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ADAPTIVE CONFIDENCE BALLS1

BY T. TONY CAI AND MARK G. LOW

University of Pennsylvania

Adaptive confidence balls are constructed for individual resolution lev-
els as well as the entire mean vector in a multiresolution framework. Finite
sample lower bounds are given for the minimum expected squared radius for
confidence balls with a prespecified confidence level. The confidence balls
are centered on adaptive estimators based on special local block threshold-
ing rules. The radius is derived from an analysis of the loss of this adaptive
estimator. In addition adaptive honest confidence balls are constructed which
have guaranteed coverage probability over all of R

N and expected squared
radius adapting over a maximum range of Besov bodies.

1. Introduction. A central goal in nonparametric function estimation, and
one which has been the focus of much attention in the statistics literature, is the
construction of adaptive estimators. Informally, an adaptive procedure automati-
cally adjusts to the smoothness properties of the underlying function. A common
way to evaluate such a procedure is to compute its maximum risk over a collection
of parameter spaces and to compare these values to the minimax risk over each of
them.

It should be stressed that such adaptive estimators do not provide a data-
dependent estimate of the loss, nor do they immediately yield easily constructed
adaptive confidence sets. Such confidence sets should have size which adapts to the
smoothness of the underlying function while maintaining a prespecified coverage
probability over a given function space. Moreover, it is clearly desirable to center
such confidence sets on estimators which possess other strong optimality proper-
ties. In the present paper, a confidence ball is constructed centered on a special
block thresholding rule which has particularly good spatial adaptivity. The radius
is built upon good estimates of loss.

We focus on a sequence of statistical models commonly used in the adaptive
estimation literature, namely, a multivariate normal model with mean vector cor-
responding to wavelet coefficients. More specifically, consider the models

yj,k = θj,k + 1√
n
zj,k, j = 0,1, . . . , J − 1, k = 1, . . . ,2j ,(1)
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where zj,k
i.i.d.∼ N(0,1) and where it is assumed that N is a function of n,

2J − 1 = N and that the mean vector θ lies in a parameter space �. In the present
work, confidence balls are constructed over collections of Besov bodies

Bβ
p,q(M) =

{
θ :

(
J−1∑
j=0

(
2js

( 2j∑
k=1

|θj,k|p
)1/p)q)1/q

≤ M

}
,(2)

where s = β + 1
2 − 1

p
> 0 and p ≥ 2. In particular, these spaces contain as spe-

cial cases a number of traditional smoothness classes such as Sobolev and Hölder
spaces. Although not needed for the development given in this paper, it may be
helpful to think of the θj,k as wavelet coefficients of a regression function f .
A confidence ball for the vector θ then yields a corresponding confidence ball
for the regression function f . See, for example, [8], where such an approach is
taken. Based on the model (1), we introduce new estimates of the loss of block
thresholding estimators and use these estimates to construct confidence balls.

In the context of confidence balls, adaptation over a general collection of pa-
rameter spaces C = {�i : i ∈ I } where I is an index set can be made precise as
follows. An adaptive confidence ball guarantees a given coverage probability over
the union of these spaces while simultaneously minimizing the maximum expected
squared radius over each of the parameter spaces. Write Bα,� for the collection
of all confidence balls which have coverage probability of at least 1 − α over �.
Write r2(CB,�) for the maximum expected squared radius of a confidence ball CB
over � and r2

α(�) for the minimax expected squared radius over confidence balls
in Bα,�. Then r2

α(�) is the smallest maximum expected squared radius of con-
fidence balls with guaranteed coverage over �. Adaptation over the collection C
can then be defined as follows. Let �I = ⋃

i∈I �i . A confidence ball CB ∈ Bα,�I

is called adaptive over C if for all i ∈ I , r2(CB,�i) ≤ Cir
2
α(�i) where Ci are con-

stants not depending on n, and we say that adaptation is possible over C if such a
procedure exists.

In a multivariate normal setup as given in the model (1) with N = n, Li [11]
constructs adaptive confidence balls for the mean vector which have a given cov-
erage over all of R

N . It was shown that under this constraint the squared radius
of the ball must, with high probability, be bounded from below by cn−1/4 for all
choices of the unknown mean vector. Moreover a confidence ball was constructed
centered on a shrinkage estimator which attains this lower bound at least for some
subsets of R

N .
Hoffmann and Lepski [9] introduce the concept of a random normalizing factor

into the study of nonparametric function estimation and used this idea to construct
asymptotic confidence balls which adapt over a collection of finitely many para-
meter spaces. In particular, their results can be used to yield asymptotic confidence
balls which adapt over a finite number of Sobolev bodies. Baraud [1] is a further
development of both Li [11] and Hoffman and Lepski [9] concentrating on confi-
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dence balls which perform well over a finite family of linear subspaces. An honest
confidence ball over R

N was constructed such that the radius adapts with high
probability to a given collection of subspaces.

Juditsky and Lambert-Lacroix [10] develop adaptive L2 confidence balls for a
function f in a nonparametric regression setup with equally spaced design. The
paper used unbiased estimates of risk to construct minimax rate adaptive proce-
dures over Besov spaces. It focused on the asymptotic performance and detailed
finite sample results were not given. Robins and van der Vaart [12] use sample
splitting to divide the construction of the center and radius of a confidence ball
into independent problems and show how to use estimates of quadratic functionals
to construct adaptive confidence balls.

In the present paper the focus is on finite sample properties of adaptive confi-
dence balls centered on a special local block thresholding estimator known to have
strong adaptivity under mean integrated squared error. The radius is derived from
an analysis of the loss of this adaptive estimator. The evaluation of the performance
of the resulting confidence ball relies on a detailed understanding of the interplay
between these two estimates. Three cases of interest are considered in detail. We
first construct confidence balls for the mean vector at individual resolution levels.
Then adaptive confidence balls are constructed for all N coefficients over Besov
bodies. Finally we consider honest confidence balls over all of R

N and expected
squared radius adapting over a maximum range of Besov bodies.

The paper is organized as follows. Section 2 is focused on constructing confi-
dence balls for the mean vector associated with a single resolution level j in the
Gaussian model (1). These confidence balls can be used in a multiresolution study.
Finite sample lower bounds are given for the expected squared radius of confidence
balls which have a prescribed minimum coverage level over a given Besov body.
Bounds are given for the maximum expected squared radius as well as when the
mean vector is equal to zero. Confidence balls which have an expected squared ra-
dius within a constant factor of both these lower bounds are constructed. We show
that the problem is degenerate over a certain range of Besov bodies beyond which
full adaptation is possible. Adaptive confidence balls are constructed centered on
a block thresholding estimator. The results and ideas given in this section are used
as building blocks in the analysis and construction of adaptive confidence balls for
all N coefficients in Sections 3 and 4.

The focus of Section 3 is on the construction and analysis of confidence balls
with a specified minimal coverage probability over a given Besov body B

β
p,q(M).

It is shown that the possible range of adaptation depends on the relationship
between the dimension N and the noise level. Adaptive confidence balls are
constructed over a maximal range of Besov bodies. These results are markedly
different from the bounds derived for adaptive estimation or adaptive confidence
intervals.
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In Section 4 confidence balls are constructed which have guaranteed coverage
probability over all of R

N . This procedure has a number of strong optimality prop-
erties. It adapts over a maximal range of Besov bodies over which honest confi-
dence balls can adapt. Moreover, given that the confidence ball has a prespecified
coverage probability over R

N , it has maximum expected squared radius within a
constant factor of the smallest maximum expected squared radius for all Besov
bodies B

β
p,q(M) with β > 0 and M ≥ 1.

Proofs are given in Section 5.

2. Adaptive confidence balls for a single resolution level. As mentioned in
the Introduction, the mean θj,k in the model (1) can be thought of as the kth co-
efficient at level j in a wavelet expansion of a function f . The different levels j

allow for a multiresolution analysis where the coefficients with small values of j

correspond to coarse features and where the coefficients with large values of j cor-
respond to fine features. In this section we first fix a level j and focus not only on
estimating the sequence of means at that level but also on constructing honest con-
fidence balls for this set of coefficients.

Confidence balls are constructed which maintain coverage no matter the values
of θj,k and have an expected radius adapting to these coefficients over a range of
Besov bodies. The analysis given in this section also provides insight (as is shown
in Sections 3 and 4) into the problem of estimating all the wavelet coefficients
across different levels.

In the following analysis, for a given level j , write θj for the sequence of mean
values at this given resolution level. That is, θj = {θj,k :k = 1, . . . ,2j }. The analy-
sis can then naturally be divided into two parts. We start with lower bounds for the
expected squared radius of confidence balls which have a given coverage probabil-
ity over a given Besov body. Two lower bounds are given. One is for the expected
squared radius when all the coefficients are zero. The other is for the maximum
expected squared radius. Set zα = �−1(1 − α), where � is the cumulative distrib-
ution function of a standard Normal random variable.

THEOREM 1. Fix 0 < α < 1
2 and let CB(δ, rα) = {θj :‖θj − δ‖2 ≤ rα} be a

confidence ball for θj with random radius rα which has a guaranteed coverage

probability over B
β
p,q(M) of at least 1 − α. Then for any 0 < ε < 1

2(1
2 − α)

sup
θ∈B

β
p,q (M)

Eθ(r
2
α) ≥ ε2

1 − α − ε
min(M22−2βj , z2

α+2ε2jn−1).(3)

Moreover, for any 0 < ε < 1
2 − α,

E0(r
2
α) ≥ 1

4(1 − 2α − 2ε)min
(
M22−2βj , log1/2(1 + ε2)2j/2n−1)

,(4)

where E0 denotes expectation under θ = 0.
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It is useful to note that the maximum value of
∑

k θ2
j,k at a given level j

over the Besov body B
β
p,q(M) is M22−2βj . Hence, from (4), if M22−2βj <

log1/2(1 + ε2)2j/2n−1 the lower bound for the expected squared radius when
the mean vector is equal to zero is a constant multiple of M22−2βj . It follows
that if a given coverage probability is guaranteed over B

β
p,q(M) then the max-

imum expected squared radius over any other Besov body must also be of this
same order. It should be stressed that this is really a degenerate case since the
trivial ball centered at zero with squared radius equal to M22−2βj is within a
constant factor of the lower bounds given in (3) and (4) and has coverage prob-
ability equal to one. Thus we shall focus only on the construction of confidence
balls which have a given coverage probability at least over Besov bodies where
M22−2βj > log1/2(1 + ε2)2j/2n−1. In particular, we only need to consider resolu-
tion levels j = jn satisfying 2j ≤ n2 since resolution levels with 2j > n2 satisfy
M22−2βj ≤ log1/2(1 + ε2)2j/2n−1 at least for large n. Moreover, since little is to
be gained for levels where 2j ≤ logn, by using confidence balls with random ra-
dius in such cases we shall just use the usual 100(1−α)% confidence ball centered
on the observations yj,k . Thus in the following construction attention is focused
on cases where logn ≤ 2j ≤ n2.

As mentioned in the Introduction, the center of the ball is constructed by local
thresholding. Set L = logn and let B

j
i = {(j, k) : (i − 1)L + 1 ≤ k ≤ iL}, 1 ≤ i ≤

2j /L, denote the set of indices of the coefficients in the ith block at level j . For a
given block B

j
i , set

S2
j,i ≡ ∑

(j,k)∈B
j
i

y2
j,k, ξ2

j,i ≡ ∑
(j,k)∈B

j
i

θ2
j,k and χ2

j,i ≡ ∑
(j,k)∈B

j
i

z2
j,k.(5)

Let λ∗ = 6.9368 be the root of the equation λ− logλ = 5. This threshold is similar
to the one used in [4, 5]. Then the center θ̂ = (θ̂j,k) is defined by

θ̂j,k = yj,k · I (S2
j,i ≥ λ∗Ln−1).(6)

It follows from [5] that this local block thresholding rule has strong adaptivity
under both global and local risk measures. We now show how the loss ‖θ̂j − θj‖2

2
of this estimator can be estimated and used in the construction of the radius of the
confidence ball. Note that θj,k equals either 0 or yj,k and hence the loss can be
broken into two terms,∑

k

(θ̂j,k − θj,k)
2 = ∑

i

ξ2
j,iI (S2

j,i ≤ λ∗Ln−1)

+ ∑
i

n−1χ2
j,iI (S2

j,i > λ∗Ln−1).
(7)

The first term can be handled by using an estimate of a quadratic functional. The
other term can be analyzed using the fact that χ2

j,i has a central chi-squared distri-
bution.
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Let (x)+ denote max(0, x) and set

r2
α =

[
2 log1/2

(
2

α

)
+ 4λ1/2∗ zα/2

]
2j/2n−1

+
(∑

i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

+ (2λ∗ + 8λ1/2∗ − 1)Ln−1 Card{i :S2
j,i > λ∗Ln−1}.

(8)

The confidence ball is then defined as

CB∗(θ̂j , rα) = {θj :‖θj − θ̂j‖2 ≤ rα}(9)

where, when 2j ≥ logn, the center θ̂j is given as in (6) and the radius given in (8)
and where θ̂j = yj,k and rα is the radius of the usual 100(1 − α)% confidence ball
when 2j < logn.

THEOREM 2. Let the confidence ball CB∗(θ̂ , rα) be given as in (9) and sup-
pose that the resolution level j satisfies 2j ≤ n2. Then

inf
θ∈RN

P
(
θj ∈ CB∗(θ̂ , rα)

) ≥ 1 − α − 2(logn)−1,(10)

and for a constant Cβ depending only on β ,

sup
θ∈B

β
p,q(M)

E(r2
α) ≤

[
2 log1/2

(
2

α

)
+ 4λ1/2∗ zα/2 + 4

]
2j/2n−1

+ Cβ min(2jn−1,M22−2βj ).

(11)

Note that the confidence ball constructed above attains the minimax lower
bound given in (3) simultaneously over all Besov bodies B

β
p,q(M) with M22−2βj >

log1/2(1 + ε2)2j/2n−1. This is true even though the confidence ball has a given
level of coverage for all θ in R

N .

3. Adaptive confidence balls over Besov bodies. The confidence balls con-
structed in Section 2 focused on a given resolution level. In this section this
construction is extended to the more complicated case of estimating all N coeffi-
cients of θ . Specifically, we consider adaptation over a collection of Besov bodies
B

β
p,q(M) with p ≥ 2. It should be stressed that the theory developed in this sec-

tion for adaptive confidence balls is quite different from that of adaptive estimation
theory where adaptation under global losses is possible over all Besov bodies. In
particular, adaptation for confidence balls is only possible over a much smaller
range of Besov bodies.
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In Section 3.1 a lower bound is given on both the maximum and the minimum
expected squared radius for any confidence ball with a particular coverage prob-
ability over a Besov body. As in Section 2, these lower bounds provide a funda-
mental limit to the range of Besov bodies where adaptation is possible. Adaptive
confidence balls are described in Section 3.2. They build on the construction given
in Section 2. The center uses the special local block thresholding rule used in Sec-
tion 2 up to a particular level and then estimates the remaining coordinates by
zero. The radius is chosen based on an estimate of the loss of this block thresh-
olding estimate. The analysis of the resulting confidence ball relies on a detailed
understanding of the interplay between these two estimates.

3.1. Lower bounds. Theorem 1 provides lower bounds for the expected
squared radius of a confidence ball for the mean vector at a given resolution level
with a given coverage over B

β
p,q(M). In this section lower bounds are given for the

expected squared radius for the whole mean vector for any confidence ball which
has a given coverage probability over B

β
p,q(M). There are two lower bounds, one

for the maximum expected squared radius and one for the minimum expected
squared radius. We shall show that these two lower bounds determine the range
over which adaptation is possible.

THEOREM 3. Fix 0 < α < 1
2 and let CB(δ, rα) = {θ :‖θ −δ‖2 ≤ rα} be a 1−α

level confidence ball for θ ∈ B
β
p,q(M) with random radius rα . Then

sup
θ∈B

β
p,q(M)

Eθ(r
2
α)

≥ ε2

1 − α − ε
z2
α+2ε min

(
Nn−1, z

−2q/(1+2β)
α+2ε M2/(1+2β)n−2β/(1+2β)).

(12)

For any 0 < ε < 1
2 − α, set γ = log(1 + ε2). For 0 < M ′ < M set

bε = min
(
2−1/(2(1+4β))−1γ β/(1+4β)(M − M ′)1/(1+4β)n−2β/(1+4β),

1
2γ 1/4N1/4n−1/2)

.
(13)

Then for all θ ∈ B
β
p,q(M ′),

Pθ(rα > bε) ≥ 1 − 2α − 2ε(14)

and consequently

inf
θ∈B

β
p,q(M ′)

Eθ (r
2
α) ≥ (1 − 2α − 2ε)b2

ε .(15)

In fact, as is shown in the next section, both bounds are rate sharp in the sense
that there are confidence balls with a given coverage probability over B

β
p,q(M)
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which have expected squared radius within a constant factor of the lower bounds
given in (12) and (15). There are two cases of interest, namely, when N ≥ n2 and
N < n2. First suppose that N ≥ n2 and fix a Besov body B

β
p,q(M) over which it is

assumed that the confidence ball has a given coverage probability. Then by (15) the
minimum expected squared radius is at least of order n−4β/(1+4β). Since from (12)
the minimax expected squared radius for confidence balls over Bτ

p,q(M) is of or-

der n−2τ/(1+2τ), the confidence ball CB(δ, r) must have expected squared radius
larger than the minimax expected squared radius over any Besov body Bτ

p′,q ′(M)

whenever τ > 2β and p′ ≥ 2. Hence in this case it is impossible to adapt over any
Besov body with smoothness index τ > 2β . Consequently in this case there is a
maximum range of Besov bodies over which full adaptation is possible.

Now suppose that N < n2 and that N 
 nρ where 0 < ρ < 2. In this case the
possible range of adaptation depends on the value of ρ. Let CB(δ, r) be a confi-
dence ball with guaranteed coverage probability over B

β
p,q(M). First suppose that

β ≥ 1
2ρ

− 1
4 . Then as above it is easy to check that the minimum expected squared

radius is at least of order n−4β/(1+4β) and that it is impossible to adapt over Besov
bodies with τ > 2β . On the other hand, suppose that β < 1

2ρ
− 1

4 . Then by (15), the

minimum expected squared radius is at least of order nρ/2−1, which is the mini-
max rate of convergence for the squared radius over a Besov body with β = 1

ρ
− 1

2 .
Hence in this case it is impossible to adapt over any Besov body with smoothness
index τ > 1

ρ
− 1

2 .
In summary, for a confidence ball with a prespecified coverage probability over

a Besov body B
β
p,q(M) the maximum range of Besov bodies Bτ

p,q(M) over which
full adaptation is possible is given in Table 1.

3.2. Construction of adaptive confidence balls. In this section the focus is on
confidence balls which have a given minimal coverage over a particular Besov
body. Subject to this constraint, confidence balls are constructed which have ex-
pected squared radius adapting across a range of Besov bodies. The resulting balls
are shown to be adaptive over the maximal range of Besov bodies given in Ta-
ble 1 for the first two cases summarized in the table. The third case is covered in
Section 4.

TABLE 1

N , n and β Maximum range of adaptation

N ≥ n2, all β > 0 β ≤ τ ≤ 2β

N = nρ for 0 < ρ < 2, β ≥ 1
2ρ

− 1
4 β ≤ τ ≤ 2β

N = nρ for 0 < ρ < 2, 0 < β ≤ 1
2ρ

− 1
4 β ≤ τ ≤ 1

ρ − 1
2
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The ball is centered on a local thresholding rule and the squared radius is based
on an analysis of the loss of this thresholding rule. More specifically, for the cen-
ter θ̂ , let J1 be the largest integer satisfying

2J1 ≤ min
(
N,M2/(1+2β)n1/(1+2β)).(16)

For all j ≥ J1, set θ̂j,k = 0 and for j ≤ J1 − 1 let θ̂j,k be the local thresholding
estimator given in (6). The radius is found by analyzing the loss

J−1∑
j=0

2j∑
k=1

(θ̂j,k − θj,k)
2 =

J1−1∑
j=0

2j∑
k=1

(θ̂j,k − θj,k)
2 +

J−1∑
j=J1

2j∑
k=1

θ2
j,k.(17)

The first of these terms is handled similarly to that used in (7) and (8). The sec-
ond component in the loss

∑J−1
j=J1

∑2j

k=1 θ2
j,k is a quadratic functional. It can be

estimated well by using an unbiased estimate of
∑J2−1

j=J1

∑2j

k=1 θ2
j,k where J2 is the

largest integer satisfying 2J2 ≤ min(N,M4/(1+4β)n2/(1+4β)) and then bounding
the tail

∑J−1
j=J2

∑2j

k=1 θ2
j,k from above.

More specifically, set the squared radius

r2
α = cαM2/(1+4β)n−4β/(1+4β)

+
J1−1∑
j=0

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

+ (2λ∗ + 8λ1/2∗ − 1)Ln−1
J1−1∑
j=0

∑
i

I (S2
j,i > λ∗Ln−1)

+
J2−1∑
j=J1

2j∑
k=1

(y2
j,k − n−1),

(18)

where

cα = 22β(1 − 2−2β)−1 + 2 log1/2
(

4

α

)

+
{[

2 log1/2
(

4

α

)
+ zα/4 · 25/2λ1/2∗ (1 − 2−2β)1/(2+4β)

+ zα/4 · 2β+1(1 − 2−2β)−1/2
]

× M1/(1+2β)−2/(1+4β)n1/(2+4β)−1/(1+4β)

}
.

Note that the last term in cα tends to 0 as n → ∞ or M → ∞.
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The following theorem shows that the confidence ball CB∗ defined by

CB∗ = {θ :‖θ − θ̂‖2 ≤ rα}(19)

has adaptive radius and desired coverage probability.

THEOREM 4. Fix 0 < α < 1
2 and let the confidence ball CB∗ be given as

in (19). Then, for any τ ≥ β ,

inf
θ∈Bτ

p,q (M)
P (θ ∈ CB∗)

≥ (1 − α)

− [
n−1 + 3(1 − 2−2β)−1/(1+2β)]L−1M2/(1+2β)n−2β/(1+2β).

(20)

For τ ≤ 2β ,

sup
θ∈Bτ

p,q(M)

E(r2
α) ≤ Cτ min

(
M2/(1+2τ)n−2τ/(1+2τ),Nn−1)

(21)

and for τ > 2β ,

sup
θ∈Bτ

p,q (M)

E(r2
α) ≤ Cβ min

(
M2/(1+4β)n−4β/(1+4β),Nn−1)

,(22)

where Cτ and Cβ are constants depending only on τ and β , respectively.

Theorem 4 taken together with Theorem 3 shows that the confidence ball CB∗
is adaptive over a maximal range of Besov bodies

C = {Bτ
p,q(M) : τ ∈ [β,2β],p ≥ 2, q ≥ 1}(23)

when either N ≥ n2 or N = nρ , 0 < ρ < 2 and β ≥ 1
2ρ

− 1
4 . In addition, the results

also show that the confidence ball CB∗ still has guaranteed coverage over Bτ
p,q(M)

for τ > 2β although the maximum expected radius is necessarily inflated.

4. Adaptive confidence balls with coverage over R
N . In Section 3 it was as-

sumed that the mean vector belongs to a Besov body B
β
p,q(M) and the confidence

ball was constructed to ensure that it had a prespecified coverage probability over
that Besov body. Under this constraint there are two situations where the confi-
dence ball has expected squared radius that adapts over the Besov bodies Bτ

p,q(M)

with τ between β and 2β , namely, when N ≥ n2 or when N = nρ with 0 < ρ < 2
and β ≥ 1

2ρ
− 1

4 . In both cases this is the largest range over which adaptation is
possible.

We now turn to a construction of “honest” confidence balls which have guaran-
teed coverage over all of R

N . For the case when N = n, such “honest” confidence
balls, those with a guaranteed coverage probability over all of R

N , was a topic
pioneered in [11]. See also [2] and [3]. Li [11] was the first to show, when N = n,
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that any “honest” confidence ball must have a minimum expected squared radius
of order n−1/2. In fact, using the lower bounds in Theorem 1 for the level-by-level
case, it is easy to see that for any confidence interval with coverage over all of R

N

the random radius must in general satisfy

E0(r
2
α) ≥ 1 − 2α − 2ε

4

(
log(1 + ε2)

)1/2 · N1/2n−1.(24)

Once again, for the case when N = n, Li [11] also showed how to construct
“honest” confidence balls with maximum expected squared radius of order n−1/2

over a parameter space where a linear estimator can be constructed with maximum
risk of order n−1/2. Such estimators exist when the parameter space only consists
of sufficiently smooth functions. In particular, for the Besov bodies B

β
p,q(M) with

p ≥ 2 Donoho and Johnstone [7] showed that the minimax linear risk is of order
n−2β/(1+2β) and the methodology of Li [11] then leads to “honest” confidence
balls with maximum expected squared radius converging at a rate of n−1/2 over
Besov bodies B

β
p,q(M) if β ≥ 1

2 and p ≥ 2. However this approach is not adaptive

over Besov bodies B
β
p,q(M) with β ≤ 1

2 .
In this section “honest” confidence balls are constructed over R

N which simul-
taneously adapt over a maximal range of Besov bodies. Attention is focused on the
case where N ≤ n2 since, from (24), if N > n2, the minimum expected squared
radius of such “honest” confidence balls does not even converge to zero.

The confidence ball is built by applying the single level construction given in
Section 2 level by level. In particular, the center of the confidence ball is obtained
by block thresholding all the observations in blocks of size L = logn. For each
index (j, k) in the block, say, B

j
i the estimate of θj,k is given by

θ̂j,k = yj,k · I (S2
j,i ≥ λ∗Ln−1)(25)

where λ∗ = 6.9368. The center of the confidence ball θ̂ is then defined by
θ̂ = (θ̂j,k). The construction of the radius is once again based on an analysis of
the loss ‖θ̂ − θ‖2

2 and applies the same technique as that given in Section 2. Set

r2
α =

[
2 log1/2

(
2

α

)
+ 4λ1/2∗ zα/2

]
N1/2n−1

+
J−1∑
j=1

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

+ (2λ∗ + 8λ1/2∗ − 1)Ln−1 Card{i :S2
j,i > λ∗Ln−1}.

(26)

With θ̂ given in (25) and rα given in (26) the confidence ball is then defined by

CB∗(θ̂ , rα) = {θ :‖θ − θ̂‖2 ≤ rα}.(27)
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THEOREM 5. Let the confidence ball CB∗(θ̂ , rα) be given as in (27). Then

inf
θ∈RN

P
(
θ ∈ CB∗(θ̂ , rα)

) ≥ 1 − α − 2(logn)−1(28)

and, if M ≥ 1,

sup
θ∈Bτ

p,q (M)

E(r2
α) ≤

[
2 log1/2

(
2

α

)
+ 4λ1/2∗ zα/2 + 4

]
N1/2n−1

+ Cτ min
(
Nn−1,M2/(1+2τ)n−2τ/(1+2τ)),

(29)

where Cτ > 0 is a constant depending only on τ .

It is also interesting to understand Theorem 5 from an asymptotic point of view.
Fix 0 < ρ < 2 and let N = nρ . It then follows from Theorem 5 that the confidence
ball constructed above has adaptive squared radius over Besov bodies Bτ

p,q(M)

with τ ≤ 1
ρ

− 1
2 and has maximum expected squared radius of order n−1/2 over

Besov bodies with τ > 1
ρ

− 1
2 . Note that the range depends on N . In particular,

consider the special case of N = n. In this case, note that for τ ≤ 1
2 and M ≥ 1 it

follows that

sup
θ∈Bτ

p,q(M)

E(r2
α) ≤ Cτ min

(
1,M2/(1+2τ)n−2τ/(1+2τ))(30)

and hence, although the confidence ball CB∗ depends only on n and the confidence
level, it adapts over the collection of all Besov bodies B

β
p,q(M) with β ≤ 1

2 ,

C = {
Bβ

p,q(M) : 0 < β ≤ 1
2 ,p ≥ 2, q ≥ 1,M ≥ 1

}
.(31)

This is the maximal range of Besov bodies over which honest confidence balls
can adapt. In addition, it follows from (29) that the confidence ball has maximum
expected squared radius within a constant factor of the smallest maximum ex-
pected squared radius for all Besov bodies B

β
p,q(M) with β > 0 and M ≥ 1 among

all confidence balls which have a prespecified coverage probability over R
N .

5. Proofs. In this section proofs of the main theorems are given except for
Theorem 2. The proof of Theorem 2 is analogous although slightly easier than that
given for Theorem 4.

5.1. Proof of Theorems 1 and 3. Theorems 1 and 3 give lower bounds for the
squared radius of the confidence balls. A unified proof of these two theorems can
be given. We begin with a lemma on the minimax risk over a hypercube.
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LEMMA 1. Suppose yi = θi + σzi , zi
i.i.d.∼ N(0,1) and i = 1, . . . ,m. Let

a > 0, and set Cm(a) = {θ ∈ R
m : θi = ±a, i = 1, . . . ,m}. Let the loss function

be

L(θ̂, θ) =
m∑

i=1

I (|θ̂i − θi | ≥ a).(32)

Then the minimax risk over Cm(a) satisfies

inf
θ̂

sup
θ∈Cm(a)

E
(
L(θ̂, θ)

) = inf
θ̂

sup
θ∈Cm(a)

m∑
i=1

P(|θ̂i − θi | ≥ a)

= �

(
− a

σ

)
m,

(33)

where �(·) is the cumulative distribution function for the standard Normal distri-
bution.

PROOF. Let πi , i = 1, . . . ,m, be independent with πi(a) = πi(−a) = 1
2 . Let

π = ∏m
i=1 πi be the product prior on θ ∈ Cm(a). The posterior distribution of θ

given y can be easily calculated as Pθ |y(θ) = ∏m
i=1 Pθi |yi

(θi) where

Pθi |yi
(θi) = e2ayi/σ

2

1 + e2ayi/σ
2 · I (θi = a) + 1

1 + e2ayi/σ
2 · I (θi = −a).

The Bayes estimator θ̂π under the prior π and loss L(·, ·) given in (32) is then the
minimizer of Eθ |yL(θ̂ , θ) = ∑m

i=1 Pθ |y(|θ̂i − θi | ≥ a). A solution is then given by
the simple rule θ̂π

i = a if yi ≥ 0, θ̂π
i = −a if yi < 0. The risk of the Bayes rule θ̂π

equals

m∑
i=1

Pθ(|θ̂π
i − θi | ≥ a)

= m ·
{

1

2
P(yi < 0|θi = a) + 1

2
P(yi ≥ 0|θi = −a)

}

= �

(
− a

σ

)
m.

(34)

Since the risk of the Bayes rule θ̂π is a constant, it equals the minimax risk. �

The proofs of Theorems 1 and 3 are also based on a bound on the L1 dis-
tance between a multivariate normal distribution with mean 0 and a mixture of
normal distributions with means supported on the union of vertices of a collection
of hyperrectangles. Let C(a, k) be the set of N -dimensional vectors of which the
first k coordinates are equal to a or −a and the remaining coordinates are equal
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to 0. Then Card(C(a, k)) = 2k . Let Pk be the mixture of Normal distributions with
mean supported over C(a, k),

Pk = 1

2k

∑
θ∈C(a,k)

�θ,1/
√

n,N ,(35)

where �θ,σ,N is the Normal distribution N(θ,σ 2IN). Denote by φθ,σ,N the density
of �θ,σ,N and set P0 = �0,1/

√
n,N .

LEMMA 2. Fix 0 < ε < 1 and suppose ka4n2 ≤ log(1 + ε2). Then

L1(P0,Pk) ≤ ε.(36)

In particular, if A is any event such that P0(A) ≥ α, then

Pk(A) ≥ α − ε,(37)

where Pk is the mixture of Normal distributions given in (35).

PROOF. The chi-squared distance between the distributions Pk and P0 =
�0,1/

√
n,N satisfies

∫ P 2
k

P0
≤ eka4n2 ≤ 1 + ε2 and consequently the L1 distance be-

tween P0 and Pk satisfies

L1(P0,Pk) =
∫

|dP0 − dPk| ≤
(∫

P 2
k

P0
− 1

)1/2

≤ ε.

Hence, if P0(A) ≥ α, then Pk(A) ≥ P0(A) − L1(P0,Pk) ≥ α − ε and the lemma
follows. �

PROOF OF THEOREMS 1 AND 3. We first prove the bound (3). Fix a constant
ε satisfying 0 < ε < 1

2(1
2 − α) and note that zα+2ε > 0. Take m = 2j , σ = n−1/2

and a = min(zα+2εn
−1/2,M2−j (β+1/2)) in Lemma 1 and let Cm(a) be defined as

in Lemma 1. Then every N -dimensional vector with the j th level coordinates θj

in Cm(a) and other coordinates equal to zero is contained in B
β
p,q(M). It then

follows from Lemma 1 that

inf
θ̂

sup
θ∈B

β
p,q (M)

m∑
k=1

P(|θ̂j,k − θj,k| ≥ a) ≥ inf
θ̂

sup
θj∈Cm(a)

m∑
k=1

P(|θ̂j,k − θj,k| ≥ a)

≥ (α + 2ε)m.

(38)

For any θ̂ , set Xθ = ∑m
k=1 I (|θ̂j,k − θj,k| ≥ a). Then Xθ ≤ m. Let γ = ε

1−α−ε
.

Then

(α + 2ε)m ≤ sup
θ∈B

β
p,q (M)

E(Xθ) ≤ sup
θ∈B

β
p,q(M)

{γmP(Xθ < γm) + mP(Xθ ≥ γm)}.
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It follows that sup
θ∈B

β
p,q(M)

P (Xθ ≥ γm) ≥ α + ε and consequently

sup
θ∈B

β
p,q (M)

P (‖θ̂j − θj‖2
2 ≥ γma2) ≥ sup

θ∈B
β
p,q(M)

P (Xθ ≥ γm) ≥ α + ε.(39)

Suppose CB(θ̂ , rα) = {θj :‖θj − θ̂j‖2 ≤ rα} is a 1 − α level confidence ball over

B
β
p,q(M). Then inf

θ∈B
β
p,q (M)

P (‖θj − θ̂‖2
2 ≤ r2

α) ≥ 1 − α and hence

sup
θ∈B

β
p,q(M)

P (r2
α ≥ γma2) ≥ sup

θ∈B
β
p,q (M)

P (γma2 ≤ ‖θj − θ̂j‖2
2 ≤ r2

α)

≥ α + ε + 1 − α − 1 = ε.

Thus for any ε satisfying 0 < ε < 1
2(1

2 − α), sup
θ∈B

β
p,q(M)

E(r2
α) ≥ εγma2, which

completes the proof of (3). The proof of (12) is quite similar. Let j ′ be the
largest integer satisfying 2j ′ ≤ min(N, (1 − 2−q(β+1/2))2/(q(1+2β))z

−2q/(1+2β)
α+2ε ×

M2/(1+2β)n1/(1+2β)). Equation (12) in Theorem 3 follows from Lemma 1 by tak-
ing m = 2j ′

, σ = n−1/2 and a = zα+2εn
−1/2.

We now turn to the proof of (4) and (15). For (4) apply Lemma 2 with k = 2j and
a = min(M2−j (β+1/2), γ 1/42−j/4n−1/4). It is easy to check by using the first term
in the minimum that 2js2j/pa ≤ M . Hence the sequence which is equal to a or −a

on the j th level and otherwise zero satisfies the Besov constraint (2). Moreover,
using the second term in the minimum, it is clear that ka4n2 ≤ γ . For (15) the
above remarks hold with j replaced by J and it is clear that the collection C(a, k)

of all such sequences is contained in B
β
p,q(M). It then follows from Lemma 2 that,

for Pk defined by (35), L1(P0,Pk) ≤ ε and so

Pk

(
0 ∈ CB(δ, rα)

) ≥ 1 − α − ε.(40)

Now since for all θ ∈ C(a, k), P(θ ∈ CB(δ, rα)) ≥ 1 − α and hence P({C(a, k) ∩
CB(δ, rα) �= ∅}) ≥ 1 − α, it follows that

Pk

({C(a, k) ∩ CB(δ, rα) �= ∅}) ≥ 1 − α.(41)

The Bonferroni inequality applied to equations (40) and (41) then yields

Pk

(
0 ∈ CB(δ, rα) ∩ {C(a, k) ∩ CB(δ, rα) �= ∅}) ≥ 1 − 2α − ε.(42)

Once again, since L1(P0,Pk) ≤ ε it follows that

P0
(
0 ∈ CB(δ, rα) ∩ {C(a, k) ∩ CB(δ, rα) �= ∅}) ≥ 1 − 2α − 2ε.(43)

Now note that for all θ ∈ C(a, k), ‖θ‖2 = ak1/2 = 2bε. Hence, if CB(δ, rα) con-
tains both 0 and some point θ ∈ C(a, k), it follows that the radius rα ≥ 1

2‖θ‖2 = bε

and consequently

P0(rα > bε) ≥ P0
(
0 ∈ CB(δ, rα) ∩ {C(a, k) ∩ CB(δ, rα) �= ∅}) ≥ 1 − 2α − 2ε.

�
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5.2. Proof of Theorem 4. The proof of Theorem 4 is involved. We first collect
in the following lemmas some preparatory results on the tails of chi-squared dis-
tributions and Besov bodies. The proofs of these lemmas are straightforward and
is thus omitted here. See [6] for detailed proofs.

LEMMA 3. Let Xm be a random variable having a central chi-squared distri-
bution with m degrees of freedom. If d > 0, then

P
(
Xm ≥ (1 + d)m

) ≤ 1
2e−(m/2)(d−log(1+d))(44)

and consequently P(Xm ≥ (1 + d)m) ≤ 1
2e−(1/4)d2m+(1/6)d3m. If 0 < d < 1, then

P
(
Xm ≤ (1 − d)m

) ≤ e−(1/4)d2m.(45)

LEMMA 4. Let yi = θi + σzi , i = 1,2, . . . ,L, zi
i.i.d.∼ N(0,1) and let λ∗ =

6.9368 be the constant satisfying λ − logλ = 5.

(i) For τ > 0 let λτ > 1 denote the constant satisfying λ− logλ = 1 + 4τ
1+2τ

. If∑L
i=1 θ2

i ≤ (
√

λ∗ − √
λτ )2Lσ 2, then

P

(
L∑

i=1

y2
i ≥ λ∗Lσ 2

)
≤ P

(
L∑

i=1

z2
i ≥ λτL

)
≤ 1

2e−2τ/(1+2τ)L.(46)

(ii) If
∑L

i=1 θ2
i ≥ 4λ∗Lσ 2, then

P

(
L∑

i=1

y2
i ≤ λ∗Lσ 2

)
≤ P

(
L∑

i=1

z2
i ≥ λ∗L

)
≤ 1

2e−2L.(47)

LEMMA 5. (i) For any θ ∈ Bτ
p,q(M) and any 0 < m < J − 1,

J−1∑
j=m

2j∑
k=1

θ2
j,k ≤ (1 − 2−2τ )−1M22−2τm.(48)

(ii) For a constant a > 0, set I = {(j, i) :
∑

(j,k)∈B
j
i

θ2
j,k > aLn−1}. Then for

p ≥ 2

sup
θ∈Bτ

p,q(M)

Card(I) ≤ DL−1M2/(1+2τ)n1/(1+2τ),(49)

where D is a constant depending only on a and τ . In particular, D can be taken
as D = 3(1 − 2−2τ )−1/(1+2τ)a−1/(1+2τ).
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PROOF OF THEOREM 4. The proof is naturally divided into two parts: ex-
pected squared radius and the coverage probability. First recall the notation that
for a given block B

j
i ,

S2
j,i ≡ ∑

(j,k)∈B
j
i

y2
j,k, ξ2

j,i ≡ ∑
(j,k)∈B

j
i

θ2
j,k and χ2

j,i ≡ ∑
(j,k)∈B

j
i

z2
j,k.

We begin with the expected squared radius. Let τ ≥ β and suppose θ ∈ Bτ
p,q(M).

From (18) we have

Eθ(r
2
α) = cαM2/(1+4β)n−4β/(1+4β)

+
J1−1∑
j=0

Eθ

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

+ (2λ∗ + 8λ1/2∗ − 1)Ln−1
J1−1∑
j=0

∑
i

Pθ (S
2
j,i > λ∗Ln−1)(50)

+
J2−1∑
j=J1

2j∑
k=1

θ2
j,k

≡ G1 + G2 + G3 + G4.

We begin with the term G3. Let λτ be defined as in Lemma 4 and set

I1 = {
(j, i) : j ≤ J1 − 1, ξ2

j,i >
(√

λ∗ − √
λτ

)2
Ln−1}

(51)

and

I2 = {
(j, i) : j ≤ J1 − 1, ξ2

j,i ≤ (√
λ∗ − √

λτ

)2
Ln−1}

.(52)

It then follows from Lemmas 4 and 5 that

J1−1∑
j=0

∑
i

Pθ (S
2
j,i > λ∗Ln−1) = ∑

(j,i)∈I1

P(S2
j,i > λ∗Ln−1)

+ ∑
(j,i)∈I2

P(S2
j,i > λ∗Ln−1)

≤ Card(I1) + 1
2L−12J1 · n−2τ/(1+2τ)

≤ min
(
L−12J1,DL−1M2/(1+2τ)n1/(1+2τ))

+ 1
2L−12J1n−2τ/(1+2τ)
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for some constant D depending only on τ . Note that 2J1 = min(N,M2/(1+2β) ×
n1/(1+2β)) and so

G3 = (2λ∗ + 8λ1/2∗ − 1)Ln−1
J1−1∑
j=0

∑
i

Pθ (S
2
j,i > λ∗Ln−1)

≤ C min
(
Nn−1,M2/(1+2β)n−2β/(1+2β),M2/(1+2τ)n−2τ/(1+2τ))

+ C min
(
Nn−1,M2/(1+2β)n−2β/(1+2β)) · n−2τ/(1+2τ)

≤ C min
(
Nn−1,M2/(1+2τ)n−2τ/(1+2τ)).

(53)

The term G4 is easy to bound. When N ≤ M2/(1+2β)n1/(1+2β), J1 = J2 and hence
G4 = 0. When N > M2/(1+2β)n1/(1+2β), it follows from (48) in Lemma 5 that

G4 =
J2−1∑
j=J1

2j∑
k=1

θ2
j,k

≤ (1 − 2−2τ )−1M22−2τJ1

≤ C min
(
Nn−1,M2/(1+2τ)n−2τ/(1+2τ)).

(54)

We now turn to G2. Let Jτ be the largest integer satisfying 2Jτ ≤ min(N,

M2/(1+2τ)n1/(1+2τ)). Write

G2 =
Jτ −1∑
j=0

E

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

+
J1−1∑
j=Jτ

E

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

≡ G21 + G22,

where G22 = 0 when Jτ = J1. Note that

G21 =
Jτ −1∑
j=0

E

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

≤
Jτ −1∑
j=0

∑
i

(λ∗ − 1)Ln−1

≤ (λ∗ − 1)Ln−12Jτ L−1

≤ (λ∗ − 1)min
(
Nn−1,M2/(1+2τ)n−2τ/(1+2τ )).

(55)
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When N ≤ M2/(1+2τ)n1/(1+2τ), Jτ = J1 and so G22 = 0. On the other hand, when
Jτ < J1,

G22 =
J1−1∑
j=Jτ

E

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

≤
J1−1∑
j=Jτ

E

(∑
i

(S2
j,i − Ln−1)

)
+

≤
J1−1∑
j=Jτ

{
E

(∑
i

S2
j,i − 2jn−1

)2}1/2

≤
J1−1∑
j=Jτ

{
4n−1

∑
i

ξ2
j,i + 2n−22j +

(∑
i

ξ2
j,i

)2}1/2

≤ 2n−1/2
J1−1∑
j=Jτ

(∑
i

ξ2
j,i

)1/2

+ 21/2n−1
J1−1∑
j=Jτ

2j/2 +
J1−1∑
j=Jτ

∑
i

ξ2
j,i .

Note that
∑

i ξ
2
j,i = ∑2j

k=1 θ2
j,k ≤ M22−2τj . It then follows that

G22 ≤ 2τ+1(1 − 2−τ )−1M1/(1+2τ)n−(1+4τ)/(2+4τ)

+ 4M1/(1+2β)n−(1+4β)/(2+4β)

+ 22τ (1 − 2−2τ )−1M2/(1+2τ)n−2τ/(1+2τ)

and so

G22 ≤ C min
(
Nn−1,M2/(1+2τ)n−2τ/(1+2τ)).(56)

This together with (50) and (53)–(55) yields

sup
θ∈Bτ

p,q (M)

Eθ(r
2
α) ≤ sup

θ∈Bτ
p,q (M)

(G1 + G21 + G22 + G3 + G4)

≤ cα min
(
Nn−1,M2/(1+4β)n−4β/(1+4β))

+ Cτ min
(
Nn−1,M2/(1+2τ)n−2τ/(1+2τ))

where Cτ is a constant depending only on τ . For 0 < τ < β similar arguments
yield

sup
θ∈Bτ

p,q (M)

Eθ(r
2
α) ≤ Cτ min

(
Nn−1,M2/(1+2τ)n−2τ/(1+2τ)).
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We now turn to the coverage probability. Set C(θ) = P(‖θ̂ − θ‖2
2 > r2

α) and fix
τ ≥ β . We want to bound supθ∈Bτ

p,q(M) C(θ). Note that

‖θ̂ − θ‖2
2 =

J1−1∑
j=0

∑
i

ξ2
j,iI (S2

j,i ≤ λ∗Ln−1)

+ n−1
J1−1∑
j=0

∑
i

χ2
j,iI (S2

j,i > λ∗Ln−1) +
J−1∑
j=J1

2j∑
k=1

θ2
j,k.

It follows from (48) in Lemma 5 that

sup
θ∈Bτ

p,q(M)

J−1∑
j=J2

2j∑
k=1

θ2
j,k ≤ (1 − 2−2τ )−1M22−2τJ2

≤ 22β(1 − 2−2β)−1M2/(1+4β)n−4β/(1+4β).

(57)

Set a0 = 22β(1 − 2−2β)−1, a1 = zα/4 · 25/2λ
1/2∗ (1 − 2−2β)1/(2+4β) ×

M1/(1+2β)−2/(1+4β)n1/(2+4β)−1/(1+4β), a2 = 2 log1/2( 4
α
)M1/(1+2β)−2/(1+4β) ×

n1/(2+4β)−1/(1+4β), a3 = zα/4 · 2β+1(1 − 2−2β)−1/2M1/(1+2β)−2/(1+4β) ×
n1/(2+4β)−1/(1+4β), a4 = 2 log1/2( 4

α
) and a5 = 2λ∗ + 8λ

1/2∗ − 1. Then cα in (18)
equals a0 +a1 +a2 +a3 +a4 and the squared radius r2

α given in (18) can be written
as

r2
α = (a0 + a1 + a2 + a3 + a4)M

2/(1+4β)n−4β/(1+4β)

+
J1−1∑
j=0

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

+ a5Ln−1
J1−1∑
j=0

∑
i

I (S2
j,i > λ∗Ln−1) +

J2−1∑
j=J1

2j∑
k=1

(y2
j,k − n−1).

Set I3 = {(j, i) : j ≤ J1 − 1, ξ2
j,i ≥ 4λ∗Ln−1} and I4 = {(j, i) : j ≤ J1 − 1, ξ2

j,i <

4λ∗Ln−1}. It then follows that

C(θ) ≤ P

{ ∑
(j,i)∈I3

[ξ2
j,iI (S2

j,i ≤ λ∗Ln−1) + n−1χ2
j,iI (S2

j,i > λ∗Ln−1)]

>
∑

(j,i)∈I3

[(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

+ a5Ln−1I (S2
j,i > λ∗Ln−1)]

}
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+ P

{ ∑
(j,i)∈I4

[ξ2
j,iI (S2

j,i ≤ λ∗Ln−1) + n−1χ2
j,iI (S2

j,i > λ∗Ln−1)]

> (a1 + a2)M
2/(1+4β)n−4β/(1+4β)

+ ∑
(j,i)∈I4

[(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

+ a5Ln−1I (S2
j,i > λ∗Ln−1)]

}

+ P

(
J2−1∑
j=J1

2j∑
k=1

θ2
j,k > (a3 + a4)M

2/(1+4β)n−4β/(1+4β)

+
J2−1∑
j=J1

2j∑
k=1

(y2
j,k − n−1)

)

≡ T1 + T2 + T3.

We shall consider the three terms separately. We first calculate the term T1. Note
that

T1 ≤ P

{ ∑
(j,i)∈I3

(S2
j,i − ξ2

j,i − Ln−1)I (S2
j,i ≤ λ∗Ln−1) < 0

}

+ P

{ ∑
(j,i)∈I3

n−1χ2
j,iI (S2

j,i > λ∗Ln−1) >
∑

(j,i)∈I3

a5Ln−1I (S2
j,i > λ∗Ln−1)

}

≤ ∑
(j,i)∈I3

P(S2
j,i ≤ λ∗Ln−1) + ∑

(j,i)∈I3

P(χ2
j,i > a5L).

It follows from Lemma 4(ii) that P(S2
j,i ≤ λ∗Ln−1) ≤ P(χ2

j,i > λ∗L) ≤ 1
2n−2 for

(j, i) ∈ I3. Lemma 5 now yields

T1 ≤ n−2 · Card(I3)

≤ 3(1 − 2−2τ )−1/(1+2τ)(4λ∗)−1/(1+2τ)L−1M2/(1+2τ)n−2τ/(1+2τ)

≤ 3(1 − 2−2β)−1/(1+2β)L−1M2/(1+2β)n−2β/(1+2β).

(58)

We now turn to the second term T2. Note that

T2 = P

{ ∑
(j,i)∈I4

[(S2
j,i − ξ2

j,i − Ln−1) + a5Ln−1I (S2
j,i > λ∗Ln−1)]

< −(a1 + a2)M
2/(1+4β)n−4β/(1+4β)
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+ ∑
(j,i)∈I4

[(S2
j,i + n−1χ2

j,i − ξ2
j,i − Ln−1)I (S2

j,i > λ∗Ln−1)]
}

≤ P

{ ∑
(j,i)∈I4

(S2
j,i − ξ2

j,i − Ln−1) < −(a1 + a2)M
2/(1+4β)n−4β/(1+4β)

}

+ P

{ ∑
(j,i)∈I4

(S2
j,i + n−1χ2

j,i − ξ2
j,i − Ln−1)I (S2

j,i > λ∗Ln−1)

>
∑

(j,i)∈I4

a5Ln−1I (S2
j,i > λ∗Ln−1)

}

≡ T21 + T22.

For any given block, write

S2
j,i = ∑

(j,k)∈B
j
i

(θj,k + n−1/2zj,k)
2

= ξ2
j,i + 2n−1/2

∑
(j,k)∈B

j
i

θj,kzj,k + n−1χ2
j,i

= ξ2
j,i + 2n−1/2ξj,iZ̃j,i + n−1χ2

j,i ,

where Z̃j,i = ξ−1
j,i

∑
(j,k)∈B

j
i

θj,kzj,k is a standard Normal variable. Then

T21 = P

{ ∑
(j,i)∈I4

(S2
j,i − ξ2

j,i − Ln−1) < −(a1 + a2)M
2/(1+4β)n−4β(1+4β)

}

≤ P

{ ∑
(j,i)∈I4

(2n−1/2ξj,iZ̃j,i + n−1χ2
j,i − Ln−1)

< −(a1 + a2)M
2/(1+4β)n−4β/(1+4β)

}

≤ P

{
2n−1/2

∑
(j,i)∈I4

ξj,iZ̃j,i < −a1M
2/(1+4β)n−4β/(1+4β)

}

+ P

{ ∑
(j,i)∈I4

χ2
j,i < −a2M

2/(1+4β)n1/(1+4β) + Card(I4)L

}

≡ T211 + T212.
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Note that, for any 0 < j ′ ≤ J1 − 1,

∑
(j,i)∈I4

ξ2
j,i ≤ L−12j ′ · 4λ∗Ln−1 +

J1−1∑
j=j ′

M22−j2τ

= 4λ∗2j ′
n−1 + M2(1 − 2−2τ )−12−2τj ′

.

Minimizing the right-hand side yields that
∑

(j,i)∈I4
ξ2
j,i ≤ 2(4λ∗)2τ/(1+2τ)(1 −

2−2τ )−1/(1+2τ)M2/(1+2τ )n−2τ/(1+2τ) ≤ 8λ∗(1 − 2−2β)−1/(1+2β)M2/(1+2β) ×
n−2β/(1+2β). Denote by Z a standard Normal random variable. It then follows
that T211 = P(Z < −1

2a1M
2/(1+4β)n1/(1+4β)n−1/2(

∑
(j,i)∈I4

ξ2
j,i)

−1/2) ≤ P(Z <

zα/4) = α
4 . Now consider the term T212. If Card(I4)L ≤ a2M

2/(1+4β)n1/(1+4β),
then T212 = 0. Now suppose Card(I4)L > a2M

2/(1+4β)n1/(1+4β). It follows
from (45) in Lemma 3 by taking m = Card(I4)L ≤ 2J1 and d = a2M

2/(1+4β) ×
n1/(1+4β)/m that T212 ≤ exp(−1

4a2
2M4/(1+4β)−2/(1+2β)n2/(1+4β)−1/(1+2β)) = α

4
and hence

T21 = T211 + T212 ≤ α

2
.(59)

We now consider the term T22. Simple algebra yields that

T22 = P

( ∑
(j,i)∈I4

(S2
j,i + n−1χ2

j,i − ξ2
j,i − Ln−1)I (S2

j,i > λ∗Ln−1)

>
∑

(j,i)∈I4

a5Ln−1I (S2
j,i > λ∗Ln−1)

)

≤ ∑
(j,i)∈I4

P
(
Z̃j,i > 1

2ξ−1
j,i (a5 − 2λ∗ + 1)Ln−1/2)

+ ∑
(j,i)∈I4

P(χ2
j,i > λ∗L).

Note that ξ2
j,i ≤ 4λ∗Ln−1 for (j, i) ∈ I4. Hence it follows from the bounds on the

tail probability of standard Normal and central chi-squared distributions that

T22 ≤ ∑
(j,i)∈I4

P
(
Z̃j,i > 2(logn)1/2) + ∑

(j,i)∈I4

1
2n−2

≤ L−1M2/(1+2β)n−2β/(1+2β)n−1.

(60)

We now turn to the third term T3. Note that y2
j,k = θ2

j,k + 2n−1/2θj,kzj,k + n−1z2
j,k
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and so

T3 = P

(
2n−1/2

J2−1∑
j=J1

2j∑
k=1

θj,kzj,k

+ n−1
J2−1∑
j=J1

2j∑
k=1

(z2
j,k − 1) < −(a3 + a4)M

2/(1+4β)n−4β/(1+4β)

)

≤ P

(
2n1/2

J2−1∑
j=J1

2j∑
k=1

θj,kzj,k < −a3M
2/(1+4β)n1/(1+4β)

)

+ P

(
J2−1∑
j=J1

2j∑
k=1

z2
j,k < (2J2 − 2J1) − a4M

2/(1+4β)n1/(1+4β)

)

≡ T31 + T32.

Set γ 2 = ∑J2−1
j=J1

∑2j

k=1 θ2
j,k and Z = γ −1 ∑J2−1

j=J1

∑2j

k=1 θj,kzj,k . Then Z is a stan-

dard Normal variable and it follows from (48) in Lemma 5 that γ 2 ≤ 22β(1 −
2−2β)−1M2/(1+2β)n−2β/(1+2β). Hence,

T31 ≤ P
(
Z < −2−β−1(1 − 2−2β)1/2a3M

2/(1+4β)−1/(1+2β)

× n1/(1+4β)−1/(2+4β))
= P(Z < −zα/4) = α

4
.

(61)

It follows from Lemma 3 with m = 2J2 − 2J1 and d = a4M
2/(1+4β)n1/(1+4β)/m

that T32 ≤ e(−1/4)a2
4 = α

4 . Equation (20) now follows from this together with (58),
(59), (60) and (61). �

5.3. Proof of Theorem 5. The proof of Theorem 5 is similar to that of The-
orem 4. We shall omit some details and only give a brief proof here. Suppose
θ ∈ Bτ

p,q(M). Set b1 = 2 log1/2( 2
α
), b2 = 4λ

1/2∗ zα/2 and b3 = 2λ∗ + 8λ
1/2∗ − 1.

Then, from (26) we have

Eθ(r
2
α) = (b1 + b2)N

1/2n−1

+
J−1∑
j=0

Eθ

(∑
i

(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

)
+

+ b3Ln−1Eθ

(
Card{(j, i) :S2

j,i > λ∗Ln−1}).
(62)

The last term can be easily bounded using Lemma 5 as

b3Ln−1Eθ

(
Card{(j, i) :S2

j,i > λ∗Ln−1})
≤ b3 · min

(
Nn−1,DτM

2/(1+2τ)n−2τ/(1+2τ)).
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Set D = ∑J−1
j=0 Eθ(

∑
i (S

2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1))+. Using nearly identical
arguments given in the derivation of (55) and (56) in the proof of Theorem 4, D is
bounded as D ≤ 4N1/2n−1 +CτM

2/(1+2τ)n−2τ/(1+2τ) for some constant Cτ ≥ λ∗.
On the other hand, it is easy to see that D ≤ ∑J−1

j=0
∑

i (λ∗Ln−1 − Ln−1) =
(λ∗ − 1)Nn−1 and consequently supθ∈Bτ

p,q(M) E(r2
α) ≤ (b1 + b2 + 4)N1/2n−1 +

Cτ min(Nn−1,M2/(1+2τ)n−2τ/(1+2τ)).

We now turn to the coverage probability. Again, set C(θ) = P(‖θ̂ − θ‖2
2 > r2

α).
We want to show that supθ∈RN C(θ) ≤ α + 4(logn)−1. Note that

‖θ̂ − θ‖2
2 =

J−1∑
j=0

∑
i

ξ2
j,iI (S2

j,i ≤ λ∗Ln−1)

+ n−1
J−1∑
j=0

∑
i

χ2
j,iI (S2

j,i > λ∗Ln−1).

Set I′
3 = {(j, i) : ξ2

j,i ≥ 4λ∗Ln−1} and I′
4 = {(j, i) : ξ2

j,i < 4λ∗Ln−1}. It then fol-
lows from the definition of the radius rα given in (26) that

C(θ) ≤ P

{ ∑
(j,i)∈I′

3

[ξ2
j,iI (S2

j,i ≤ λ∗Ln−1) + n−1χ2
j,iI (S2

j,i > λ∗Ln−1)]

>
∑

(j,i)∈I′
3

[(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

+ b3Ln−1I (S2
j,i > λ∗Ln−1)]

}

+ P

{ ∑
(j,i)∈I′

4

[ξ2
j,iI (S2

j,i ≤ λ∗Ln−1) + n−1χ2
j,iI (S2

j,i > λ∗Ln−1)]

> (b1 + b2)N
1/2n−1

+ ∑
(j,i)∈I′

4

[(S2
j,i − Ln−1)I (S2

j,i ≤ λ∗Ln−1)

+b3Ln−1I (S2
j,i > λ∗Ln−1)]

}

≡ T1 + T2.

We first bound the term T1. Similarly as in the proof of Theorem 4,

T1 ≤ ∑
(j,i)∈I′

3

(
P(S2

j,i ≤ λ∗Ln−1) + P(χ2
j,i > b3L)

) ≤ n−2 Card(I′
3) ≤ L−1.(63)
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On the other hand, note that

T2 = P

{ ∑
(j,i)∈I′

4

[(S2
j,i − ξ2

j,i − Ln−1) + b3Ln−1I (S2
j,i > λ∗Ln−1)]

< −(b1 + b2)N
1/2n−1

+ ∑
(j,i)∈I′

4

[(S2
j,i + n−1χ2

j,i − ξ2
j,i − Ln−1)I (S2

j,i > λ∗Ln−1)]
}

≤ P

{ ∑
(j,i)∈I′

4

(S2
j,i − ξ2

j,i − Ln−1) < −(b1 + b2)N
1/2n−1

}

+ P

{ ∑
(j,i)∈I′

4

(S2
j,i + n−1χ2

j,i − ξ2
j,i − Ln−1)I (S2

j,i > λ∗Ln−1)

>
∑

(j,i)∈I′
4

b3Ln−1I (S2
j,i > λ∗Ln−1)

}

≡ T21 + T22.

Set Z̃j,i = ξ−1
j,i

∑
(j,k)∈B

j
i

θj,kzj,k . Then Z̃j,i is a standard Normal random variable

and

T21 = P

{ ∑
(j,i)∈I′

4

(2n−1/2ξj,iZ̃j,i + n−1χ2
j,i − Ln−1) < −(b1 + b2)N

1/2n−1

}

≤ P

{ ∑
(j,i)∈I′

4

χ2
j,i < −b1N

1/2 + Card(I′
4)L

}

+ P

{ ∑
(j,i)∈I′

4

ξj,iZ̃j,i < −1
2b2N

1/2n−1/2

}
.

If Card(I′
4)L ≤ b1N

1/2, then P {∑(j,i)∈I′
4
χ2

j,i < −b1N
1/2 + Card(I′

4)L} = 0.

When Card(I′
4)L > b1N

1/2, equation (45) with m = Card(I′
4)L ≤ N and d =

b1N
1/2/m yields that

P

{ ∑
(j,i)∈I′

4

χ2
j,i < −b1N

1/2 + Card(I′
4)L

}
≤ e(−1/4)d2m ≤ e(−1/4)b2

1 = α

2
.

On the other hand, note that
∑

(j,i)∈I′
4
ξ2
j,i ≤ NL−1 · 4λ∗Ln−1 = 4λ∗Nn−1 and

hence P {∑(j,i)∈I′
4
ξj,iZ̃j,i < −1

2b2N
1/2n−1/2} ≤ P(Z < −1

4b2λ
−1/2∗ ) ≤ α

2 where
Z ∼ N(0,1).
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We now turn to the term T22. Note that ξ2
j,i ≤ 4λ∗Ln−1 for (j, i) ∈ I′

4. Hence

T22 ≤ ∑
(j,i)∈I′

4

P
(
2n−1/2ξj,iZ̃j,i + 2n−1χ2

j,i > (b3 + 1)Ln−1)

≤ ∑
(j,i)∈I′

4

P
(
Z̃j,i > 1

2ξ−1
j,i

(
(b3 − 2λ∗ + 1)Ln−1/2)) + ∑

(j,i)∈I′
4

P(χ2
j,i > λ∗L)

≤ ∑
(j,i)∈I′

4

P
(
Z̃j,i > 2(logn)1/2) + ∑

(j,i)∈I′
4

1
2n−2 ≤ LNn−2 ≤ L−1.

Hence, C(θ) ≤ T1 + T21 + T22 ≤ α + 2L−1 = α + 2(logn)−1.
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