dt)| = C/2, the bacterium does

not stop taking chemotactic steps but oscillates about the

optima. This crisis can be remedied if step size C is made

adaptive according to the following relation:

C = |J (θ)|
|J (θ)| + λ

= 1

1 + λ
/

|J (θ)|
(26)

where λ is a positive constant. The choice of a suitable value

for λ is discussed in the next section. Here we have assumed

that the global optimum of the cost function is 0. Thus from

(26), if J (θ) → 0, then C → 0. So there would be no

oscillation if the bacterium reaches optima because the random

search term vanishes as C → 0. The functional form given in

(26) causes C to vanish near the optima. On the other hand,

from (26) we observe that when J (θ) is large, λ/(|J (θ)|) → 0

and consequently C → 1.

The adaptation scheme presented in (26) has an important

physical significance. If the magnitude of objective function

is large for an individual bacterium, it is in the vicinity of

a noxious substance. It will then try to move to a place with

better nutrient concentration by taking large steps. On the other

hand, when the bacterium is in a nutrient-rich zone, i.e., with

small magnitude of the objective function value, it tries to

retain its position. Naturally, its step size becomes small.

F. Adaptive Chemotaxis for Avoiding the Lock in State

Let us consider an even function J (θ) (as shown in Fig. 9),

which has its minima at θ = 0 and its minimum value equal
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J(θ)

θ
P O Q

Fig. 9. Fitness landscape for the function J (θ) = θ2.

to 0. Let us also assume the function is increasing in the

interval [0, ϕ] and decreasing in [−ϕ, 0] (e.g., J (θ) = θ2 is an

even function where it is increasing in the interval (0,∞) and

decreasing in (−∞, 0) so in this case ϕ → ∞). A special case

of stagnation may occur within the region (−ϕ, ϕ). We here

refer to this situation as “lock in.” The lock in condition arises

when a bacterium has reached somewhat near the optima of

a function and its further movements are not possible due to

the comparatively large step size.

Example 1: Suppose we have to minimize a 1-D function

J (θ) = θ2. A plot of the function has been provided in Fig. 9.

In Fig. 9, let |PO| = |QO| = |θ |. We also assume that

he bacterium is currently at the position θ = θ , i.e., it is

at Q. Now, in classical chemotaxis three cases may arise as

described below:

Case I: Let step size C = 2 |θ |. Then, for � = −1, the

bacterium should move to P. But as in this case its objective

function value remains same, it does not come to P but stays

at Q [as J (θ) = J (−θ) = θ2]. As � = 1 tries to shift

the bacterium to the right (where the objective function value

increases again), it again stays at Q. Hence the bacterium gets

trapped at Q.

Case II: Let C > 2 |θ |. In that case, the bacterium remains

immobile for both values of �. Here step size is constant and

greater than 2 × |θ |. If the bacterium moves in any one of the

two directions, the value of the objective function increases.

So, bacterium is trapped.

Case III: Let C < 2 |θ |. In this case, bacterium will move

to some point in the left of origin. However, C is fixed (say,

0.5). So, after certain iterations any one of Case II and I must

arise.

The situation of the bacterium in these three cases is

depicted in Fig. 10.

Now consider the situation where the step size has been

adapted according to (26). Then we have C = (θ2)/(θ2 + λ).

The lock in states never occur if, for all possible values, of θ

C < 2|θ |

⇒ |θ |2
|θ |2 + λ

< 2|θ |

⇒ |θ |2 < 2|θ |(|θ |2 + λ)
[

∵ |θ |2 + λ > 0
]

⇒ λ >
|θ |
2

− |θ |2.

J(θ)

θ

C = ⏐PQ⏐

⏐PQ⏐

P O Q

(a)

J(θ)

C>⏐PQ⏐

⏐PQ⏐

θPP' O Q

(b)

J(θ)

C>⏐PQ⏐

⏐PQ⏐

θP P' O Q

(c)

Fig. 10. Situation of a bacterium cell near the global optimum in classical
chemotaxis: (a) Case I. (b) Case II. (c) Case III.

Let us consider f (|θ |) = (|θ |)/2 − |θ |2. The maximum

value of the function is obtained when (d f (|θ |))/(d|θ |) =
0 ⇒ |θ | = 1/4. Putting |θ | = 1/4, we get

arg max
θ

f (|θ |) = f

(

1

4

)

= 1

16
.

Hence, for all values of θ , if λ > f (|θ |) ⇒ λ > (1/16),

no trapping or sustained oscillations of the bacterium cell will

arise near the global optimum. In this case, the bacterium cell

will follow a trajectory as depicted in Fig. 11.

Next we provide a brief comparison between BFOA and the

proposed ABFOA over the 1-D objective function J (θ) = θ2.

Each algorithm uses only a single bacterium, and in both

the cases it is initialized at θ(0) = 6.0. We have taken

λ > (1/16) to avoid lock in. The results of five iterations are

tabulated in Table I and the convergence characteristics have

been graphically presented in Fig. 12. The iteration signifies
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1

O θ

J(θ)

2

Fig. 11. Convergence toward the global optima for adaptive step size in
chemotaxis.

TABLE I

VARIATION OF BACTERIUM POSITION 	 WITH CHEMOTACTIC STEPS FOR

ADAPTIVE STEP SIZE C

Chemotactic step
number

According to BFOA According to ABFOA1

θ θ

1 0.600000 0.600000

2 0.170000 -0.175862

3 0.170000 0.053353

4 0.170000 0.053353

5 0.170000 0.026712

the chemotactic step number in this case. We can observe that,

due to its constant step size, the BFOA-bacterium stops before

reaching the optima. For ABFOA, the bacterium adapts the

step size according to objective function value and gradually

nears the optima. We get a better quality of the final solution

in this case.

G. Special Case

If the optimum value of the objective function is not

exactly zero, the step size adapted according to (26) may

not vanish near optima. The step size would shrink if the

bacterium come closer to the optima, but it may not approach

zero always. To get faster convergence for such functions

it becomes necessary to modify the adaptation scheme. The

use of gradient information in the adaptation scheme, i.e.,

making the step size a function of the function gradient [say,

C = C(J (θ), G)] may not be practical enough, because in

real-life optimization problems, we often deal with discon-

tinuous and nondifferentiable functions. Note that algorithms

like standard gradient methods, quasi-Newton methods [33],

Levenbarg–Marquardt algorithm [18], etc. depend on the use

of an explicit analytical representation of the first- or second-

order derivative, something that is not needed by a foraging

or genetic algorithm. Even the classical BFOA uses only an

approximation of the gradient and not the analytical gradient

information. Thus, in order to keep BFOA a general black-

box optimizer, our adaptive scheme should be a more general

one, performing satisfactorily over discontinuous as well as

nondifferentiable objective functions. Therefore we propose
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Fig. 12. Variation of bacterial position θ with time near the global optima
for classical and adaptive chemotaxis.
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Fig. 13. Objective function with optimum value much greater than zero
and a group of seven bacteria scattered over the fitness landscape. Their step
heights are also shown.

an alternative adaptation strategy in the following way:

C = |J (θ) − Jbest |
|J (θ) − Jbest | + λ

. (27)

Jbest is the objective function value for the globally best

bacterium (one with the lowest value of the objective function).

|J (θ) − Jbest | is the deviation in fitness value of an individ-

ual bacterium from the global best. Expression (27) can be

rearranged to give

C = 1

1 + λ
|J (θ)−Jbest |

. (28)

If a bacterium is far away from the global best,

|J (θ) − Jbest | would be large, making C ≈ 1 ∵ (λ)/(|J (θ) −
Jbest |) → 0. On the other hand, if another bacterium is very

close to it, the step size of that bacterium will almost vanish

because |J (θ) − Jbest | becomes small and the denominator of

(28) grows very large. This scenario is depicted in Fig. 13. In

what follows, we shall refer to the BFOA with the adaptive

scheme of (26) as ABFOA1 and the BFOA with the adaptation

scheme described in (27) as ABFOA2.

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on October 13, 2009 at 08:38 from IEEE Xplore.  Restrictions apply. 



930 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 4, AUGUST 2009

Fig. 13 shows how the step size becomes large as the

objective function value becomes larger for an individual

bacterium. The bacterium with better function value will try

to take a smaller step and retain its present position. For the

best bacterium of the swarm, |J (θ) − Jbest | is 0. Thus, from

(27) its step size is 1/λ, which is quite small. The adaptation

scheme bears a physical significance, too. A bacterium located

at a relatively less nutrient region of the fitness landscape will

take large step sizes to attain better fitness; whereas another

bacterium located at a location best in regard to nutrient

content is unlikely to move much.
Note that the globally best solution vector (one which yields

the lowest objective function value) is employed to change the

other population members in some derivative-free optimization

techniques such as PSO [19] and the differential evolution

(in variants like DE/best/1, DE/target-to-best/1/bin, etc.) [34].

Our adaptation scheme in (27) is, however, based on the best

objective function value and not on the global best position

itself.
In this context, it is worth mentioning that the chemotactic

step size C controls the amplitude of the step taken by a

bacterium toward a random direction specified by the tumble

vector �. Effectively, the role of C is somewhat similar to the

mutation step size employed by evolutionary strategies (ESs)

[35] and evolutionary programming (EP) [36]. In some self-

adaptive variants of ES [37], [38], the mutation step size is

evolved along with other search variables. The self-adaptation

rules from ESs have also been incorporated into EP [39]. Some

variants of EP incorporating the self-adaptation of variances of

mutations have been proposed in literature [40], [41]. Recently,

Lee and Yao [42] studied a new mutation scheme for EP

based on the Lévy probability distribution. The Lévy mutation

operator proposed by them can lead to a large mutation step

size (i.e., large variance) and a large number of distinct values

in evolutionary search, as compared to the classical Gaussian

mutation. Our present adaptation schemes of the chemotactic

step size follows from a simple differential equation-based

model of the bacterial dynamics and differs substantially from

the adaptation mechanisms commonly found in the ES or EP

literature. However, it is interesting to investigate in future the

adaptation of C and � based on Cauchy or Lévy probability

density functions, taking inspirations from the works reported

in [42], [43].
For real-world optimization problems, where the optimum

value of the objective function is zero, the adaptation scheme

of (26) works satisfactorily. But for functions that do not

have a small optimum value, (27) should be used for better

convergence. Note that neither of two proposed schemes

contains the derivative of objective function, so they can be

used for discontinuous and nondifferentiable functions as well.

V. EXPERIMENTS AND RESULTS OVER BENCHMARK

FUNCTIONS

This section presents an extensive comparison among the

performances of two adaptive BFOA schemes (ABFOA1 and

ABFOA2), the classical BFOA, the BSO algorithm, a standard

real-coded GA, and one of the state-of-the-art variants of the

PSO algorithm.

A. Numerical Benchmarks

Our test suite includes 10 well-known benchmark functions

[43] of varying complexity. In Table II, p represents the

number of dimensions and we used p = 15, 30, 45, and 60

for functions f1 to f7, while functions f8 to f10 are 2-D.

The first function is unimodal with only one global minimum.

The others are multimodal with a considerable number of

local minima in the region of interest. Table II summarizes

the initialization and search ranges used for all the functions.

An asymmetrical initialization procedure has been used in this

research following the work reported in [44].

B. Algorithms Used for the Comparative Study and Their

Parametric Setup

1) BFOA and its Adaptive Variants: The original BFO and

the two adaptive BFOA schemes employ the same parametric

setup, except with the difference that the chemotactic step

sizes in ABFOA1 and ABFOA2 have been made adaptive

according to (25) and (26), respectively. After performing

a series of hand-tuning experiments, we found that keeping

λ = 4000 provides considerably good results for both the

adaptive schemes over all benchmark functions considered

here. The chemotactic step-size C(i) was kept at 0.1 in the

classical BFOA. Rest of the parameter settings that were kept

same for these algorithms have been provided in Table III. In

order to make the comparison fair enough, all runs of the three

BFOA variants start from the same initial population over all

the problem instances.

2) HPSO-TVAC Algorithm: PSO [19, 45] is a stochastic

optimization technique that draws inspiration from the behav-

ior of particles, the boids method of Reynolds, and socio-

cognition. In the classical PSO a population of particles

is initialized with random positions �X i and velocities �Vi ,

and a function f is evaluated using the particle’s positional

coordinates as input values. In a D-dimensional search space,
�X i = [xi1, xi2, . . . , xi D]T and �Vi = [vi1, vi2, . . . , vi D]T .

Positions and velocities are adjusted, and an objective

function is evaluated with the new coordinates at each time

step. The fundamental velocity and position update equations

for the dth dimension of the i th particle in the swarm may be

given as

vid(t + 1) = ω.vid(t) + C1.ϕ1.(Pid − xid(t))

+ C2.ϕ2.(Pgd − xid(t)) (29a)

xid(t + 1) = xid(t) + vid(t + 1). (29b)

The variables ϕ1 and ϕ2 are random positive numbers drawn

from a uniform distribution and restricted to an upper limit

ϕmax (usually equal to 2), which is a parameter of the system.

C1 and C2 are called acceleration coefficients, whereas ω is

known as the inertia weight. Pid is dth component of the

personal best solution found so far by an individual particle,

while Pgd represents dth element of the globally best particle

found so far in the entire community.

Ratnaweera et al. [46] recently suggested a parameter

automation strategy for PSO where the cognitive component

is reduced and the social component is increased [by varying
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TABLE II

DESCRIPTION OF THE BENCHMARK FUNCTIONS USED

Function Mathematical representation Range of search Theoretical optima

Sphere
function
( f1)

f1(�x) =
p

∑

i=1
x2

i
(–100, 100)p f1(�0) = 0

Rosenbrock
( f2)

f2(�x) =
p−1
∑

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] (–100, 100)p f2(�1) = 0

Rastrigin
( f3)

f3(�x) =
p

∑

i=1
[x2

i
− 10cos(2πxi ) + 10] (–10, 10)p f3(�0) = 0

Griewank
( f4)

f4(�x) = 1
4000

p
∑

i=1
x2

i
−

p
∏

i=1
cos

(

xi√
i

)

+ 1 (–600, 600)p f4(�0) = 0

Ackley
( f5)

f5( �X) = −20exp

(

−0.2

√

1
D

D
∑

i=1
x2

i

)

−exp

(

1
D

D
∑

i=1
cos2πxi

)

+ 20 + e

(−32, 32)p f5(�0) = 0

Step
( f6)

f6( �X) =
p

∑

i=1
(⌊xi + 0.5⌋)2 (–100, 100)p f6( �p) = 0,

− 1
2 ≤ pi < 1

2

Schwefel’s
Problem
2.22
( f7)

f7( �X) =
p

∑

i=1

|xi | +
p
∏

i=1

|xi | (–500, 500)p f7(�0) = 0

Shekel’s Fox-
holes
( f8)

f8(�x) =

⎡

⎢

⎢

⎣

1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi −ai j )

6

⎤

⎥

⎥

⎦

−1

(–65.536,
65.536)2

f8(−32, −32)

= 0.998

Six-Hump
Camel-Back
function
( f9)

f9( �X) = 4x2
1 − 2.1x4

1 + 1
3 x6

1 + x1x2 − 4x2
2 + 4x6

2 (−5, 5)

f9(0.08983,−0.7126)

= f9(−0.08983, 0.7126)

= −1.0316285

Goldstein–
Price function
( f10)

f10(�x) = {1 + (x0 + x1 + 1)2(19 − 14x0 + 3x2
0

−14x1 − 6x0x1 + 3x2
1 )}{30 + (2x0 − 3x1)2

×(18 − 32x0 + 12x2
0 + 48x1 − 36x0x1 + 27x2

1 )}
(−2, 2)2 f10(0, −1) = 3

TABLE III

COMMON PARAMETER SETUP FOR BFOA AND ADAPTIVE BFOA (ABFOA)

S Nc Ns Ned Nre ped dattractant wattractant wrepellant hrepellant λ

100 100 12 4 16 0.25 0.1 0.2 10 0.1 400

the acceleration coefficients C1 and C2 in (29a)] linearly

with time. They suggested another modification, named “self-

organizing hierarchical particle swarm optimizer,” in conjunc-

tion with the previously mentioned time varying acceleration

coefficients (HPSO-TVAC). In this method, the inertial ve-

locity term is kept at zero and the modulus of the velocity

vector is reinitialized to a random velocity, known as “re-

initialization velocity,” whenever the particle gets stagnant

(vid = 0) in some region of the search space. This way, a

series of particle swarm optimizers are generated automatically

inside the main particle system according to the behavior of

the particles in the search space, until some stopping criterion

is met. Here we compare this state-of-the-art version of PSO

with the adaptive BFOA schemes. The parametric setup for

HPSO-TVAC follows the work reported in [46]. The re-

initialization velocity is kept proportional to the maximum

allowable velocity
⇀

V max. We fixed the number of particles

equal to 40 and the inertia weight ω = 0.794. C1 was linearly

increased from 0.35 to 2.4, while C2 was allowed to decrease

linearly from 2.4 to 0.35. Finally,
⇀

V max was set at �Xmax.

3) Real-Coded GA: In this research, we used a standard

real-coded GA (also known as evolutionary algorithm or EA

[47]) that was previously found to work well on real-world

problems [48]. The EA works as follows: First, all individuals

are randomly initialized and evaluated according to a given

objective function. Afterwards, the following process will be

executed as long as the termination condition is not fulfilled:

Each individual is exposed to either mutation or recombination

(or both) operators with probabilities pm and pc, respectively.

The mutation and recombination operators used are Cauchy

mutation with an annealing scheme and arithmetic crossover,

respectively. Finally, tournament selection (of size 2) [47]

is applied between each pair of individuals to remove the

least fit members of the population. The Cauchy mutation

operator is similar to the well-known Gaussian mutation

operator, but the Cauchy distribution has thick tails that
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enable it to generate considerable changes more frequently

than the Gaussian distribution. The Cauchy distribution may

be presented as

C(x, α, β) = 1

βπ

(

1 +
(

x−α
β

)2
) (30)

where α ≥ 0, β > 0, and −∞ < x < ∞. An annealing

scheme is employed to decrease the value of β as a function

of the elapsed number of generation t while α is fixed to 0.

In this paper, we used the following annealing function:

β = 1

1 + t
. (31)

In arithmetic crossover, the offspring is generated as a

weighted mean of each gene of the two parents, i.e.,

of f springi = r.parent1i + (1 − r).parent2i . (32)

The weight r is determined by a random value between 0

and 1. Here we fixed the population size at 100, pm = 0.9,

and pc = 0.7, for all the problem instances.

4) Bacterial Swarm Optimization: Biswas et al. [27] pro-

posed a hybrid optimization technique that synergistically

couples BFOA with PSO. The algorithm, referred to as the

BSO, performs local search through the chemotactic move-

ment operation of BFOA, whereas the global search over the

entire search space is accomplished by a PSO operator. In

this way it balances between exploration and exploitation,

enjoying the best of both the worlds. In BSO, after undergoing

a chemotactic step, each bacterium also gets mutated by a

PSO operator. In this phase, the bacterium is stochastically

attracted toward the globally best position found so far in

the entire population at the current time and also toward its

previous heading direction. The PSO operator uses only the

globally best position found by the entire population to update

the velocities of the bacteria and eliminates term involving

the personal best position, as the local search in different

regions of the search space is already taken care of by the

chemotactic operator of BFOA. The parametric setup for the

algorithm was kept exactly same as described in [27]. For the

PSO operator we choose ω = 0.8 and C2 = 1.494, while for

the BFO operators the parameter values were kept as described

in Table III.

C. Simulation Strategy

The comparative study presented in this paper focuses on

the following performance metrics: 1) the quality of the final

solution; 2) the convergence speed [measured in terms of

the number of fitness function evaluations (FEs)]; and 3) the

frequency of hitting the optima. Fifty independent runs of

each of the algorithms were carried out, and the average

and the standard deviation of the best-of-run values were

recorded.

For a given function of a given dimension, 50 independent

runs of each of the six algorithms were executed, and the

average best-of-run value and the standard deviation were

obtained. Different maximum numbers of function evaluations

(FEs) were used according to the complexity of the problem.

For benchmarks f1 to f7, the stopping criterion was set as

reaching an objective function value of 0.001. However, for f8,

f9, and f10 the stopping criteria are fixed at 0.998, −1.0316,

and 3.00, respectively. In order to compare the speeds of

different algorithms, we note down the number of FEs an

algorithm takes to converge to the optimum solution (within

the given tolerance). A lower number of FEs corresponds to a

faster algorithm. We also keep track of the number of runs of

each algorithm that manage to converge within the prespecified

error limit over each problem.

We used t-tests to compare the means of the results pro-

duced by the best ABFOA scheme and the best of the other

competitor algorithms over each problem. The t-test assumes

that the data has been sampled from a normally distributed

population. From the concepts of the central limit theorem,

one may note that as the sample sizes increase, the sampling

distribution of the mean approaches a normal distribution

regardless of the shape of the original population. A sample

size of around 50 allows the normality assumptions conducive

for performing the t-tests [49].

D. Empirical Results

Table IV compares the algorithms on the quality of the

best solutions obtained. The mean and the standard deviation

(within parentheses) of the best-of-run solution for 50 inde-

pendent runs of each of the 10 algorithms are presented in

Table IV. Note that in this table, if all the runs of a particular

algorithm converge to or below the prespecified objective

function value (0.001 for f1 to f6; 0.998, −1.0316, and 3.00

for f8, f9, and f10, respectively) within the maximum number

of FEs, then we report this threshold value as the mean of

50 runs. Missing values of standard deviation in these cases

indicate a zero standard deviation. Table V shows results of

t-tests between the best algorithm and the second best in each

case (standard error of difference of the two means, 95%

confidence interval of this difference, the t-value, and the two-

tailed P value). For all cases in Table III, the sample size

was 50 and number of degrees of freedom was 98. This table

covers only those cases for which a single algorithm achieves

the best accuracy of final results. Table VI shows, for all test

functions and all algorithms, the number of runs (out of 50)

that managed to find the optimum solution (within the given

tolerance) and also the average number of FEs taken to reach

the optima along with the standard deviation (in parentheses).

Missing values of standard deviation in this table also indicate

a zero standard deviation. The entries marked as zero in this

table indicate that no runs of the corresponding algorithm

could manage to converge within the given tolerance in those

cases. In all the tables, the entries marked in bold represent

the comparatively best results. The convergence characteristics

of six most difficult benchmarks have been provided in Fig.14

for the median run of each algorithm (when the runs were

ranked according to their final accuracies). Each graph shows

how the objective function value of the best individual in a

population changes with increasing number of FEs. Some of

the illustrations have been omitted in order to save space.
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TABLE IV

AVERAGE AND THE STANDARD DEVIATION (IN PARENTHESIS) OF THE BEST-OF-RUN SOLUTION FOR 50 INDEPENDENT RUNS TESTED ON TEN

BENCHMARK FUNCTIONS

Func Dim
Maximum no.

of FEs

Mean best value (standard deviation)

BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

f1

15 5 × 104 0.0086
(0.0044)

0.001 0.001 0.001 0.001 0.001

30 1 × 105 0.084
(0.0025)

0.065
(0.0534)

0.036
(0.001)

0.056
(0.0112)

0.022
(0.00625)

0.044
(0.0721)

45 5 × 105 0.776
(0.1563)

0.383
(0.05564)

0.257
(0.0323)

0.354
(0.2239)

0.208
(0.0664)

0.419
(0.2096)

60 1 × 106 1.728
(0.2125)

1.364
(0.5136)

0.6351
(0.0298)

0.775
(0.4291)

0.427
(0.1472)

0.632
(0.5747)

f2

15 5 × 104 36.595
(28.1623)

94.472
(75.8276)

14.756
(10.5552)

0.673
(0.1454)

11.561
(2.355)

15.4931
(4.3647)

30 1 × 105 58.216
(14.3254)

706.263
(951.9533)

31.738
(3.6452)

15.471
(2.655)

4.572
(3.0631)

6.748
(2.6625)

45 5 × 105 96.873
(26.136)

935.2601
(1102.352)

67.473
(16.3526)

30.986
(4.3438)

24.663

(10.8644)

39.736
(30.6261)

60 1 × 106 154.705
(40.1632)

1264.287
(1323.5284)

109.562
(34.7275)

76.647
(24.5281)

91.257
(32.6283)

84.6473
(53.2726)

f3

15 5 × 104 10.4521
(5.6632)

9.467
(3.726)

0.4981
(0.0376)

0.2632
(0.2348)

0.3044
(0.6784)

2.6573
(0.0372)

30 1 × 105 17.5248
(9.8962)

34.837
(10.128)

3.797
(0.8241)

13.7731
(3.9453)

2.5372
(0.3820)

2.9823
(0.5719)

45 5 × 105 32.9517
(10.0034)

46.332
(22.4518)

8.536
(2.7281)

18.9461
(7.7075)

6.0236
(1.4536)

8.1121
(4.3625)

60 1 × 106 41.4823
(17.6639)

58.463
(66.4036)

12.0922
(4.5631)

10.2266
(2.8942)

8.3343
(0.2917)

9.4637
(6.7921)

f4

15 5 × 104 0.2812
(0.0216)

0.0564
(0.025810

0.05198
(0.00487)

0.1741
(0.097)

0.0321
(0.02264)

0.05113
(0.02351)

30 1 × 105 0.3729
(0.0346)

0.2175
(0.1953)

0. 2684
(0.3616)

0.2565
(0.1431)

0.1914

(0.0117)

0.2028
(0.1532)

45 5 × 105 0.6351
(0.0522)

0.4748
(0.4561)

0.3732
(0.0971)

0.5678
(0.236)

0.3069
(0.0526)

0.3065
(0.0923)

60 1 × 106 0.8324
(0.0764)

0.7462
(0.5521)

0.6961
(0.4737)

0.7113
(0.097)

0.5638
(0.3452)

0.6074
(0.5731)

f5

15 5 × 104 0.9332
(0.0287)

0.1217
(0.0125)

0.001482
(0.00817)

0.1025
(0.00347)

0.7613
(0.0542)

0.6757
(0.2741)

30 1 × 105 2.3243
(1.8833)

0.5684
(0.1927)

0.6059
(0.3372)

0.5954
(0.1246)

0.5038
(0.5512)

0.7316
(0.6745)

45 5 × 105 3.4564
(3.4394)

0.9782
(0.2029)

0.9298
(0.7631)

1.0383
(0.2542)

1.5532
(0.1945)

1.3672
(0.4618)

60 1 × 106 4.3247
(1.5613)

2.0293
(3.7361)

1.8353
(1.4635)

1. 9166
(0.536)

1.7832

(0.4581)

1.9272
(0.7734)

f6

15 5 × 104 0.0400
(0.00283)

0.001 0.001 0.001 0.001 0.001

30 1 × 105 2.0802
(0.00342)

0.7752
(0.4531)

0.001 0.4852
(0.28271)

0.001 0.001

45 5 × 105 14.7328
(3.2827)

13.8478
(2.5673)

6.8825
(0.6471)

4.2832
(0.6476)

1.1372
(0.8539)

1.2062
(0.5915)

60 1 × 106 19.8654
(4.8271)

15.8272
(2.5362)

12.6574
(0.4321)

17.6664
(0.3762)

2.3462
(0.3474)

6.1224
(1.5365)

f7

15 5 × 104 2.8271
(0.3029)

1.6645
(0.4198)

0.001 0.8817
(0.6362)

0.001 0.0442
(0.1096)

30 1 × 105 4.6354
(2.7753)

2.4861
(2.3375)

0.0642
(0.7681)

0.9043
(0.4186)

0.0084
(0.00037)

0.0405
(0.0252)

45 5 × 105 9.4563
(10.2425)

5.5674
(0.3526)

6.2452
(2.3724)

1.7828
(0.4652)

0.0484

(0.0335)

0.0563
(0.04634)

60 1 × 106 16.4638
(12.40940

10.6273
(12.4938)

11.5748
(9.3526)

6.4482
(7.4432)

0.8256
(0.2282)

1.4643
(0.9435)

f8 2 1 × 105 1.056433
(0.01217)

0.9998323
(0.00537)

0.9998329
(0.00382)

0.9998017
(0.00825)

0.9998564
(0.00697)

0.9998004
(0.00481)

f9 2 1 × 105 −0.925837
(0.000827)

−1.029922
(1.382)

−1.031149
(2.527)

−1.031242
(0.00759)

−1.03115
(0.0242)

−1.031593
(0.000472)

f10 2 1 × 105 3.656285
(0.109365)

3.1834435
(0.2645)

3.146090
(0.06237)

3.443712
(0.007326)

3.572012
(0.00093)

3.00000
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TABLE V

RESULTS OF t -TESTS ON THE DATA OF TABLE IV

Fn, Dim. Std. Err t 95% Confidence interval Two-tailed P

f1, 30 0.001 11.3352 −0.0164510 to −0.0115490 < 0.0001

f1, 45 0.010 4.6924 0.028277 to 0.069723 < 0.0001

f1, 60 0.021 9.7978 0.165951 to 0.250249 < 0.0001

f2, 15 0.334 32.6299 −11.550180 to −10.225820 < 0.0001

f2, 30 0.573 19.0122 9.761375 to 12.036625 < 0.0001

f2, 45 1.655 3.8212 3.039275 to 9.606725 = 0.0002

f2, 60 8.294 0.9646 −24.459658 to 8.459058 = 0.3371

f3, 15 0.102 0.4058 −0.242671 to 0.160271 0.6858

f3, 30 0.128 9.8071 1.004880 to 1.514720 < 0.0001

f3, 45 0.437 5.7471 1.644868 to 3.379932 < 0.0001

f3, 60 0.411 4.5999 1.075939 to 2.708661 < 0.0001

f4, 15 0.003 6.0702 0.0133808 to 0.0263792 < 0.0001

f4, 30 0.028 0.9433 −0.028808 to 0.081008 = 0.3479

f4, 45 0.019 3.5205 −0.104298 to −0.029102 0.0007

f4, 60 0.083 0.0929 −0.172197 to 0.156797 = 0.9262

f5, 15 0.039 17.3854 −0.75117727 to −0.59725873 < 0.0001

f5, 30 0.011 5.6430 −0.087318 to −0.041882 < 0.0001

f5, 45 0.126 3.4675 −0.687723 to −0.187077 = 0.0008

f5, 60 0.217 0.2402 −0.378277 to 0.482477 = 0.8107

f6, 45 0.092 20.5597 1.699894 to 2.063106 0.0001

f6, 60 0.061 42.7282 2.4899255 to 2.7324745 0.0001

f7, 30 0.109 0.5137 −0.1597643 to 0.2713643 = 0.6086

f7, 45 0.066 26.2949 1.603505 to 1.865295 < 0.0001

f7, 60 1.053 5.3390 3.532713 to 7.712487 < 0.0001

f8 0.001 0.0010 −0.002678813 to 0.002681413 0.9992

f9 0.000 2.7769 0.00010016 to 0.00060184 0.0066

f10 0.009 16.5626 0.12858610 to 0.16359390 < 0.0001

VI. DISCUSSION ON THE RESULTS

From Table IV, it may be observed that the performance of

both the adaptive variants remained consistently superior to

that of the classical BFOA over all benchmark problems. A

close inspection of Table IV also reveals that, out of 31 test

cases, the adaptive BFOA schemes (ABFOA1 or ABFOA2

or both) outperformed all other contestant algorithms in 22

cases. It is also interesting to note from Table V that, out

of these 22 benchmark instances, in 17 cases the difference

between means of the ABFOA methods and other algorithms

is statistically significant within a 95% confidence interval.

According to Table IV, EA and BSO remained the toughest

competitors of the adaptive BFOA variants in most of the

cases. The sphere function ( f1) is perhaps the easiest among

all tested benchmarks. From Tables IV and VI, we find that

for the 15-dimensional sphere 50 runs of all the algorithms

converged to or below the prespecified objective function value

of 0.001. Similar is the case for the step function ( f6) in 15

dimensions. BSO was found to yield better average accuracy

(i.e., numerically larger average value of the function) than

the proposed schemes over three cases ( f2 in 15 dimensions,

f2 in 60 dimensions, and f3 in 15 dimensions). However,

Table V indicates that, for functions f2 in 60 dimensions

and f3 in 15 dimensions, the differences are not statistically

significant. For functions f7, f8, and f9, since the optima

is not located at the origin, as expected, ABFOA2 with the

second adaptation scheme performs better than ABFOA1 and

the classical BFOA. Especially for function f9 and f10, the

final average accuracy of ABFOA2 is significantly better (as

evident from the two-tailed P-values in Table V) than all

other algorithms. Only in two cases ( f5 in 15 dimensions and

f5 in 45 dimensions). But for remaining functions ABFOA1

outperforms ABFOA2 in most of the cases. The EA was found

to outperform the adaptive BFO algorithms in a statistically

meaningful way. We find that only in two cases ( f1 in 15

dimensions and f6 in 15 dimensions) the HPSO-TVAC could

yield comparable results with respect to the EA, BSO, and

ABFOAs. We believe that the performance of this algorithm

could be improved by judiciously tuning its parameters.

Table VI and Fig. 14 are indicative of the fact that the

convergence behavior of the adaptive BFOAs has been con-

siderably improved in comparison to that of their classical

counterpart. From Table V, we note that in 24 problem

instances (out of 31) not only do the ABFOAs produce most

accurate results but they do so consuming the least amount

of computational time (measured in terms of the number of

FEs needed to converge). In addition, the frequency of hitting

the optima is also greatest for ABFOAs over most of the

benchmark problems covered here.

Since original BFOA and its adaptive variants start from the

same intial population and use a common parametetric setup,

the difference in their performance must have resulted from

the use of adaptive chemotactic step height in ABFOAs. This

observation also agrees with the simplified analytical treatment

provided in Section III.
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Fig. 14. Progress toward the optimum solution: (a)–(e) for dimension = 60 and (f) for dimension = 2.

VII. APPLICATION TO PARAMETER ESTIMATION FOR

FREQUENCY-MODULATED (FM) SOUND WAVES

Frequency-modulated (FM) sound synthesis plays an im-

portant role in several modern music systems. This section

describes an interesting application of the proposed ABFO

algorithms to the optimization of parameters of an FM synthe-

sizer. A few related works that attempt to estimate parameters

of the FM synthesizer using GA can be found in [50], [51].

Here, we introduce a system that can automatically generate

sounds similar to the target sounds. It consists of an FM

synthesizer, an ABFOA core, and a feature extractor. The

system architecture is shown in Fig. 15. The target sound is

a .wav file. The ABFOA initializes a set of parameters, and

the FM synthesizer generates the corresponding sounds. In the

feature extraction step, the dissimilarities of features between
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TABLE VI

NUMBER OF SUCCESSFUL RUNS, MEAN NUMBER OF FES AND STANDARD DEVIATION (IN PARANTHESIS) REQUIRED TO CONVERGE TO THE

THRESHOLD OBJECTIVE FUNCTION VALUE OVER THE SUCCESSFUL RUNS FOR FUNCTIONS f1 TO f10

Func Dim.
No. of runs converging to the pre-defined objective function value, mean no. of FEs required and
(standard deviation)

BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

f1

15 50, 16253.20
(445.34)

50, 12044.22
(610.298)

50, 13423.68
(341.827)

50, 1544.34
(85.261)

50, 1932.64
(140.492)

50, 4317.22
(310.298)

30 37, 48931.5
(0.025)

42, 18298.21
(130.34)

44, 7364.32
(223.83)

42, 8367.86
(450.12)

46, 3473.50
(346.22)

38, 13296.46
(674.25)

45 24, 172228.73
(6473.45)

45, 84712.34
(2552.34)

41, 36523.46
(2326.74)

39, 74782.63
(6638.93)

43, 17832.65
(1423.45)

32, 23876.65
(7731.63)

60 8, 454563.25
(7653.44)

10, 676278.60
(10183.23)

31, 337822.63
(7198.45)

25, 167322.43
(0.4291)

36, 88934.50

(4512.46)

32, 72874.34
(6722.91)

f2

15 0 0 1, 48585 10, 47483.50

(2561.67)

4, 16374.50
(6231.59)

0

30 1, 93723 0 2, 76874.5
(9324.76)

4, 77563.75
(558.34)

7, 87539.57
(4648.33)

1, 80348

45 0 0 0 1, 127687 0 0

60 0 0 0 1, 363727 0 0

f3

15 0 0 24, 17474.25
(2327.58)

23, 28731
(7583.73)

20, 33928.25
(5753.83)

13, 19823.56
(4100.67)

30 0 0 4, 73483.50
(11142.76)

0 16, 74722.52
(3432.67)

5, 57382.60
(3423.73)

45 0 0 1, 372833 0 9, 175834.67
(3342.76)

1, 46736.83

60 0 0 0 0 5, 478237.20
(22938.26)

0

f4

15 0 18, 37583.67
(7432.82)

16, 41029.75
(3732.68)

6, 14784.33
(4838.37)

28, 26473.05
(3425.69)

20, 29280.46
(4463.27)

30 0 10, 75834.80
(4877.89)

6, 85734.46
(4000.03)

9, 81634.46
(4637.83)

24, 75834.46
(4637.83)

23, 78583.37

(10093.35)

45 0 7, 292643.54
(2281.45)

4, 394852.75
(33621.38)

6, 475832.65
(1343.73)

22, 137474.73
(4473.26)

14, 302934.57
(5548.38)

60 0 0 1, 543736 0 14, 476375.43
(8636.55)

10, 367482.60
(2386.43)

f5

15 0 27, 38232.57
(4537.54)

46, 18473.62
(2276.83)

35, 27484.78
(7473.56)

23, 23789.67
(4839.57)

15, 24837.45
(4739.78)

30 0 23, 74623.45
(3336.32)

24, 73832.68
(10298.56)

16, 84737.68
(4451.27)

27, 54672.22
(6748.46)

29, 84733.57
(3034.92)

45 0 0.9782
(0.2029)

18, 264723.57
(46.223)

12, 472631.67
(4948.68)

20, 302862.60
(13741.34)

17, 383721.47
(17356.05)

60 0 0 1, 634637 2, 737620.50
(3442.33)

4, 607232.25

(34812.67)

0

f6

15 43, 6378.46
(394.35)

50, 16478.84
(425.32)

50, 33623.46
(364.38)

50, 46354.44
(2257.27)

50, 10923.56

(3364.29)

50, 22635.80
(1214.23)

30 23, 84747.45
(3476.48)

16, 79534.32
(7904.52)

50, 68794.24
(6068.45)

39, 64726.32
(9830.51)

50, 63778.40
(2385.31)

50, 64532.64
(9336.46)

45 0 0 34, 265732.58
(14527.35)

25, 748237.40
(4752.87)

42, 205472.02
(8109.56)

40, 284938.64
(7573.24)

60 0 0 20, 684723.80
(13427.46)

0 34, 475978.73
(5741.27)

26, 584032.51
(4535.34)

f7

15 34, 27243.44
(447.03)

32, 29583.49
(341.57)

50, 17263.92
(832.45)

31, 48374.34
(227.48)

50, 16279.52
(723.47)

43, 17563.46
(519.46)

30 24, 64534.69
(4724.56)

30, 69203.67
(7311.46)

18, 73945.57
(3427.47)

27, 74932.33
(4825.45)

40, 78473.50

(3412.67)

37, 64722.59
(5174.38)

45 0 0 0 23, 126377.65
(7106.74)

34, 192935.37

(3691.62)

25, 328372.63
(7148.42)

60 0 0 0 0 12, 542536.73
(2353.19)

8, 632372.35
(12305.37)

f8 2 38, 32928.14
(4118.982)

23, 26843.92
(6323.372)

50, 30272.74
(3642.289)

50, 19823.70
(4249.392)

44, 20354.77
(326.84)

50, 12928.50
(15.749)

f9 2 46, 25374.87
(2643.839)

40, 31928.70
(1434.327)

50, 28372.74
(325.673)

50, 66290.80
(7553.388)

26, 87812.83
(409.54)

50, 24883.78
(3172.827)

f10 2 35, 139584.44
(2563.378)

30, 347285.80
(3382.229)

42, 129372.87
(8742.093)

50, 126574.64
(6833.189)

40, 578732.05,
(3884.94)

50, 50039.60
(481.278)
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TABLE VII

AVERAGE AND THE STANDARD DEVIATION OF THE BEST-OF-RUN SOLUTION FOR 50 RUNS OF SIX ALGORITHMS ON THE FREQUENCY MODULATOR

SYNTHESIS DESIGN PROBLEM. EACH ALGORITHM WAS RUN FOR 106FES

Mean best-of-run solution (std. deviation)

BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

2.74849
(0.8314)

0.76535
(0.1154)

0.0154
(0.00264)

0.75932
(0.2735)

0.00365
(0.000851)

0.00451
(0.00163)

TABLE VIII

NO. OF SUCCESSFUL RUNS, MEAN NUMBER OF FES AND STANDARD DEVIATION (IN PARANTHESIS) REQUIRED TO CONVERGE TO THE THRESHOLD

FITNESS OVER THE SUCCESSFUL RUNS FOR THE FREQUENCY MODULATOR SYNTHESIS DESIGN PROBLEM

No. of runs converging to the predefined objective function value, mean no. of FEs required, and (standard deviation)

BFOA HPSO-TVAC EA BSO ABFOA1 ABFOA2

0 6, 579534.32
(7904.52)

29, 868794.24
(63068.45)

23, 864726.32
(12830.51)

42, 113778.40

(9385.31)

36, 164532.64
(9336.46)

× 105
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Fig. 15. Progress toward the optimum solution for the frequency modulator
synthesis problem.
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Fig. 16. Actual target sound and the waveform synthesized by ABFOA1.

the target sound and synthesized sounds are used to compute

the fitness value. The process repeats until synthesized sounds

become very similar to the target.

The specific instance of the problem discussed here

involves determination of six real parameters �X =
{a1, ω1, a2, ω2, a3, ω3} of the FM sound wave given by (32)

for approximating it to the sound wave given in (34) where

θ = 2π
/

100. The parameters are defined in the range [−6.4,

+6.35]

y(t) = a1.sin(ω1.t.θ + a2.sin(ω2.t.θ + a3.sin(ω3.t.θ))) (33)

FM Synthesizer
Bacterium

Target

Sound Fitness

Estimated

Waveform

ABFOA Core

Feature Extraction/

Comparison

Fig. 17. Architecture of the optimization system.

y0(t) = 1.0.sin(5.0.t.θ − 1.5.sin(4.8.t.θ + 2.0.sin(4.9.t.θ))).

(34)

The goal is to minimize the sum of square errors given by

(35). This problem is a highly complex multimodal function

having strong epistasis (interrelation among the variables),

with the optimum value 0.0

f ( �X) =
100
∑

t=0

(y(t) − y0(t))
2. (35)

Due to the high difficulty of solving this problem with

high accuracy without specific operators for continuous opti-

mization (like gradual GAs [31]), we terminate the algorithm

when either the error falls below 0.001 or the number of FEs

exceed 106. Like the previous experiments, here also each run

of the classical BFOA, ABFOA1, and ABFOA2 start with the

same initial population.

In Table VII, we indicate the mean and the standard

deviation (within parentheses) of the best-of-run values for

50 independent runs of each of the six algorithms over the

FM synthesizer problem. The t-test performed on the data

of Table VII indicates that the final mean accuracy of both

the adaptive variants differ from their nearest competitor EA

in a statistically significant fashion within 95% confidence

interval. Table VIII shows, for all algorithms, the number

of runs (out of 50) that managed to find the optimum at

or below 0.001 without exceeding the maximum number of

FEs. The table also reports the average number of FEs taken

to reach the optima along with the standard deviation (in

parentheses). Fig. 16 shows the convergence characteristics of

six algorithms in terms of the objective function value versus

number of FEs in their median run. Finally, in Fig. 17 we show
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Fig. 18. Two-bacterium system on a 1-D fitness landscape.

the target waveform and synthesized waveform by ABFOA1,

which yields the closest approximation of the target wave.

Tables VII and VIII and Fig. 16 indicate the superior

performance of ABFOA1 over all its contestant algorithms in

terms of final accuracy, convergence speed, and robustness.

Fig. 17 shows that the waveform estimated by ABFOA1

achieves a high level of correspondence with the actual FM

sound wave.

VIII. CONCLUSION

This paper has presented a simple mathematical analysis

of the computational chemotaxis used in the BFOA. It also

proposed simple schemes to adapt the chemotactic step size

in BFOA with a view to improving its convergence behavior

without imposing additional requirements in terms of the

number of FEs. It has analytically been shown that the

proposed adaptation schemes can avoid the oscillation around

the optima or the stagnation near optima for a 1-D bacterium

cell. The classical BFOA was compared with the adaptive

BFOAs and a few other well-known evolutionary and swarm-

based algorithms over a test bed of 10 well-known numerical

benchmarks. The following performance metrics were used: 1)

solution quality; 2) speed of convergence; and 3) frequency of

hitting the optimum. The adaptive BFO variants were shown

to provide better results than their classical counterpart for

all of the tested problems. Moreover, the adaptive schemes

outperformed a state-of-the-art variant of PSO, a standard real-

coded GA, and a hybrid algorithm based on PSO and BFOA

in a statistically meaningful fashion.

Although the adaptive schemes yielded superior results

in the majority of the test cases, we must remember that

this paper does not primarily aim at proposing a series of

improved BFOA variants. Rather, it tries to understand how

the chemotactic operator contributes to the search mechanism

of BFOA, from a mathematical point of view. We believe that

the performance of the competitor algorithms may also be

enhanced with judicious parameter tuning, which renders itself

to further research with them. However, the only conclusion

we can draw at this point is that the adaptive chemotactic

operators have an edge over the classical chemotaxis, espe-

cially in context to the convergence behavior of the algorithm

very near the optima. This fact has been supported here both

analytically and experimentally.

Future research may focus on extending the analysis pre-

sented in this paper to a group of bacteria working on a

multidimensional fitness landscape and also include effect of

the reproduction and elimination–dispersal events in the same.

Other adaptation schemes of the chemotactic step size may

also be investigated as well.

APPENDIX

Here, we are interested in the grouped behavior of two

bacteria. Cost function value for each bacterium is modified

if we consider mutual signaling between two bacteria. Let, θ1

and θ2 be the θ coordinates of two bacteria placed within the

1-D search space. J (θ1) and J (θ2) are the corresponding cost

functions for their current positions as shown in Fig. 18. Let

us also assume that V1 and V2 represent their velocities. After

modifying cost function (J ) by adding a cell-to-cell signaling

function (Jcc), it becomes J ′ (say), where

∴ J ′(θ1) = J (θ1) + Jcc and J ′(θ2) = J (θ2) + Jcc

and

Jcc = −daexp{−ωa(θ2 − θ1)
2}

+ hr exp{−ωr (θ2 − θ1)
2} [from (2)]

where ωa and ωr stand for ωattractant and ωrepellant, re-

spectively, and da and hr represent dattractant and hrepellant,

respectively

⇒ Jcc = −h[exp{−ωa(θ2 − θ1)
2}

− exp{−ωr (θ2 − θ1)
2}][∵ da = hr = h(say)]

From the above expressions, we can infer that

1) J ′(θ1), which is the modified cost function value for

bacterium at θ1, depends on θ1 as well as on θ2. In other

words, the modified cost function for a particular bacterium

may change even if it remains standstill, given that the other

bacterium changes its position.

2) The cell-to-cell signal phenomenon can affect only

the local search in BFOA. To illustrate this, let us assume

|θ2−θ1| >> 1, i.e., and a large distance separates two bacteria.

As exp{−ωa(θ2 − θ1)
2} → 0, exp{−ωr (θ2 − θ1)

2} → 0, we

may have Jcc → 0. It is clear that when the two bacteria are

far away from each other, cell-to-cell signaling effect becomes

feeble and the situation resembles that for a single bacterium

system discussed earlier. Similar to one bacterium system, here

we assume fitness landscape to be flat in the region of interest.

Analysis:

Similar to the one-bacterium system, the unit step function

is used to model chemotaxis in this case

⇒ �θ1

�t
= u

[

− J ′(θ1 + �θ1) − J ′(θ1)

�t

]

.C.�.

θ1 and θ2 are functions of t . When t changes, θ1 and θ2

change, causing J ′(θ1) to change. Thus when �t → 0, the
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above relation becomes

V1 = dθ1

dt
= u

[

−d J ′(θ1)

dt

]

.C.�. (36)

V1 = dθ1

dt
= u

[

−d J ′(θ1)

dt

]

.C.�.

Similarly,

V2 = dθ2

dt
= u

[

−d J ′(θ2)

dt

]

.C.�. (37)

Already we have shown that J ′(θ1) depends on both of θ1

and θ2. Again, θ1 and θ2 depend on time. Applying the rule

of total derivatives, we get

d J ′(θ1)

dt
= ∂ J ′(θ1)

∂θ1

dθ1

dt
+ ∂ J ′(θ1)

∂θ2

dθ2

dt
. (38)

Substituting the value of J ′(θ1) in (38), performing partial

differentiation, and letting ψ = 2h(θ2 − θ1)[ωaexp{−ωa(θ2 −
θ1)

2} − ωr exp{−ωr (θ2 − θ1)
2}], finally we get

d J ′(θ1)

dt
=

(

d J (θ1)

dθ1
− ψ

)

dθ1

dt
+ ψ

dθ2

dt

⇒ d J ′(θ1)

dt
= (G1 − ψ)V1 + ψV2. (39)

Similarly, we can show that

d J ′(θ2)

dt
= (G2 + ψ)V2 − ψV1 (40)

where G1 = (d J (θ1))/(dθ1) and G2 = (d J (θ2))/(dθ2).

We assumed |θ2 − θ1| << 1, so neglecting higher order

terms in expansion of e−x , we get

ψ ≈ 2h(θ2 − θ1)(ωa − ωr )[1 − (ωa + ωr )(θ2 − θ1)
2]. (41)

ψ, G1, G2, V1, V2 are small. Hence, (d J ′(θ1))/(dt) and

(d J ′(θ2))/(dt) are small. So, unit step function in (36) and

(37) can be modeled using the relation u(x) ≈ (k/4)x + (1/2)

Thus,

V1 = dθ1

dt
= u

[

−d J ′(θ1)

dt

]

C� ≈
[

−k

4

d J ′(θ1)

dt
+ 1

2

]

× C� (42)

and

V2 = dθ2

dt
= u

[

−d J ′(θ2)

dt

]

C� ≈
[

−k

4

d J ′(θ2)

dt
+ 1

2

]

× C�. (43)

Substituting the values of (d J ′(θ1))/(dt) and

(d J ′(θ2))/(dt) from (39) and (40) to (42) and (43),

respectively

[4 + kC�(G1 − ψ)]V1 + kC�ψV2 = 2C� (44)

and

[4 + kC�(G2 + ψ)]V2 − kC�ψV1 = 2C�. (45)

The above equations show that velocities of two bacteria

are coupled. We solve for V1 from (44) and (45)

V1 = 8C� + 2kC2�2G2

16 + k2C2�2{G1G2 + ψ(G1 − G2)} + 4kC�(G1 + G2)

for �2 = 1[∵ � = 1or� = −1], and neglecting product of

gradients

V1 ≈
C�

2 + kC2

8 G2

1 + k2C2

16 ψ(G1 − G2) + kC�
4 (G1 + G2)

.

(Now, in the denominator 1 is much larger than remaining

terms. So, we use approximate relation, (1)/(1 + x) ≈ 1 − x

for simplification.)

V1 ≈ C�

2
− kC2

8
G1 − k�

32
[kψ(G1 − G2)

+G2(G1 + G2)]C
3 − k3ψ

128
G2(G1 − G2)C

4. (46)

It is general equation for the two-bacteria system. A careful

inspection of (45) reveals that

1) V1 = a0C + a1C2 + a2C3 + a3C4 where, ai =
f (G1, G2, θ2, θ1,�, ωa, ωr , h, k), i.e., the velocity can be

expressed as a polynomial of step size.

2) C is very small. So, last two terms on the RHS of (46)

have lesser contributions. We conclude that first two terms

dominate the relation, i.e., V1 ≈ (C�/2)−((kC2)/8)G1. This

is the equation obtained for single-bacterium system.

3) When kψ(G1 −G2) >> G2(G1 +G2), we neglect latter

as a coefficient of C3.

Also, substituting ψ = 2h(θ2−θ1)[ωaexp{−ωa(θ2−θ1)
2}−

ωr exp{−ωr (θ2 − θ1)
2}], we get

V1 ≈ −kC2

8
G1 + C.�

2
+ τ(θ2 − θ1) (47)

where τ = f (G1, G2, C, θ2, θ1,�, ωa, ωr , h, k). It has a very

complicated form, but its magnitude is small. Expression

(46) reveals an interesting feature of the two-bacteria system.

The first two terms on the RHS are exactly similar to those

of the one-bacterium system described by (12). But the

third term, i.e., τ(θ2 − θ1), shows swarming effect. This

term is introduced due to the effect of other bacterium in

its dynamics, although its magnitude is considerably smaller

than the first two terms in (47).
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