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Abstract—Large-scale Internet of Things (IoT) deployments
demand long-range wireless communications, especially in urban
and metropolitan areas. LoRa is one of the most promising
technologies in this context due to its simplicity and flexibility.
Indeed, deploying LoRa networks in dense IoT scenarios must
achieve two main goals: efficient communications among a
large number of devices and resilience against dynamic channel
conditions due to demanding environmental settings (e.g., the
presence of many buildings). This work investigates adaptive
mechanisms to configure the communication parameters of LoRa
networks in dense IoT scenarios. To this end, we develop FLoRa,
an open-source framework for end-to-end LoRa simulations in
OMNeT++. We then implement and evaluate the Adaptive Data
Rate (ADR) mechanism built into LoRa to dynamically manage
link parameters for scalable and efficient network operations.
Extensive simulations show that ADR is effective in increasing
the network delivery ratio under stable channel conditions, while
keeping the energy consumption low. Our results also show that
the performance of ADR is severely affected by a highly-varying
wireless channel. We thereby propose an improved version of
the original ADR mechanism to cope with variable channel
conditions. Our proposed solution significantly increases both
the reliability and the energy efficiency of communications over
a noisy channel, almost irrespective of the network size. Finally,
we show that the delivery ratio of very dense networks can be
further improved by using a network-aware approach, wherein
the link parameters are configured based on the global knowledge
of the network.

Index Terms—LoRa, configuration management, performance
evaluation, adaptive data rate, reliability, energy efficiency

I. INTRODUCTION

Several communication technologies and standards have
been proposed for Low-Power Wide Area Networks (LP-
WANs) [1, 2]. Among them, LoRa [3, 4] has gained mo-
mentum due to its low complexity and the use of unlicensed
Industrial Scientific and Medical (ISM) bands. In fact, there
are already several LoRa service providers, including The
Things Network [5], an open and community-driven Internet
of Things (IoT) network. However, the management of LoRa
networks for IoT deployments faces several challenges, in-
cluding: a large and highly-varying number of nodes; diverse
wireless scenarios characterized by demanding environmen-
tal factors (e.g., dense urban settings with many buildings);
interference due to other co-located networks operating on
the same unlicensed frequency bands. These challenges may
compromise scalability, eventually affecting the reliability of
services running on top of IoT deployments [6]. One option to
address such challenges is to dynamically adapt the operating
parameters of wireless communications in the network.

Although many recent works have characterized the com-
munication performance of LoRa networks [7–10], they have
not thoroughly investigated the impact of dynamic manage-
ment of communication parameters. Indeed, this article targets
adaptive configuration of LoRa networks for scalable IoT
deployments. Such an adaptive configuration can be achieved
with either a link-based or a network-aware approach. Link-
based schemes configure the communication parameters inde-
pendently for each wireless link between nodes. On the other
hand, network-aware approaches adapt these parameters for a
certain link by leveraging a global knowledge of the nodes in
the network. In this regard, our work evaluates both approaches
to configure the transmission parameters at the physical layer
of LoRa to improve both reliability and energy efficiency in
dense IoT scenarios.

The major contributions of this work are the following. First,
we develop FLoRa, an open-source framework for LoRa simu-
lations in OMNeT++ [11]. FLoRa implements the physical and
medium access control layers of LoRa, supports bi-directional
communications and allows end-to-end simulations including
the backhaul network. Second, we evaluate the performance
of link-based adaptation in LoRa using the Adaptive Data
Rate (ADR) mechanism. We conduct extensive simulations
and show that ADR is effective in increasing the delivery ratio
for networks with stable channel conditions, while keeping
the energy consumption low. We also show that the per-
formance of ADR is severely affected by a highly-varying
wireless channel. We thereby propose an improved version of
the original ADR mechanism to cope with variable channel
conditions. Our proposed solution significantly increases both
the reliability and the energy efficiency of communications
over a noisy channel, almost irrespective of the network size.
Finally, we show that the delivery ratio of very dense networks
can be further improved by using a network-aware approach,
wherein the link parameters are configured based on the global
knowledge of the network (e.g., the location of the devices).

The rest of the article is organized as follows. Section II
provides background on LoRa. Section III describes the im-
plementation of our simulator. Section IV discusses adaptive
communication management in LoRa networks. Section V
presents the simulation setup and the obtained results. Sec-
tion VI reviews the state of the art. Finally, Section VII
provides some concluding remarks.



II. OVERVIEW OF LORA

A LoRa network relies on two components, namely, LoRa
and LoRaWAN, each corresponding to a different layer of
the protocol stack. LoRa itself is a proprietary physical layer
developed by Semtech Corporation. LoRaWAN, on the other
hand, is described in an open specification developed by the
LoRa Alliance [3]. LoRaWAN constitutes the medium access
control (MAC) and network layers in LoRa networks.

The LoRa physical layer enables long-distance, low-power
communication and operates in the unlicensed sub-GHz ISM
band. LoRa utilizes chirp spread spectrum modulation to
encode an input signal into chirp pulses spread over a wide
spectrum [3]. This technique enables long-distance communi-
cation, even though this results in a low data rate. Each LoRa
transmission is characterized by five parameters: spreading
factor, transmission power, code rate, center frequency and
bandwidth [6]. These parameters affect the communication
range, the data rate, the robustness to interference or noise,
and the ability of a receiver to decode the signal. The available
values for each parameter depend on the region where LoRa
devices are deployed [12]. The spreading factor is the ratio
between the data symbol rate and chirp rate. The configuration
of the spreading factor allows tuning the data rate and the
reachable distance. In fact, the data rate is lower at higher
spreading factors, but the communication range is higher.
Choosing different spreading factors also enables orthogonal
signals, implying that a receiver can successfully receive
distinct signals sent over a given channel at the same time [3].
The transmission power can be configured based on the region
and the bandwidth used for transmissions. The code rate is
the forward error correction rate, and it affects the airtime
of packet transmissions. The center frequency depends on the
ISM band used in a particular region. Finally, the bandwidth
influences the data rate of transmissions.

The LoRaWAN specification [4] defines an open standard
for the network protocols and the system architecture of
LoRa networks. LoRaWAN relies on an ALOHA-based MAC
protocol [13], which reduces the complexity of end-devices.
The network architecture consists of a hierarchical topology,
wherein LoRa nodes communicate with gateways over the
LoRa physical layer. A node is not associated with a particular
gateway; instead, all gateways within the range of a transmitter
can receive messages. The gateways simply relay received
messages to a central network server. The communication
between gateways and the network server takes place over
the standard Internet Protocol (IP). The central network server
manages the network by processing the incoming messages,
filtering duplicate packets, forwarding messages to application
servers, and sending responses to nodes through a single
designated gateway.

III. A FRAMEWORK FOR LORA SIMULATIONS

We developed FLoRa1 (Framework for LoRa), a simulation
tool based on the OMNeT++ [11] discrete event simulator and

1http://flora.aalto.fi/

TABLE I: Parameters of the propagation model [6, 16].

Scenario d0 [m] PL(d0) [dB] n σ [dB]

Urban 40 127.41 2.08 3.57
Sub-urban 1000 128.95 2.32 7.08

its INET framework [14]. FLoRa is open source and includes
modules that simulate the LoRa physical layer, the LoRaWAN
MAC protocol as well as network elements including gateways
and network servers. Moreover, FLoRa includes a module to
characterize the energy consumption of LoRa end devices.
This section details the implementation of FLoRa. We first
describe the characterization of the LoRa physical layer,
then discuss the adopted energy model. We also present the
key features of the network elements and the architecture
supported by the simulator.

A. LoRa Links

FLoRa allows to configure all the transmission parameters
in the LoRa physical layer: spreading factor, center frequency,
bandwidth, code rate, and transmission power. These param-
eters determine the communication range and the occurrence
of collisions. In particular, a LoRa transmission is successful
if the received power is greater than the receiver sensitivity.
The received power depends on the transmission power and
the losses due to signal attenuation and shadowing. This is
modeled using the well-known log-distance path loss model
with shadowing [15], which calculates the path loss based on
the distance between the transmitter and receiver as follows:

PL(d) = PL(d0) + 10n log

(
d

d0

)
+Xσ (1)

where PL(d0) is the mean path loss for distance d0, n is
the path loss exponent, and Xσ is a zero-mean Gaussian
distributed random variable with standard deviation σ.

FLoRa supports both urban and sub-urban environments.
Table I shows the default path loss parameters (PL(d0), d0,
σ and n) used in the two cases. These parameters have
been derived from the measurements carried out in [6] and
[16]. Specifically, the measurements in [6] correspond to a
built-up urban environment wherein deployments are partially
indoors. The measurements in [16], instead, correspond to a
sub-urban environment with only a few tall buildings. Thus,
the communication range in sub-urban areas [16] is higher
than the one in urban areas [6].

A successful transmission also depends on whether LoRa
transmissions interfere with each other or not. To this end, we
use the collision model proposed in [6]. The main assumption
is that two transmissions in orthogonal channels (for instance,
transmissions with different spreading factors) do not collide.
If two messages are in non-orthogonal channels, a collision
occurs when they overlap in time. Furthermore, the collision
model includes the capture effect as experimentally character-
ized in [6]. Accordingly, the stronger of two colliding signals
is decoded, provided that the power difference between the
signals is more than 6 dBm and at least 5 symbols in the

http://flora.aalto.fi/


Fig. 1: Modules available in FLoRa and the corresponding protocol stack.

preamble are detected. We validated the communication model
of our simulator against the experimental results from [6, 16]
and verified that it yields results very close to those presented
in the two articles.

B. Energy Consumer Module

The energy expenditure is modeled by a state-based energy
consumer module, wherein the energy consumed depends on
the amount of time spent by the LoRa radio in a particular
state. The three main states of a LoRa radio are transmit,
receive and sleep. The radio is switched to sleep mode after
transmitting or receiving a frame [17]. The energy consumed
in the transmit state depends on the transmission power level.
The values of the instantaneous current for each transmission
power level are obtained from [6]. The current drawn during
the receive and sleep modes are derived from the Semtech
SX1272/73 datasheet [17] with a supply voltage of 3.3 V.

C. Network Elements

FLoRa enables end-to-end network simulations by modeling
LoRa nodes, gateways and network servers. Figure 1 shows
the relevant modules and the related protocol stack. The
gateway is able to receive LoRa transmissions from nodes
on multiple channels simultaneously, in compliance with the
LoRaWAN specifications [4]. The gateway and the network
server communicate over IP. The physical layer between the
gateway and the network server can be realized with existing
INET modules such as Ethernet and WiFi links. Similarly,
delays in the backhaul network can be described by an
appropriate configuration of the relevant link parameters. A
network can contain multiple gateways; the network server
filters out duplicate packets from multiple gateways and sends
downlink data to a node through the gateway with the highest
link quality indicator. The network server also implements the
management algorithms described in the next section.

IV. ADAPTIVE CONFIGURATION OF LORA NETWORKS

LoRa networks are expected to support a large number
of devices exchanging data over the LoRa physical layer.
Managing the transmission parameters of the physical layer
(described in Section II) plays an important role in determining
the capacity and scalability of LoRa networks. To this end,
the LoRaWAN specification describes a link-based Adaptive
Data Rate (ADR) mechanism [4], which dynamically modifies
the transmission parameters for links between nodes and gate-
ways. This section first describes the features of ADR. We then

propose an improved version of the ADR scheme to achieve
better performance under variable channel conditions. Finally,
we describe a network-aware approach, wherein a global
knowledge on the network is used to adapt the transmission
parameters.

A. Adaptive Data Rate

ADR is designed to efficiently set the data rate and the
transmission power of static nodes with two main goals:
increase the overall capacity of the network and maximize
the battery life of the nodes [3, 4]. ADR achieves this by
estimating a link budget, which is the sum of all gains and
losses in each wireless link between a node and a gateway.
For instance, a node located close to a gateway can transmit
data with a low spreading factor so as to lower the message
transmission time. This allows other nodes to utilize the
available channel for other transmissions [3]. Battery life is
increased by dynamically assigning the transmission power of
a node based on its distance to the gateway.

The ADR mechanism runs asynchronously at the LoRa node
and at the network server. Most of the complexity in ADR
is assigned to the network server, with the goal to keep the
nodes as simple as possible. The ADR algorithm on the node is
specified by the LoRa Alliance [4], whereas the algorithm on
the network server is defined by the network operator. While
the ADR algorithm at the network server can decrease the
spreading factor (SF) and modify the transmission power (TP),
the algorithm at the node can only increase the SF.

The part of ADR running at the node (ADR-NODE) is
described in Algorithm 1. Its main goal is to increase the SF
(thereby reducing the data rate) if uplink transmissions cannot
reach the gateway. If a downlink frame is not received within
a configurable number of frames, the node increases the SF of
the subsequent uplink frame. This increases the transmission
range and, thus, also the probability of reaching a gateway.

The part of ADR running at the network server2, referred
to as ADR-NET, is described in Algorithm 2. The algorithm
allows the network server to change the TP and the SF for
the uplink data transmissions of end nodes. To this end, the
network server estimates the link budget of each node by using
the SNR of received frames. The transmission parameters are
then estimated based on the knowledge of the minimum SNR
(SNRreq) required for demodulation, which is adjusted by a

2We refer to the version of ADR running at the network server according
to the implementation in the Things Network [18], which is based on the
reference (yet not publicly-available) rate adaptation algorithm by Semtech.



Algorithm 1 ADR-NODE

1: ADR ACK LIMIT ← 64
2: ADR ACK DELAY ← 32
3: ADR ACK CNT ← 0
4: if uplink transmission then
5: ADR ACK CNT ← ADR ACK CNT + 1

6: if ADR ACK CNT == ADR ACK LIMIT then
7: Request response from network server
8: if ADR ACK CNT ≥ ADR ACK LIMIT +
ADR ACK DELAY then

9: increase SF
10: if downlink transmission received then
11: ADR ACK CNT ← 0

Algorithm 2 ADR-NET

1: SNRm ← max (SNR of last 20 frames)
2: SNRreq ← demodulation floor(current data rate)
3: deviceMargin ← 10
4: SNRmargin ← (SNRm − SNRreq − deviceMargin)
5: steps ← floor(SNRmargin/3 )
6: while steps > 0 and SF > SFmin do
7: SF ← SF − 1
8: steps ← steps − 1

9: while steps > 0 and TP > TPmin do
10: TP ← TP − 3
11: steps ← steps − 1

12: while steps < 0 and TP < TPmax do
13: TP ← TP + 3
14: steps ← steps + 1

15: end

device-specific margin. The newly calculated parameters are
communicated to the LoRa node through a downlink frame.
The node uses the new parameters for future transmissions
until otherwise instructed. Note that the network server does
not increase the SF (i.e., it does not reduce the data rate), as
this is done by the LoRa node through ADR-NODE.

B. Improving ADR-NET

The ADR-NET algorithm estimates the link quality by using
the maximum SNR value from historical samples. This choice
is ideal when there is no variability in the channel quality.
However, taking the maximum value is an optimistic approach
to estimate link quality when the physical channel conditions
are variable, for instance, due to weather or moving obstacles
between two communicating devices. Thus, we propose a
simple modification, wherein the max operator in line 1 of
Algorithm 2 is replaced with the average function. We refer
to this new algorithm as ADR+. We propose such a change to
solve the problem of high variability in fast-fading conditions
by using a more conservative estimation of the wireless
channel as shown in the next section.

TABLE II: Fraction of nodes assigned to each spreading factor.

Spreading factor 7 8 9 10 11 12
Percentage of nodes 45.6 25.5 14.6 7.4 4.6 2.3

C. Network-aware Configuration

The previously described ADR algorithms adapt the trans-
mission parameters of each node based on an estimated link
budget. However, the performance of a LoRa network depends
not only on such a budget but also on the occurrence of other
simultaneous transmissions with the same spreading factor.
This is determined by the spatial configuration of the deployed
LoRa devices, namely, by the actual locations of both gateways
and nodes. Indeed, it is possible to efficiently assign spreading
factors to nodes when the location of all devices in the network
is known [19]. Accordingly, we calculate the optimal distribu-
tion of spreading factors (Table II) that balances the collision
probabilities between different spreading factors in the whole
network. The probability of collisions in each spreading factor
follows the unslotted ALOHA model [6, 13]. The optimal
spreading factor distribution is obtained with a genetic algo-
rithm, as in [19]. Once the distribution of spreading factors is
known, our network-aware approach configures the parameters
as follows. We first sort the nodes according to increasing
distance3 from the gateway. We then assign spreading factors
to each node according to the optimal distribution: nodes
closer to the gateway are assigned a lower spreading factor
and those further away a higher spreading factor.

V. PERFORMANCE EVALUATION

We evaluate the performance of adaptive communications in
LoRa networks through simulations. We start by describing the
simulation setup, followed by the obtained results. We finally
summarize the key findings from our experiments.

A. Simulation Setup

We employed FLoRa to evaluate the performance of LoRa
networks with and without ADR. The number of LoRa nodes
was varied from 100 to 700 in steps of 100 nodes. We used
the European regional parameters for the LoRa physical layer
detailed in Table III. Each LoRa node initially picked a random
spreading factor and a transmission power level uniformly
distributed within the permissible range, so as to cover all
possible configurations available to the devices. The simulation
scenario consisted of one LoRa gateway located at the center
of the deployment area and connected to one network server,
as illustrated in Figure 2. The Internet cloud component of
the INET framework was used to model an ideal backhaul
network with no packet loss and a transmission delay of 10 ms.
The connections in the backhaul network were represented by
Gigabit Ethernet links.

We considered a typical sensing application in our simula-
tions. Specifically, each LoRa node sent a 20 byte packet after
a time period drawn from an exponential distribution with a

3In practice, such a distance can be estimated based on the received SINR
at the gateway.



Fig. 2: Network topology.

mean of 1,000 s. The LoRa nodes and the gateway adhered to a
1% duty cycle restriction, as required for operation in the ISM
bands [12]. We considered two different deployment scenarios,
i.e., urban (U) and sub-urban (SU). The two scenarios differ
in the path loss parameters used and, thus, in the size of the
deployment area. According to the achievable communication
range, the deployment area was set to 480 m by 480 m for
the urban scenario and 9,800 m by 9,800 m for the sub-urban
scenario. The size of the deployment area was selected as the
maximum value that allows all nodes located within the square
region to communicate with the gateway. Furthermore, we
evaluated each scenario (urban and sub-urban) with different
standard deviations in path loss (σ) set to represent: an ideal
channel, a channel with moderate variability and a channel
with typical variability (refer to Table IV for the details).

Nodes were placed at random locations uniformly dis-
tributed over the deployment area. Each individual experiment
lasted for 12 days of simulated time. The simulations included
a warm-up period of 2 days during which statistics were not
collected while the network reached steady state. We run 30
iterations of each experiment according to the independent
replication method. The plots report the average value obtained
over all replications, along with the related 95% confidence
intervals as error bars.

We evaluated the performance of LoRa networks with and
without ADR. In networks without ADR, the mechanism
was disabled at both the nodes and at the network server.
When ADR was enabled, ADR-NODE ran on all nodes and
the following variants of ADR at the network server were
considered: (i) ADR-NET, as described in Section IV-A (i.e.,
Algorithm 2); (ii) ADR+, the variant of Algorithm 2 described
in Section IV-B. Next, we compared the performance of
networks configured with: (i) ADR+; (ii) a network-aware
approach using the optimal distribution of spreading factors
described in Section IV-C. In such a comparison, we con-
sidered an urban scenario (with variance in path loss σ set
to 0 dB) and a dense deployment of LoRa nodes in a circle
with radius of 50 m around a single gateway. We evaluated

TABLE III: Simulation parameters.

Parameter Value
Carrier Frequency 868 MHz
Bandwidth 125 kHz
Code Rate 4/8
Spreading Factor 7 to 12
Transmission Power 2 dBm to 14 dBm

TABLE IV: Standard deviation of the path loss (σ) in dB for
different deployment scenarios.

Scenario Ideal Moderate variability Typical variability
Urban 0 1.785 3.57
Sub-urban 0 3.54 7.08

the network performance with different densities of devices
by varying the number of nodes in the deployment area from
100 to 700.

Finally, we evaluated the following performance metrics:
• delivery ratio, as the number of messages correctly re-

ceived by the network server divided by the total number
of messages sent by the end nodes;

• energy consumption per successful transmission, as the
total energy used by all LoRa nodes divided by the total
number of messages received by the network server.

B. Simulation Results

We start by evaluating the performance of networks with
ADR and analyze the impact of channel variability. Next, we
compare the performance of ADR+ with ADR-NET. Finally,
we analyze the impact of network-aware configuration on the
delivery ratio.

Impact of channel variability on ADR: We study the per-
formance of ADR in urban and sub-urban scenarios. Figure 3
shows the impact of ADR on the delivery ratio as a function
of the number of nodes for different channel conditions. We
observe that the delivery ratio without ADR is around 40% for
both urban and sub-urban scenarios. The delivery ratio slightly
reduces as the number of nodes in the network increases. In
the case of an ideal channel, ADR-NET performs better than a
network without ADR. However, we observe that the delivery
ratio with ADR-NET in sub-urban scenarios is worse than in
a network without ADR when the channel has a moderate
variability (Figure 3b). For the urban environment, ADR-NET
still outperforms the case without ADR. Finally, Figure 3c
clearly shows that networks with ADR perform worse than
those without ADR for both scenarios. Thus, the delivery
ratio obtained by ADR-NET decreases as the variance in the
channel conditions increases.

We also evaluated the impact of ADR on energy efficiency.
Figure 4 shows the related results, again, as a function of the
number of nodes for different channel conditions. We clearly
see how ADR results in a reduction of the energy consumption
only in the networks with no channel variability. Instead, the
energy usage of ADR-NET is higher than that achieved by
using static parameters when channel conditions vary. This is
mainly caused by the small delivery ratio achieved by ADR.



100 200 300 400 500 600 700
Number of nodes

0

20

40

60

80

100
D

el
iv

er
y

ra
tio

(%
)

no ADR (sub-urban)
no ADR (urban)

ADR-NET (sub-urban)
ADR-NET (urban)

(a)

100 200 300 400 500 600 700
Number of nodes

0

20

40

60

80

100

D
el

iv
er

y
ra

tio
(%

)

no ADR (sub-urban)
no ADR (urban)

ADR-NET (sub-urban)
ADR-NET (urban)

(b)

100 200 300 400 500 600 700
Number of nodes

0

20

40

60

80

100

D
el

iv
er

y
ra

tio
(%

)

no ADR (sub-urban)
no ADR (urban)

ADR-NET (sub-urban)
ADR-NET (urban)

(c)

Fig. 3: Impact of ADR-NET on the delivery ratio in networks with different channel conditions: (a) ideal, (b) moderate
variability, and (c) typical variability.
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Fig. 4: Impact of ADR-NET on the energy consumption in networks with different channel conditions: (a) ideal, (b) moderate
variability, and (c) typical variability.

Impact of different ADR algorithms: We now compare
the performance of ADR-NET against our proposed ADR+.
Figures 5a and 5b show the delivery ratio of the two schemes
as a function of the number of nodes for two different channel
conditions, i.e., ideal and typical variability respectively. The
results obtained with ADR+ are comparable with those pro-
duced by ADR-NET with an ideal channel (Figure 5a). How-
ever, ADR+ achieves a significantly higher delivery ratio than
ADR-NET in networks with non-zero path-loss (σ > 0 dB).
The improvement is at least 30% in all cases (Figure 5b). To
evaluate the impact of channel variance on ADR performance,
Figure 5c shows the delivery ratio (in a network of 100 nodes)
as a function of σ in an urban scenario. We observe that
ADR-NET and ADR+ perform similarly well when channel
variability is low (i.e., until σ < 1.25 dB) after which the
performance of ADR-NET declines. ADR+ achieves a higher
delivery ratio even when the channel variability is high.

ADR+ also achieves better performance in terms of energy
consumption, as shown in Figure 6. The results are similar
to those obtained for the delivery ratio: the performance of
ADR+ and ADR-NET is similar when the channel has no
variability; however, ADR+ outperforms ADR-NET when the

variability is different from zero. This is because the delivery
ratio with ADR+ is much higher than that obtained by ADR-
NET. Finally, Figure 6c shows the energy consumption in a
network of 100 nodes as a function of σ in an urban scenario.
The results clearly show how the performance without ADR
is not affected by the variance in the path loss, while ADR+
and ADR-NET are sensitive to the actual value of σ. While
ADR-NET achieves the best performance for σ < 2.25 dB,
its energy consumption sharply increases when the channel
variability is high. In contrast, the energy consumption of
ADR+ slightly decreases as σ increases. ADR+ lowers the
energy consumption by using a more accurate estimation of
the channel quality.

Impact of network-aware configuration: We compare the
performance of the networks configured with ADR+ to that
with optimal distribution of spreading factors. Figure 7 shows
the delivery ratio as a function of the number of nodes.
When the density of nodes is small (similar to [20]), the
delivery ratio in both networks is comparable. However, as
the number of nodes increases, the difference between the
delivery ratios increases too – such a difference is about 20%
in networks with 700 nodes. We observe that ADR+ tends
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Fig. 5: Comparison of the delivery ratio of ADR-NET and ADR+ in networks with different channel conditions: (a) ideal, (b)
typical variability. (c) Delivery ratio in urban scenarios (100 nodes) as a function of the path loss variance σ.
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Fig. 6: Comparison of the energy consumption of ADR-NET and ADR+ in networks with different channel conditions:
(a) ideal, (b) typical variability. (c) Energy consumption in urban scenarios (100 nodes) as a function of the path loss variance σ.

to assign the lowest spreading factor of 7 to all nodes close
to the gateway. This allows nodes to communicate with the
gateway with the lowest time on air. However, the collisions
between the packets increase when the number of nodes
with the same spreading factor increases substantially. Instead,
the collision probability can be decreased by distributing the
spreading factors among nodes. Consequently, the optimal
distribution achieves a delivery ratio greater than 95% for all
evaluated networks.

C. Discussion

We now discuss some of the key findings from the obtained
results. We also highlight some solutions for the challenges in
managing LoRa networks.

Low Transmission Power Trap: The ADR algorithm at a
node, ADR-NODE, can increase the spreading factor of trans-
missions until the link budget allows the node to successfully
transmit a frame to the network server. However, ADR-NODE
can only increase the spreading factor and cannot change the
transmission power. We observed that in certain cases a node
can communicate with the gateway only if it transmits at a
high transmission power and with a high spreading factor. In

contrast, a node already transmitting with a low transmission
power is unable to increase the transmission power of future
messages. This creates what we call a “low transmission power
trap”, wherein a node can no longer communicate with the
gateway as it is unable to increase its own transmission power.
Our simulation results show that this condition occurs for
about 36% of the nodes in the considered urban scenario and
30% of those in the sub-urban scenario.

Lower Performance of ADR in a Noisy Channel: ADR-
NET performs well when there is no variance in the path
loss, i.e., in an ideal channel with σ = 0 dB. However, when
the channel is noisy (with σ > 0 dB), the original ADR-
NET algorithm calculates SNRmargin based on the maximum
SNR of received frames. The maximum SNR value tends to
overestimate the channel quality. We find that the threshold
to decrease transmission parameters in ADR-NET is satisfied
when the max SNR value from last 20 samples is higher than
3 dB. Thus, ADR-NET decreases the transmission power and
(or) the spreading factor too aggressively in networks with
moderate to high path loss variance.

Network-aware Configuration vs Link Adaptation: ADR-
NET and ADR+ improve the link budget by appropriately
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Fig. 7: Delivery ratio in networks using ADR+ and a network-
aware approach for configuring the transmission parameters.

choosing the spreading factor and transmission power for each
link. However, this approach does not take into consideration
the possibility of collisions. As demonstrated by our experi-
ments, the occurrence of collisions (due to many nodes using
the same spreading factor) can significantly decrease delivery
ratio in dense networks. Therefore, there is a need for an
algorithm that configures transmission parameters based on the
knowledge of the entire network. Clearly, such a knowledge of
the network is not always available, for instance, as the actual
locations of the nodes may be unknown. In such cases, ADR
– in particular, ADR+ when the channel variability is high –
still achieves satisfactory results for deployments that are not
extremely dense.

VI. RELATED WORK

Even though several articles studied the scalability of LoRa
networks [2, 16, 21], none of them has considered the impact
of ADR on performance. Bor et al. [6] propose an algorithm
to select parameters such that transmission airtime and power
are minimized. However, the authors themselves described
the proposed algorithm as optimistic and impractical; their
goal was to show that improvements in network capacity are
possible with dynamic data rates. In contrast, we evaluate
the ADR mechanism built into LoRaWAN and suggest a
simple yet effective modification to improve its performance.
Reynders et al. [19] presented and evaluated a mechanism to
optimize the fairness of packet error rates among nodes with
different spreading factors. We have applied a similar approach
to derive the optimal distribution of spreading factors as a
network-aware scheme in comparison with ADR+. However,
the scenario considered in [19] is such that all nodes in the
network can reach the gateway with every spreading factor and
every power setting, i.e., all nodes are close to the gateway.
In contrast, we consider a more realistic deployment scenario
wherein nodes may only reach the gateway with specific
spreading factors and transmission powers. Varsier et al. [20]
analyzed the capacity limits of LoRaWAN networks for smart
metering applications. The authors considered a distribution
of spreading factors based on the median of the SNR values
received at the gateway. However, the exact details on how

to configure the transmission parameters were not provided in
their work. In contrast, we have evaluated the impact of ADR
on network performance and proposed modifications to the
original ADR algorithms. Kim et al. [22] proposed a new ADR
algorithm for LoRa networks at the nodes. Their algorithm re-
quires an active feedback channel, i.e., an acknowledgment for
every transmission. However, this mechanism would decrease
the delivery ratio as downlink traffic has been demonstrated
to have an impact on uplink throughput [10]. In contrast, we
show that ADR improves the efficiency of LoRa networks
without the need for acknowledgments.

There are a few articles which present simulation tools4 to
evaluate the performance of LoRa networks. Bor et al. [6]
developed a Python-based discrete event simulator (called Lo-
RaSim) to characterize the capacity of LoRa networks. How-
ever, the simulator supports only uplink transmissions from
nodes to the gateway; thus, it cannot be used to evaluate ADR.
Pop et al. [10] extended the LoRaSim simulator by adding
support for downlink transmissions. The authors demonstrated
that downlink transmissions in the network actually decrease
the communication performance of the wireless connections.
Van den Abeele et al. [8] presented a LoRa simulator based on
ns-3. The work characterizes the scalability in scenarios with
both uplink and downlink transmissions; however, it does not
consider dynamic configuration of transmission parameters.

VII. CONCLUSION

In this article, we have evaluated the performance of LoRa
networks using adaptive communications. In particular, we
have considered the ADR mechanism that is built into LoRa
networks. We have developed an end-to-end LoRa simulator
and performed a thorough study of reliability and energy
efficiency in LoRa networks. Our results showed that ADR
is effective when the variance of the channel is zero or
very low, while additional mechanisms are needed for highly-
varying channels. We have proposed a modification to the link
quality indicator, as well as a policy to increase transmission
power at the nodes. However, a link-based adaptation is still
not sufficient in dense networks. Thus, extending ADR with
information on the collision probability and the distribution
of parameters in the network allows to further improve per-
formance in denser networks. In this regard, we plan on
improving the ADR mechanism by investigating the optimal
setting of the transmission parameters in a network. A possible
option would be to balance the link budget for every link
and the delivery ratio for the entire network. We consider this
approach as a promising direction for future work.
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