
Adaptive Conflict Unit Size for Distributed

Optimistic Synchronization

Kim-Thomas Rehmann, Marc-Florian Müller, and Michael Schöttner

Heinrich-Heine-Universität Düsseldorf
Universitätsstraße 1, D–40223 Düsseldorf, Germany

kimoe001@uni-duesseldorf.de

Abstract. Distributed and parallel applications often require accessing
shared data. Distributed transactional memory is an emerging concept
for concurrent shared data access. By using optimistic synchronization,
transactional memory is simpler to use and less error-prone than explicit
lock-based synchronization. However, distributed transactional memories
are particularly sensitive to phenomena such as true sharing and false
sharing, which are caused by correlated data access patterns on multiple
nodes. In this paper, we propose a transparent technique that adaptively
manages conflict unit sizes for distributed optimistic synchronization in
order to relieve application developers from reasoning about such shar-
ing phenomena. Experiments with micro-benchmarks and an on-line data
processing application similar to Twitter (using the MapReduce comput-
ing model) show the benefits of the proposed approach.

1 Introduction

In recent years, numerous data sharing techniques emerged, such as in-memory
data grids, cloud storage, and network-attached memory, used by distributed
and parallel applications. As opposed to earlier distributed sharing techniques
such as file sharing and distributed shared memory, these new techniques aim
at being versatile and dynamic while at the same time guaranteeing consistency
and reliability. Nonetheless, research on scalable, transparent distributed data
sharing to complement existing message passing techniques is still under way.

Sharing techniques benefit from the locality principle [1], which allows to im-
prove data access performance based on correlated access patterns. For example,
caching is a special form of replication where a processor keeps data that it has
used earlier, thereby exploiting temporal locality. In addition, caches operate
on cache lines larger than a single machine word, because processors often use
adjacent words together, a phenomenon known as spatial locality. In distributed
systems, locality of reference is particularly important. Misprediction or lack of
locality cause excessive messaging overhead, which is expensive because of higher
communication latencies and, depending on the network infrastructure, reduced
network bandwidth.

In order to formalize the principle of locality, researchers have defined the
notions true sharing and false sharing [2]. True sharing is a situation where two

P.D’Ambra,M.Guarracino, andD.Talia (Eds.):Euro-Par 2010, Part I, LNCS6271, pp. 547–559, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



548 K.-T. Rehmann, M.-F. Müller, and M. Schöttner

or more nodes access the same object using read or write operations. If the object
is accessed by read-only operations, replication improves access performance.
If one or more nodes modify this object, all other nodes must be notified of
these modifications. Coherence protocols such as update-on-write or invalidate-
on-write require network communication, if the nodes expect to view the system
in a consistent state.

The false sharing phenomenon results from nodes being unable to distinguish
object accesses. In order to take advantage of spatial locality and to minimize
bookkeeping overhead, some systems aggregate objects into consistency units.
For example, the memory management unit (MMU) that virtualizes random
access memory detects accesses at the granularity of virtual memory pages. If
two or more nodes access indistinguishable but different objects and at least one
node modifies a single object, all objects appear to be modified. Obviously, if
false sharing accesses occur often, they will slow down applications as much as
true sharing does.

As opposed to true sharing, it is possible to avoid false sharing without mod-
ifying the application by choosing fine-grained consistency units. However, true
sharing and false sharing are time-dependent phenomena. When access patterns
change, true sharing can turn into false sharing and vice versa.

The contribution of this paper is an adaptive management concept of consis-
tency unit sizes in the context of a distributed transactional memory (DTM)
system. DTM extends optimistic synchronization [3], the idea behind trans-
actional memory (TM) [4,5], to distributed systems such as (federated) clus-
ters [6,7,8,9,10,11]. DTM uses transactions to keep replicas consistent, avoiding
complicated lock management and deadlocks. Beyond these benefits, specula-
tive transactions bundle operations, allowing bulk network transfers while at
the same time providing strong consistency. False sharing in TM leads to false
conflicts, causing unnecessary transaction serializations. In contrast to related
work, our approach is transparent for the application programmer. Internally
we use larger consistency unit sizes whenever possible to allow bulk network
transfers (for efficiency reasons). As soon as false sharing situations are detected
during runtime, we transparently reduce the granularity of affected consistency
units. If false sharing vanishes, we transparently aggregate smaller consistency
units.

The remainder of this paper is structured as follows. Section 2 reviews a static
mechanism to avoid false sharing. In Section 3 we present a DTM that adapts
its conflict unit sizes to avoid false sharing while supporting spatial locality. In
Section 4 we evaluate our dynamic sharing technique. Section 5 discusses related
work, and Section 6 concludes with an outlook on further improvements.

2 Static False Sharing Avoidance

Distributed systems that guarantee consistency of shared objects must control
accesses to objects. The granularity of access detection influences the perfor-
mance of distributed and parallel applications. On the one hand, coarse-granular



Adaptive Conflict Unit Size for Distributed Optimistic Synchronization 549

access detection allows bulk network transfers improving performance but may
run into false sharing situations drastically degrading performance. On the other
hand, fine-granular access detection is not prone to false sharing, but it does not
support spatial locality, and it may incur additional run-time overhead.

We classify access detection mechanisms as either being object, attribute
or page based. Object-based access detection eliminates false sharing among
different objects [12], but it requires either annotations by the programmer
or instrumentation by a compiler. For example, the distributed system might
rely on applications to notify object accesses by means of operations such as
openObject [13]. At a finer granularity, attribute-based access detection com-
pletely avoids false sharing. However, allowing applications to modify different
attributes of the same objects concurrently is counter-intuitive. In order to de-
tect object accesses transparently with respect to both application and program-
mer, page-based access detection uses memory protection mechanisms built in
hardware.

2.1 Page-Based Access Detection

We have decided to base our implementation of a DTM on page-based access
detection for several reasons. First, using pages as consistency units benefits from
locality of access and allows bulk network transfers. Second, although the MMU
detects object accesses during address translation at hardware level, a user-level
library can conveniently control access detection. Therefore, page-based access
detection neither depends on the language in which the application was written,
nor does it require any special markup for accesses. If a page lacks the requested
access privilege, the MMU generates an exception, which the user-level library
handles. Furthermore, in a distributed system, high communication latencies
mitigate the overhead for local page-based access detection. Third, page-based
access detection integrates well with transaction semantics, as we will discuss in
Section 3.2.

Although most modern processors support multiple page sizes (e.g. 4 KB
and 2 MB respective 4 MB on x86 processors), operating systems usually do not
allow applications to select the hardware page size. If objects are smaller than the
page size, page-based access detection is prone to false sharing, because accesses
to different objects on the same virtual page cannot be distinguished. Page
diffing [14] permits locating write accesses at byte granularity. Writable implies
readable on x86 processors, such that diffing cannot preclude false sharing, unless
it reveals that a page has not been modified at all.

A primitive approach to counteract false sharing would be to allocate ob-
jects sparsely in the virtual address space. However, placing each object in a
distinct consistency unit trades exact access detection in for internal fragmenta-
tion. Although modern machines usually have plenty of physical memory avail-
able, internal fragmentation can increase memory consumption by a factor of
thousand in extreme cases, for example when wasting a 4 KB page for a 4 Byte



550 K.-T. Rehmann, M.-F. Müller, and M. Schöttner

object. Moreover, padding irrevocably eliminates the potential benefits of spa-
tial locality. Even worse, the approach cannot adapt to different object usage
patterns.

2.2 Multiview/Millipage Address Space Layout

The Multiview/Millipage approach proposed by Itzkovitz and Schuster [15] con-
structs special virtual-to-physical mappings, allowing for access detection at ob-
ject granularity, nonetheless avoiding internal fragmentation as with primitive
false sharing avoidance. A Millipage region divides a physical page frame into
2n disjoint Millipages. If the hardware page size is 2p, one Millipage covers 2p−n

bytes. Each Millipage has a distinct mapping in the virtual address space, such
that accesses to objects that reside on the same physical page frame are de-
tected independently. A privileged mapping allows to circumvent access detec-
tion, thereby enabling atomic updates in multithreaded applications. Figure 1
illustrates Millipage layout with two Millipages per physical page frame.

Fig. 1. Millipage mappings (n = 2)

In our implementation of Multiview, one region’s Millipages reside in consec-
utive virtual memory pages, such that the region spans a range of 2np bytes in
which only a total of 2p bytes belongs to valid Millipages. This simple conven-
tion about memory layout enables cheap access validation: An address’s offset
in the virtual page must match the page’s index in its Millipage region, e.g. the
application must reference the first object only through the first virtual page,
the second object only through the second virtual page and so on. Failure of
access validation indicates a corrupt memory pointer.

The Multiview technique effectively decouples page size and consistency unit
size. If each consistency unit holds at most one object, every access uniquely
identifies a single object. Therefore, Multiview completely avoids false sharing.

2.3 Handling Huge Objects

The Multiview approach applies in case the consistency unit size is smaller than
the page size. In contrast, some objects may be larger than page size, such
that these objects must be allocated on consecutive full pages. False sharing
cannot occur in these cases, set aside false sharing between attributes of the



Adaptive Conflict Unit Size for Distributed Optimistic Synchronization 551

same object. Nevertheless, it is interesting to note that there are two modes
how a sharing service can synchronize access to the pages a large object consists
of. Either the service synchronizes each page in stand-alone manner, that is, it
allows parts of the object to be modified concurrently, or it handles the object
as an aggregation of pages, that is, it automatically ascribes access to all pages
simultaneously. If the operating system supports different page sizes in user-
space, the sharing service can allocate huge objects on larger pages to improve
the performance of access detection. Our DTM supports concurrent modification
of object attributes.

3 Dynamic Conflict Size Management

The transaction concept allows concurrent activities to access multiple objects
with implicit synchronization. A transaction bundles several read and write op-
erations. Well-known in the context of databases, the so-called ACID proper-
ties [16] guarantee atomicity, consistency, isolation and durability of transactions.
To ensure atomicity and isolation, transactions execute speculatively. After spec-
ulative execution, a subsequent validation phase ensures that a transaction only
commits its modifications if speculative execution did not violate the consis-
tency requirement. Durability of database transactions asserts that committed
transactions cannot be undone.

Transactional memory (TM) applies the transaction concept to in-memory
data [17,5]. By integrating application logic and data access mechanism, TM
avoids any potential database overhead and enables specific optimizations. For
example, TM relaxes the durability of transactions, such that distributed state
need not be written to disk.

The object sharing service (OSS) [18] implements a DTM for XtreemOS [19]
but also runs on any x86-based Linux system. The OSS provides shared objects
as ranges in virtual memory, such that references to objects are simply memory
pointers. For heterogenous setups we plan a pointer swizzling technique like for
example implemented in Interweave [20]. Every TM requires application devel-
opers to define transaction boundaries by identifying code sections that access
shared data concurrently. In the OSS, begin and end of transactions are specified
by calling the corresponding library functions.

In order to simplify application development, the OSS controls read and write
operations transparently by using page-based access detection. As discussed in
the introduction, a consistency unit size of one page (4 KB) is prone to false shar-
ing. In a DTM system, false sharing causes false conflicts between transactions,
leading to unnecessary transaction aborts.

The adaptive conflict unit size management we propose in this section is flex-
ible and transparent for the application programmer, relieving him of reasoning
about data allocation and memory layouts causing false sharing situations. By
providing an adaptive approach, we can support large consistency units and
bulk network transfers whenever possible, but we can switch to a fine-grained
Multiview consistency unit management in case false sharing shows up.



552 K.-T. Rehmann, M.-F. Müller, and M. Schöttner

3.1 Page-Based Access Detection for Transactional Memory

At the beginning of a transaction, the transaction management requests access
notification for all objects by revoking read and write permission for the corre-
sponding virtual memory pages. The first read operation to a page causes Linux
to report the object’s address to the OSS, which in turn inserts the address into
the transaction’s read set and grants access to the corresponding page. The first
write operation proceeds in a similar manner. In addition, the OSS creates a
shadow copy containing the page’s original content, such that transaction man-
agement can restore the page in case the transaction cannot commit and must
restart. Repeated read or write accesses to a page within the same transaction
are not monitored and can run without any overhead. However, the first write
operation on a previously read page causes a shadow copy to be created and
moves the address from the read set to the write set.

3.2 Integration of Multiview into Transactional Memory on Linux

Our OSS supports using Millipages of different granularities and full (non-
Millipage) pages side-by-side. When allocating an object, the OSS automatically
chooses the Millipage granularity coarse enough to hold the object. The Milli-
page granularity is stored in the virtual page’s attributes that are themselves
distributed objects with fixed granularity.

The Multiview allocation scheme and the privileged mapping require multiple
mappings of the same memory segment. Therefore, the OSS constructs memory
mappings using System V shared memory segments, which can be attached
repeatedly to a single address space.

We have identified several synergies between memory transactions and the
Multiview approach. First, Multiview restrains object size for read and write
accesses, such that false aborts are eliminated. Second, Multiview speeds up
shadow copy operations. When creating a shadow copy for a Millipage, the OSS
needs to backup only a fraction of a full page, at most one physical page frame for
an entire Millipage region. Similarly, Multiview restrains the range to compare
for diff generation. Third, the privileged mapping allows transactions to run
multithreaded in the same process. Otherwise, during non-atomic updates, all
of a process’s threads would have to be halted.

3.3 Monitoring of Object Accesses

The Multiview technique completely avoids false conflicts if objects are always
allocated on distinct pages, but degrades performance for access patterns that do
not cause conflicts but could benefit from spatial locality. Moreover, transaction
conflicts are dynamic phenomena, which depend on object access patterns. Con-
sequently, we have implemented an access detection technique that dynamically
adapts to the degree of false conflicts.



Adaptive Conflict Unit Size for Distributed Optimistic Synchronization 553

Our technique monitors object accesses to determine whether Millipages
should be handled seperately or conjointly. In the context of TM, we desig-
nate consistency units as conflict units. A Millipage region that serves as coarse
conflict unit is called object access group (OAG).

To avoid exponential state-keeping and limit memory overhead, the moni-
toring mechanism considers only objects located in the same Millipage region.
These objects have been allocated by the same node during some time interval,
such that a semantical relationship among these objects is likely. Furthermore, a
single system call can set the access protection for a contiguous region of virtual
memory, such that using OAGs does not increase the number of costly switches
between user and kernel mode.

The dynamic adaptation mechanism bases its decisions only on local informa-
tion in order to avoid network communication. Each node receives write sets from
other committing nodes. Nodes need not transmit read sets, because remote read
operations are not relevant to identify false conflicts, given that transactions in
the OSS commit using a first-wins strategy.

During the validation phase, transaction management determines whether a
transaction conflicts with already committed transactions. In addition, for non-
aggregated Millipage regions, our transaction management calculates whether
OAGs would have caused hypothetic false conflicts.

3.4 Adapting Sharing Granularity

When aggregating objects into OAGs, it may happen that some objects in the
group are not accessed during a transaction. Thus, the transaction’s read or write
set might contain false positives. For objects in the write set, generating a diff
between the actual object and its shadow copy reveals whether the object has
been modified. Given that writable implies readable on our target architecture
x86, transaction management must not ignore unmodified objects, but it can
relocate them from the write set to the read set. For objects in the read set, it is
impossible to detect whether they have actually been accessed in the transaction.
As a consequence, false positives in read sets increase the probability of false
transaction aborts but do not cause inconsistencies.

The dynamic adaptation mechanism handles both the aggregation of objects
to OAGs and the division of OAGs to objects with individual access detection.
A sharing situation with spatial locality among objects in a Millipage region is
characterized by few hypothetic conflicts. If hypothetic conflicts are rare and a
read set contains several objects from the same region, the adaptation mechanism
combines the Millipages into an OAG. To avoid oscillation, OAGs are formed
no sooner than several transactions after splitting the region. We determined
empirically that a reasonable stabilization interval is equal to the number of
Millipages in the region. An OAG that causes a conflict during validation is
subject to false conflicts or even true conflicts. Thus, the adaptation mechanism
splits the OAG immediately.



554 K.-T. Rehmann, M.-F. Müller, and M. Schöttner

3.5 Hints for the Application Developer

Monitoring of object accesses also assists the developer in identifying those ob-
jects that frequently cause true aborts. Conflict rates are aggregated among all
participating nodes and published in the built-in name service, including infor-
mation about which node and which function created the object. The developer
can extract true sharing hotspots from the name service either periodically or
manually, for example before terminating the application.

4 Performance Evaluation

To evaluate the performance of our adaptive sharing technique, we have run
micro-benchmarks under different sharing and allocation strategies. An on-line
data processing application demonstrates that transactional memory benefits
from adaptive sharing for realistic workloads. We ran our experiments on dual-
core nodes equipped with AMD Opteron 244 processors running at 1.8 GHz
under Linux 2.6.26. The nodes were connected via Gigabit Ethernet over Broad-
com NetXtreme NICs.

4.1 Micro-Benchmarks

We have run synthetic workloads with four different allocation schemes. The
dlmalloc allocator is a general-purpose allocator, similar to the one used by
the GNU standard C library. We use its MSpaces variant, which enables multi-
threaded allocations of transactional memory. MSpaces is quite space-efficient
but prone to false sharing. The Page allocator places each object in a separate
physical page frame. It implements the primitive approach against false sharing
and causes internal fragmentation for object sizes that are not a multiple of
page size. The Millipage allocator statically places all objects on Millipages and
does not aggregate objects. The Adaptive allocator is based on the Millipage
allocator and implements adaptive sharing based on OAGs. To express an allo-
cation scheme’s reaction on an access pattern, we have measured the number of
detected accesses.

For the first test, the setup consists of two nodes accessing two objects that
have been allocated consecutively. The examined node reads both objects, the
second node writes to one object, causing frequent transaction restarts on the
examined node. A simple fairness strategy in OSS ensures that a transaction
will commit after restarting once. Figure 2 impressively demonstrates that the
MSpaces allocator is susceptible to false sharing, whereas the other allocators
enable to distinguish both objects.

In the second test, a single node accesses two objects conjointly in a loop of
216 transactions. The Page and Millipage allocator detect each access separately,
as depicted in Figure 3. The MSpaces and Adaptive allocator only detect one
access per transaction because of spatial locality between the objects.



Adaptive Conflict Unit Size for Distributed Optimistic Synchronization 555

Fig. 2. Access detections induced by ac-
cessing distinct objects

Fig. 3. Access detections induced by ac-
cessing objects conjointly

Fig. 4. Memory consumption (logarith-
mic scale)

Fig. 5. Dynamic adaptation from OAGs
to Millipages and vice versa

For a synthetic workload with 1024 4-Byte objects, the memory consumption
of the Page allocator is severe, whereas the other allocators allocate only the
requested object size plus some allocation meta-data (see Figure 4).

We have also evaluated how well our technique adapts to varying object access
patterns. The setup consists of two nodes, one of which is running transactions
in a loop for 220 times, reading from two objects. The other starts up about six
seconds later, runs transactions in a loop for 219 times, writing to one of the
objects. Initially, the second node does not run transactions at full speed, which
causes the first node to switch several times between coarse-granular and fine-
granular access detection. Figure 5 subdivides the number of access detections
for OAGs and for Millipages.

4.2 MapReduce

MapReduce [21] is a computing model for processing large amounts of data.
The model applies to certain problems where mapping the input data to a dif-
ferent domain allows highly parallelized computations. Being easy to understand,
MapReduce has reached widespread use. For example, Google uses MapReduce
for different search and extraction problems in more than 4000 applications.

The common introductory example for MapReduce is word frequency analysis.
For determining the frequency of words in an input text, the map phase emits
each individual word with a count of 1. The reduce phase afterwards collects all
identical words from map phase’s output and sums up their counts, yielding the
total count per word.



556 K.-T. Rehmann, M.-F. Müller, and M. Schöttner

Fig. 6. Example trie storing the frequency of the words tree, trie (2) and try

The word frequency problem exemplifies that MapReduce is well-suited for
analyzing static data. Dynamic, interactive information sharing, such as Web
2.0 applications that are currently emerging, needs processing facilities for con-
tinuous data streams. To achieve good scalability, continuous data should be
processed in parallel. As a consequence, the computing model must efficiently
support concurrent access to shared data.

We have applied MapReduce to processing of continuous data streams. Our
implementation bases on our DTM. Extending the word frequency example, we
illustrate the effectivity of adaptive conflict size management with continuous
analysis of text data streams, using a scenario resembling the well-known Web
2.0 application Twitter.

The continous word counting example operates on a trie [22] where each word
is represented by a path from the tree’s root to a node. The node at the end of
a word stores the frequency of the word it terminates, possibly other statistical
information such as time stamps too. Intermediate nodes represent prefixes of a
word, storing at most 26 references to next prefix characters (see Figure 6). In our
implementation, each node has a size of 216 Bytes, which equals 26 references
to child nodes plus a 64-Bit counter. When allocating nodes for the trie, the
Adaptive allocator splits a physical page frame in 16 Millipages, each 256 Bytes
large, causing 16% internal fragmentation.

The trie representation of words already counteracts false sharing by enforcing
a high fan-out, e.g. compared to a representation of words in a binary tree. Our
implementation serves back-to-back allocations from the same Millipage region,
if space allows so. Therefore, nodes tend to reside in the same region as their
ancestors and descendants, such that grouping adjacent objects makes sense.

Fig. 7. Access detections for word fre-
quency analysis

Fig. 8. Transaction aborts for word fre-
quency analysis



Adaptive Conflict Unit Size for Distributed Optimistic Synchronization 557

In our experiment, we connected two nodes using our DTM. Each node simu-
lated a user who entered some text (the novel Kim written by Rudyard Kipling).
The text consisted of 107585 words in total, thereof 10636 different words. Again,
we measured the number of access detections representing how well an allocator
makes use of locality (see Figure 7). Additionally, we determined the number
of transaction restarts, which indicates how much access detection suffers from
false sharing (see Figure 8). Our adaptive access detection mechanism triggers
only 60% access detections compared to the Millipage allocator, and it causes
less than 25% transaction restarts compared to the MSpaces allocator.

5 Related Work

The implications of sharing phenomena and their interdependencies have been
discussed mainly in the context of caching hardware and distributed shared
memory (DSM). Several consistency models that take account of sharing have
been defined, for example scope consistency [23] and view-based consistency [24].
These models provide weaker consistency than TM. The Region-trap library [25]
combines pointer swizzling and virtual memory protection to trap accesses to
individual objects, requiring region pointer annotation. Amza et al. [26] describe
the dynamic aggregation of pages for lazy release consistency [14]. Our work has
some similarities with ComposedView [27]. ComposedView provides transparent
aggregation of small consistency units for sequential consistency, but to our
knowledge the technique has not been applied to TM yet.

The impact of false sharing on TM has been discussed recently, for example
in the VELOX project [28]. Burcea et al. [29] propose to vary access tracking
granularity. In contrast to our approach, the authors focus on per-object gran-
ularity that does not adapt dynamically to access patterns. Bocchino et al. [7]
implement a DTM for large-scale clusters. They define eight design dimensions
for their TM, one dimension is the static size of conflict detection units.

6 Conclusion

We have presented an approach for the adaptive management of conflict unit
sizes for a distributed transactional memory system. The combination of a smart
allocation strategy and transparent access monitoring avoids false sharing and
thus unnecessary transaction aborts caused by false conflicts. At the same time
we support locality whenever possible, allowing bulk network transfers to speed
up distributed processing. The proposed solution is transparent for the applica-
tion programmer and is able to adapt its strategy to changing access patterns.

The evaluation using micro-benchmarks and a MapReduce application demon-
strate the benefits of the adaptive conflict unit size management while at the
same time introducing only minimal overhead.

Clearly, transactional memory is attracting a lot of people in research and
industry, and recently some of these ideas have also shifted to distributed sys-
tems. Therefore, we expect more and more transactional applications, also for
distributed environments.



558 K.-T. Rehmann, M.-F. Müller, and M. Schöttner

We plan to study more flexible object access groups containing objects from
different Millipage regions. In this context, Bloom filters [30] are a promising data
structure for statistical monitoring of large data sets. Finally, we have started
with large-scale experiments on the Aladdin-Grid’5000 platform.

References

1. Denning, P.J., Schwartz, S.C.: Properties of the working-set model. ACM Com-
mun. 15(3), 191–198 (1972)

2. Torrellas, J., Lam, M.S., Hennessy, J.L.: False sharing ans spatial locality in mul-
tiprocessor caches. IEEE Trans. Computers 43(6), 651–663 (1994)

3. Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM
Trans. Database Syst. 6(2), 213–226 (1981)

4. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. SIGARCH Comput. Archit. News 21(2), 289–300 (1993)

5. Felber, P., Fetzer, C., Guerraoui, R., Harris, T.: Transactions are back—but are
they the same? SIGACT News 39(1), 48–58 (2008)

6. Kotselidis, C., Ansari, M., Jarvis, K., Luján, M., Kirkham, C., Watson, I.: DiSTM:
A software transactional memory framework for clusters. In: ICPP 2008: Proceed-
ings of the 37th IEEE International Conference on Parallel Processing, September
2008, IEEE Computer Society Press, Los Alamitos (2008)

7. Bocchino, R.L., Adve, V.S., Chamberlain, B.L.: Software transactional memory
for large scale clusters. In: PPoPP 2008: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming, pp. 247–258. ACM,
New York (2008)

8. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distributed Computing 20(3), 195–208 (2007)

9. Manassiev, K., Mihailescu, M., Amza, C.: Exploiting distributed version concur-
rency in a transactional memory cluster. In: PPoPP 2006: Proceedings of the
eleventh ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, pp. 198–208. ACM, New York (2006)

10. Romano, P., Carvalho, N., Rodrigues, L.: Towards distributed software transac-
tional memory systems. In: LADIS 2008: Proceedings of the 2nd Workshop on
Large-Scale Distributed Systems and Middleware, pp. 1–4. ACM, New York (2008)

11. Couceiro, M., Romano, P., Carvalho, N., Rodrigues, L.: D2STM: Dependable dis-
tributed software transactional memory. In: PRDC 2009: Proc. 15th Pacific Rim
International Symposium on Dependable Computing (November 2009)

12. Bal, H.E., Bhoedjang, R., Hofman, R., Jacobs, C., Langendoen, K., Rühl, T.,
Kaashoek, M.F.: Performance evaluation of the Orca shared-object system. ACM
Trans. Comput. Syst. 16(1), 1–40 (1998)

13. Herlihy, M., Luchangco, V., Moir, M., Scherer, I.W.N.: Software transactional
memory for dynamic-sized data structures. In: PODC 2003: Proceedings of the
twenty-second annual symposium on Principles of distributed computing, pp. 92–
101. ACM, New York (2003)

14. Keleher, P., Cox, A.L., Zwaenepoel, W.: Lazy release consistency for software dis-
tributed shared memory. In: Proc. of the 19th Annual Int’l Symp. on Computer
Architecture (ISCA 1992), pp. 13–21 (1992)



Adaptive Conflict Unit Size for Distributed Optimistic Synchronization 559

15. Itzkovitz, A., Schuster, A.: MultiView and Millipage – fine-grain sharing in page-
based DSMs. In: OSDI 1999: Proceedings of the third symposium on Operating
systems design and implementation, pp. 215–228. USENIX Association, Berkeley
(1999)

16. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15(4), 287–317 (1983)

17. Dias, R.J., Lourenço, J.M.: Unifying memory and database transactions. In:
Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009 Parallel Processing. LNCS,
vol. 5704, pp. 349–360. Springer, Heidelberg (2009)

18. Müller, M.F., Möller, K.T., Sonnenfroh, M., Schöttner, M.: Transactional data
sharing in grids. In: PDCS 2008: Proceedings of the International Conference on
Parallel and Distributed Computing and Systems (2008)

19. Christine, M.: XtreemOS: A Grid operating system making your computer ready
for participating in virtual organizations. In: ISORC 2007: Proceedings of the 10th
IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing, Washington, DC, USA, pp. 393–402. IEEE Computer So-
ciety, Los Alamitos (2007)

20. Chen, D., Dwarkadas, S., Parthasarathy, S., Pinheiro, E., Scott, M.L.: Interweave:
A middleware system for distributed shared state. In: Languages, Compilers, and
Run-Time Systems for Scalable Computers, pp. 207–220 (2000)

21. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
ACM Commun. 51(1), 107–113 (2008)

22. Knuth, D.E.: The art of computer programming. In: sorting and searching, 2nd
edn., vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)

23. Iftode, L., Singh, J.P., Li, K.: Scope consistency: a bridge between release con-
sistency and entry consistency. In: SPAA 1996: Proceedings of the eighth annual
ACM symposium on Parallel algorithms and architectures, pp. 277–287. ACM,
New York (1996)

24. Huang, Z., Sun, C., Purvis, M., Cranefield, S.: View-based consistency and false
sharing effect in distributed shared memory. SIGOPS Oper. Syst. Rev. 35(2), 51–60
(2001)

25. Brecht, T., Sandhu, H.: The region trap library: handling traps on application-
defined regions of memory. In: ATEC 1999: Proceedings of the annual conference
on USENIX Annual Technical Conference, p. 7. USENIX Association, Berkeley
(1999)

26. Amza, C., Cox, A., Rajamani, K., Zwaenepoel, W.: Tradeoffs between false sharing
and aggregation in software distributed shared memory. In: PPOPP 1997: Proceed-
ings of the sixth ACM SIGPLAN symposium on Principles and practice of parallel
programming, pp. 90–99. ACM, New York (1997)

27. Niv, N., Schuster, A.: Transparent adaptation of sharing granularity in MultiView-
based DSM systems. Softw. Pract. Exper. 31(15), 1439–1459 (2001)

28. Harmanci, D., Felber, P., Gramoli, V., Fetzer, C.: TMUNIT: Testing transactional
memories. In: TRANSACT 2009: 4th Workshop on Transactional Computing,
Feburary (2009)

29. Burcea, M., Steffan, J.G., Amza, C.: The potential for variable-granularity access
tracking for optimistic parallelism. In: MSPC 2008: Proceedings of the 2008 ACM
SIGPLAN workshop on Memory systems performance and correctness, pp. 11–15.
ACM, New York (2008)

30. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. ACM
Commun. 13(7), 422–426 (1970)


	Adaptive Conflict Unit Size for Distributed Optimistic Synchronization
	Introduction
	Static False Sharing Avoidance
	Page-Based Access Detection
	Multiview/Millipage Address Space Layout
	Handling Huge Objects

	Dynamic Conflict Size Management
	Page-Based Access Detection for Transactional Memory
	Integration of Multiview into Transactional Memory on Linux
	Monitoring of Object Accesses
	Adapting Sharing Granularity
	Hints for the Application Developer

	Performance Evaluation
	Micro-Benchmarks
	MapReduce

	Related Work
	Conclusion
	References


