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Abstract— Because of the complicity of consensus control of
nonlinear multiagent systems in state time-delay, most of previous
works focused only on linear systems with input time-delay. An
adaptive neural network (NN) consensus control method for a
class of nonlinear multiagent systems with state time-delay is
proposed in this paper. The approximation property of radial
basis function neural networks (RBFNNs) is used to neutralize
the uncertain nonlinear dynamics in agents. An appropriate
Lyapunov–Krasovskii functional, which is obtained from the
derivative of an appropriate Lyapunov function, is used to
compensate the uncertainties of unknown time delays. It is
proved that our proposed approach guarantees the convergence
on the basis of Lyapunov stability theory. The simulation results
of a nonlinear multiagent time-delay system and a multiple
collaborative manipulators system show the effectiveness of the
proposed consensus control algorithm.

Index Terms— Consensus control, Lyapunov–Krasovskii func-
tional, neural networks (NNs), nonlinear multiagent systems, time
delay.

I. INTRODUCTION

IN RECENT years, multiagent consensus control research

has received more and more attention [1]–[5]. Their wide-

spread applications can be discovered in many fields, such

as in distributed sensor networks, cooperative control of

unmanned air vehicles, flocking, and formation control, and so

forth [6]–[9]. Consensus control means to design an agreeable

control scheme or network control protocol based on neigh-

bor’s state information such that every agent of the multiagent

system reaches a common synchronized state as time goes on.

The information exchange and interaction among all agents

play a pivotal role for the consensus movements. This infor-
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mation is formulated by neighborhood-based graph theory.

In the last decade, many significant achievements have been

developed for consensus control of multiagent systems

[10]–[16]. In [10], three consensus problems were explored

including fixed topology in directed networks, switching

topology in directed networks, and fixed topology with

communication time-delay in undirected networks. In [11],

a basic theoretical framework of consensus control analysis of

multiagent networked systems was proposed. Both discrete

and continuous update schemes were proposed in [12]. An

average-consensus is achieved using a distributed algorithm

in a discrete framework under switching network topolo-

gies [13]. Nevertheless, these eminent consensus control meth-

ods are limited in the linear multiagent environment. It is true

that most practical multiagent systems inherent nonlinearity

is more complex than linear ones. Therefore, research in

nonlinear multiagent systems has more realistic significance.

With further development, time-delay problem has been

included to consensus control recently. Several significant

results had emerged in consensus control of multiagent linear

systems, for example, [17]–[19]. However, because of the

complicacy of nonlinear multiagent systems, most of the

existing consensus control methods of linear multiagent

systems cannot be directly applied to nonlinear multiagent

systems, especially the agent’s dynamic function is unknown.

Because it has been proven that neural networks (NNs)

have the excellent approximation ability, the use of NNs

in the proof of stability in nonlinear dynamic systems

has become very popular and effective [20]–[24]. With

this eminent property of NNs, research on adaptive NN

consensus control of nonlinear multiagent systems has gained

attention [25]. Although several significant results were

proposed in [26] and [27] for nonlinear multiagent systems,

but time delay has not been considered. Nevertheless, time

delay appears often in most control systems and it should

be taken into account when building a consensus control

protocol. Inclusion of time-delay component in nonlinear

multiagent systems will increase the complexity of consensus

control, especially when time delays are unknown. Solving

state time-delay problem is popular in adaptive nonlinear

tracking control and rich research results have been reported

[28]–[34]. However, only a few of results are reported in

consensus control of nonlinear multiagent systems [35]–[37].

In [35], a kind of intermittent consensus protocols for the

second-order multiagent time-delay systems with nonlinear

dynamics and fixed directed communication topology is
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introduced and reported. It is proven that the agreement control

method can realize the consensus control objective if the

algebraic connectivity condition is satisfied and the

communication time duration is larger than their corresponding

threshold values. However, in multiagent systems, all

agent’s nonlinear dynamics are limited to a fixed nonlinear

function and the nonlinear function is required to satisfy a

restrictive assumption like ‖ f (x1, x2, t) − f (y1, y2, t)‖ ≤
∑2

i=1 ρi‖xi − yi‖. In [36], a kind of consensus control

approach of the second-order nonlinear multiagent systems

with time-varying delays by pining control is proposed. It is

proven that position states and velocity states of all agents can

synchronize to a virtual leader. But in this paper, the time-

delay terms are limited to linear forms. In [37], only the time-

delay is considered in the process of information exchange.

To our best knowledge, state time-delay problem in the

consensus control of nonlinear multiagent systems has not

been fully studied and it is still a challenging task. Motivated

by the above analysis, this paper proposes a novel NN control

approach for nonlinear multiagent consensus problem with

state time delay. The simulation examples prove the effective-

ness of the proposed consensus control approach. The main

contributions of this research are described as follows.

1) The approximation property of radial basis function

neural network (RBFNN) is used to neutralize the uncer-

tain nonlinear dynamics in agents. It is proved that the

proposed approach guarantees the convergence based on

Lyapunov stability theory.

2) State time-delay consensus control for a class of non-

linear multiagent systems is successfully solved by a

well-designed Lyapunov–Krasovskii functional.

3) The potential singularity problem in the controller is

successfully avoided by relaxing the consensus control

objective to a “ball” region rather than to a single origin.

II. PROBLEM STATEMENT AND PRELIMINARIES

Given a class of nonlinear multiagent systems with state

time-delay, every agent’s dynamic is described as

ẋi (t) = fi (xi (t)) + hi (xi (t − τi )) + ui (t) i = 1, 2, . . . , n

(1)

where xi (t) ∈ Rm is the state vector, fi (xi (t)), hi (xi (t)):

Rm → Rm is unknown but continuous nonlinear vector

functions and τi is the unknown time delay, ui (t) ∈ Rm is

the control input vector.

In this paper, the control objective is to devise consensus

controllers, ui (t) ∈ Rm , i = 1, . . . , n, for each agent in (1)

such that all agents in (1) can reach to a common state finally.

Assumption 1: The unknown smooth nonlinear func-

tions, hi (xi (t)), i = 1, 2, . . . , n, satisfies the inequalities

‖hi (xi (t))‖ ≤ ρi (xi (t)), i = 1, 2, . . . , n, where ρi (·) is known

positive smooth functions and ‖ · ‖ denote the two-norm.

Assumption 2: The unknown time delays τi , i = 1, . . . , n

are bounded and there exists a known constant τmax satisfying

the conditions τi ≤ τmax, i = 1, . . . , n.

Remark 1: Most previous research works for the nonlinear

multiagent system in consensus problem do not consider any

state time-delay in agent’s dynamics, see [25]–[27]. However,

time delay is intrinsic in most control systems, and it exists in

state equations for most of the recycling processes. In addition,

Assumption 2 is reasonable as it provides a boundary of

unknown time delays.

Remark 2: Many practical multiagent dynamic can be

depicted by nonlinear differential equations (1). For example,

formation control of unmanned air vehicle, sensor networks,

robotic teams, satellite clusters, and complex networks [6]–[9].

Several fundamentals are introduced in the following.

A. Graph Theory

Let G = (V , ε, A) denote an undirected weight graph,

where V = {v1, v2, . . . , vn} is a set of nodes, ε ⊆ V × V

denotes a set of edges, and A = [ai j ] is a weighted adjacency

matrix and all adjacency elements are nonnegative. Node vi

denotes the i th agent and the node indices belong to a finite

index set I = {1, 2, . . . , n}. ei j = (vi , v j ) denotes an edge

of G, where the node vi is the tail of the edge and node v j

is the head of the edge and ei j = (vi , v j ) ∈ ε if and only

if there exists an information exchange between agent i and

agent j . In addition, node vi is a neighbor of node v j if the

edge ei j = (vi , v j ) exists in the graph G. The value ai j in

adjacency matrix A associated with the edges ei j denotes the

communication quality between the i th agent and j th agent.

The definition of the Laplacian matrix L of graph G is

described by the following formula:

L = B − A (2)

where B = Diag(b1, b2, . . . , bn) and bi =
∑n

j=1 ai j .

An important property of the Laplacian matrix L is that

each row sum is zero, thus 1n = [1, 1, . . . , 1]T ∈ Rn is an

eigenvector of the Laplacian matrix, L, associated with the

eigenvalue λ = 0.

A network G is an undirected graph if there is a connection

between two nodes vi and v j in G, then ai j = a j i > 0;

otherwise, ai j = a j i = 0, aii = 0, (i �= j ; i, j = 1, . . . , n).

A sequence of edges (vi1 , vi2 ), (vi2 , vi3), . . . , (vik−1 , vik ) is a

path of between node vi1 and node vik . An undirected graph,

G, is called a connected graph if any two nodes, vi , v j satisfy

vi , v j ∈ V and there exists a path from vi to v j .

In this paper, the communication graph, G, of the nonlinear

multiagent systems is an undirected and connected graph.

For an undirected connected graph, G, we have the follow-

ing well-known lemma.

Lemma 1 [11]: If G = (V , ε, A) is an undirected connected

graph, then graph Laplacian matrix L is a symmetric matrix

and its n real eigenvalues can be arranged in an ascending

order as

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn ≤ C

where C = 2(max1≤i≤n bi ) and λ2 is called the algebraic

connectivity and it is used to analyze the rate of consensus

convergence.

Remark 3: This paper only considers fixed multiagent

topology because it is the basic connected topology of different

kinds of switching topologies. Its applications can be found
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in many fields, such as in data fusion of sensor networks,

distributed computation, and formation control [38]–[40].

Lemma 2 [25], [41]: Let function V (t) > 0 be a continuous

function defined ∀t ≥ 0 and bounded, and V̇ (t)≤−c1V (t)+c2,

where c1 and c2 are positive constants, then V (t) ≤ V (0)

e−c1t + c2/c1(1 − e−c1t ).

B. RBFNN and Function Approximation

In this paper, RBFNN is applied to approximate the

unknown nonlinear function in (1) because it has the function

approximation abilities. A continuous nonlinear function ϕ(z):

Rl → Rm can be approximated on a compact set by the

following RBFNN:

ϕNN(W, z) = W T S(z) (3)

where W ∈ R p×m is an adjustable weight matrix, p is the

number of neuron, S(z) = [s1(z), . . . , sp(z)]T is a basis

function vector, and si (z) = exp[−(z − µi )
T (z − µi )/φ

2
i ] for

i = 1, 2, . . . , p, where µi = [µi1, µi2, . . . , µil ]T denotes the

center of the receptive field, φi represents the width of the

Gaussian function, and z ∈ �z ⊂ Rl is the input vector.

It is well known that any nonlinear continuous function

can be approximated by RBFNN to any desired accuracy

over a compact set �. With this property, given a smooth

nonlinear vector function, ϕ(z) ∈ Rm , there exists an ideal

weights matrix, W∗, such that the ideal RBFNN can accurately

approximate the smooth nonlinear vector function, ϕ(z), on a

compact set �z ⊂ Rl as following:

ϕ(z) = W∗T S(z) + εz (4)

where W∗ ∈ R p×m is the optimal weight matrix of RBF NN,

p is the number of neurons, and εz ∈ Rm is the approximation

error and it satisfies that ‖εz‖ ≤ εN . The NN approxima-

tion error denotes the minimum possible deviation between

the ideal approximator W∗T S(z) and the unknown nonlinear

smooth function ϕ(z). The optimal weight matrix W∗ is an

“artificial” quantity and is used for analytical purposes only.

In general, this ideal weight matrix W∗ needs to be estimated

because it is unknown.

Let W∗ be the value of W that minimizes ‖εz‖ for all

z ∈ �z ⊂ Rl over a compact region

W∗ � arg min
W∈R p×m

{

sup
z∈�z

∥

∥

∥ϕ(z) − W T S(z)
∥

∥

∥

}

. (5)

The NN approximation error εz can be decreased by increas-

ing the number of the adjustable weights. Widespread practical

application of NNs show that, if NN node number p is chosen

large enough, then ‖εz‖ can be reduced to arbitrary small in

a compact set.

III. CONSENSUS PROTOCOL

For the multiagent system described in (1), a smooth scalar

function is defined as following:

Vx (t) = 1

2
X T (t)(L ⊗ Im)X (t) (6)

where X (t) = (xT
1 (t), x T

2 (t), . . . , xT
n (t))T ∈ Rnm .

Remark 4: In this paper, IN denotes identity matrix of

dimension N × N , the symbol ⊗ denotes Kronecker product,

that is, D ⊗ E = [di j E]. Kronecker algebra is used to

manipulate equations and governs the information between

agents.

Define i th local consensus error as the following:

ei (t) =
n
∑

j=1

ai j

(

xi (t) − x j (t)
)

∈ Rm , i = 1, . . . , n (7)

where ai j is the i th row and the j th column element of the

adjacency matrix A.

According to matrix theory and graph theory, we can easily

conclude that zero is an m-multiplicity eigenvalue of matrix

(L ⊗ Im). The m eigenvectors of matrix (L ⊗ Im) associated

with the eigenvalue 0 can be given in the following form:

ζ T
1 = (κT

1 , . . . , κT
1 ) ∈ Rnm , . . . , ζ T

m = (κT
m , . . . , κT

m ) ∈ Rnm

where κi ∈ Rm is a vector, in which the i th element is 1/
√

n

and the other elements are 0. We use ζm+1, ζm+2, . . . , ζnm to

denote the eigenvectors of the matrix (L ⊗ Im) associated with

the other eigenvalues λ2, . . . , λn . According to matrix theory,

ζ1, ζ2, . . . , ζnm can be chosen as a set of orthogonal bases

of Rnm . Let M = (ζ1, . . . , ζnm) ∈ Rnm×nm , then MT M =
M MT = Inm , that is, MT = M−1.

With the above analysis, the following equation can be

obtained:

Vx(t) = 1

2
X T (t)(L ⊗ Im)X (t) = 1

2
X T (t)MT TM X (t)

= 1

2
X T (t)MT

√
T
√

TM X (t)

= 1

2
X T (t)MT

√
T
√

T̂
√

T̂−1
√

T̂−1
√

T̂
√

TM X (t)

= 1

2
X T (t)MT TM MT T̂−1M MT TM X (t)

= 1

2
X T (t)(L ⊗ Im)T MT T̂−1M(L ⊗ Im)X (t)

= 1

2
ET (t)DE(t) (8)

where T = diag{0Im , λ2 Im , . . . , λn Im}, T̂ = diag{λ2 Im,

λ2 Im , . . . , λn Im}, E(t) = (eT
1 (t), . . . eT

n (t))T ∈ Rnm , and

D = MT T̂−1 M is a positive definite matrix.

From (8), we have

λmin(D)

2

n
∑

i=1

‖ei (t)‖2 ≤ Vx(t) ≤ λmax(D)

2

n
∑

i=1

‖ei (t)‖2 (9)

where λmin(D) and λmax(D) are the smallest eigenvalue and

the largest eigenvalue of matrix D, respectively.

From the definition of Laplacian matrix, we can get the

following equation:

Vx(t) = 1

2
X T (t)(L ⊗ Im)X (t)

= 1

2
ET (t)X (t) = 1

2
X T (t)E(t)

= 1

2

n
∑

i=1

eT
i (t)xi (t) = 1

2

n
∑

i=1

x T
i (t)ei (t). (10)
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The time derivative of Vx(t) along (1) is

V̇x(t) =
n
∑

i=1

eT
i (t) ( fi (xi(t)) + hi (xi (t − τi )) + ui (t)) . (11)

Applying Assumption 1 and Cauchy’s inequality,
(∑n

i=1 xi yi

)2 ≤
(∑n

i=1 x2
i

)(∑n
i=1 y2

i

)

, to (11), we have

V̇x (t) ≤
n
∑

i=1

(

eT
i (t) fi (xi (t)) + eT

i (t)ui (t)

+ ‖ei (t)‖ ρi (xi (t − τi ))
)

. (12)

Remark 5: In (12), the consensus control design will

become more difficult because the unknown function fi (·) and

unknown time delay τi are included in the inequality. Although

ρi (·) is known, but because the delay term, τi , is unknown, the

state xi(t − τi ) is undetermined. Since xi (t − τi ) relates with

the consensus controller design, the control objective cannot be

directly realized. In addition, because the unknown time delay

τi and the consensus error ‖ei (t)‖ are entangled together, the

consensus control problem becomes more complex. Therefore,

we need to find a way to segregate the uncertainties, τi and

‖ei (t)‖, such that they can be dealt separately.

Applying the Young’s inequalities to (12), we have the

following:

V̇x(t) ≤
n
∑

i=1

(

eT
i (t) fi (xi(t)) + eT

i (t)ui (t)

+1

2
‖ei (t)‖2 + 1

2
ρ2

i (xi (t − τi ))

)

. (13)

In (13), if ‖ei (t)‖ and ρi (·) are separated, then the time-

delay term ρ2
i (xi(t − τi )) can be dealt later. To compensate

the uncertainties coming from the unknown time delay τi , i =
1, 2, . . . , n, a Lyapunov–Krasovskii functional is designed as

the following:

VU (t) = 1

2

n
∑

i=1

t
∫

t−τi

Ui (xi(τ ))dτ , i = 1, . . . , n (14)

where Ui (xi (t)) = ρ2
i (xi(t)).

Its time derivative is

VU (t) = 1

2

n
∑

i=1

(

ρ2
i (xi (t)) − ρ2

i (xi (t − τi ))
)

i = 1, . . . , n.

(15)

It is obvious that the Lyapunov–Krasovskii functional VU (t)

can use to compensate the uncertainties of the unknown time

delay. The design difficulty, which comes from the unknown

time delays τi , i = 1, . . . , n, is eliminated. Because the

functions, ρi (xi (t)), i = 1, . . . , n, are known, the consensus

control scheme does not involve any uncertainty.

With the above analysis, if we add the term VU (t) to

the right hand side of (13), then the influence of the uncer-

tain time delay for scalar function Vx(t) can be eliminated.

Combining (15), the following inequality can be obtained:

V̇ (t) = V̇x (t) + V̇U (t) ≤
n
∑

i=1

(

eT
i (t)ui (t) + eT

i (t) fi (xi (t))

+1

2
‖ei (t)‖2 + 1

2
ρ2

i (xi (t))

)

(16)

where V (t) = Vx(t) + VU (t).

For simplicity, we will omit the time symbols t portion

inside xi (t), ei (t), ui (t), i = 1, . . . , n. From (16), V (t) =
Vx(t)+VU (t) can be chosen as a Lyapunov function candidate

such that the consensus controllers, ui (t), i = 1, 2, . . . , n,

can be found under the assumption that system functions

are known and will not be affected from the unknown time

delay, τi .

Let xi ∈ �xi ⊂ Rm , �xi be a compact set, then �ci ⊂ �xi

and �o
ci

, i = 1, . . . , n as

�ci := {ei |‖ei‖ < ci } (17)

�o
ci

:= �xi − �ci (18)

where ci is a constant that is chosen to be arbitrarily small

and “−” is the complement of set �ci , that is, A − B =
{ x | x ∈ A, x /∈ B}.

Lemma 3 [28]: Set �o
ci

is a compact set.

The consensus controllers are designed as the following:

ui (t) =
{

−ki(t)ei − fi (xi) − 1
2

e−1
i ρ2

i (xi), ei ∈ �o
ci

0, ei ∈ �ci

(19)

where ki (t) ≥ k∗ + 1/2, i = 1, . . . , n, k∗ are a positive

constant.

Remark 6: In this paper, using e−1
i to denote ei/‖ei‖2 and

it has the property of eT
i e−1

i = (e−1
i )T ei = 1. Because the

term 1/2e−1
i ρ2

i (xi) is not well defined at ei = [0]m , where

[0]m is an m-dimensional zero vector. The singularity problem

in controller may take place at the point ei = [0]m , where

the consensus control is reached. It is true that a multiagent

system reaches the consensus; the control action is complete

and should not take any power consumption. To this end, it

is more practical to relax the consensus control objective to a

“ball” region rather than in a single origin [43].

Next, we will prove that if system functions fi (·),
i = 1, . . . , n are known, the consensus controller (19) can

ensure multiagent system (1) to obtain consensus state when

ei ∈ �o
ci

.

The Lyapunov function candidate is chosen as the following:

V (t) = Vx(t) + VU (t). (20)

According to (10) and (14), the Lyapunov function candidate,

V (t), can be rewritten to the following one:

V (t) = Vx (t) + VU (t)

= 1

2

n
∑

i=1

eT
i xi + 1

2

n
∑

i=1

t
∫

t−τi

Ui (xi (τ )) dτ . (21)



CHEN et al.: ADAPTIVE CONSENSUS CONTROL FOR A CLASS OF NONLINEAR MULTIAGENT TIME-DELAY SYSTEMS USING NNs 1221

Taking the time derivative along (16), we have

V̇ (t) ≤
n
∑

i=1

(

eT
i ui + eT

i fi (xi ) + 1

2
‖ei‖2 + 1

2
ρ2

i (xi )

)

. (22)

For ei ∈ �o
zi

, substituting (19) into (22), yields

V̇ (t) ≤ −
n
∑

i=1

(

ki (t) − 1

2

)

‖ei‖2 ≤ −
n
∑

i=1

k∗ ‖ei‖2. (23)

According to Lyapunov stability theory, it is easy to con-

clude that the nonlinear multiagent system is asymptotically

stable [42].

From (23), we know the nonnegative function V (t) is

a nonincreasing function. So we can conclude that for

any υ > 0 there exists T > 0 such that ∀t > T ,

{V (t)|V (t) ≤ υ}. Because the Laplacian matrix L is a positive

semidefinite matrix and the Lyapunov–Krasovskii functional

Vu(t) = 1/2
∑n

i=1

∫ t

t−τi
Ui (xi (τ ))dτ also is positive, so we

have Vx(t) → 0 when t → ∞. Because the graph topology G

of the nonlinear multiagent system is an undirected connected

graph and Vx(t) = 1/2ET DE → 0 when t → ∞, we

can conclude that x1 = x2 = · · · = xn when t → ∞,

that is, the consensus behavior of the multiagent system is

obtained.

In addition, because ci is an arbitrarily small constant, it is

obvious that consensus state has been obtained in the region

‖ei‖ < ci .

However, the proposed consensus controller (19) cannot be

directly applied to the multiagent system (1) because fi (·),
i = 1, . . . , n is completely unknown. On the other hand, by

employing the consensus controller (19), control action is only

activated when ei ∈ �o
ci

. Apparently, fi (·) is smooth and well-

defined over the compact set �o
ci

and can be approximated by

NNs to an arbitrary accuracy as

fi (xi (t)) = W∗T
i Si (xi ) + εi(xi ) (24)

where W∗
i ∈ R pi ×m is the ideal weight matrix of the NN, pi

is the neuron number of the NN, Si (xi ) ∈ R pi are the basis

function vector, and εi ∈ Rm is the approximation error to

satisfy ‖εi‖ ≤ εNi .

Let Ŵi be the estimation of the ideal NN weight W∗
i .

Construct the adaptive consensus controller and the adaptive

law as the following:

ui (t) =
{

−ki(t)ei − Ŵ T
i (t)Si (xi ) − 1

2
e−1

i ρ2
i (xi ), ei ∈ �o

ci

0, ei ∈ �ci

(25)

˙̂
Wi (t) = Ŵi

[

Si (xi )e
T
i − σi Ŵi (t)

]

(26)

where Ŵi = ŴT
i ∈ R pi ×pi , i = 1, . . . , n are gain positive

definite matrixes. σi > 0, i = 1, . . . , n are constants. The

term σi Ŵi (t), i = 1, . . . , n are introduced to improve the

robustness in the presence of the NN approximation error, εi ,

i = 1, . . . , n.

The following theorem implies that the consensus control

objective of multiagent system (1) can be realized by applying

the proposed control laws (25).

Theorem 1: For a class of nonlinear multiagent systems

described by (1), given truth in Assumptions 1 and 2, the

consensus controllers provided by (25), the controller gains

given as ki (t) = ki0 + ki1(t), where ki0 > 0 is a design

constant and ki1(t) is designed as

ki1(t) = 1

2
+ 1

ωi

⎡

⎣1 + λmax(D)

2
+ 1

‖ei‖2

t
∫

t−τmax

1

2
Ui (xi (τ ))dτ

⎤

⎦

(27)

with design constant ωi > 0, and the NN weight updated

by (26), with bounded initial conditions xi (0), Ŵi (0), then

all agents of the nonlinear multiagent system arrive at a final

consensus state.

Proof: See Appendix.

IV. SIMULATIONS

To demonstrate the effectiveness of the proposed approach,

two nonlinear multiagent consensus examples are given. In

both examples, each multiagent system consists of six agents.

To simplify, we assumed that time delays and communication

graph in these two examples are the same.

Time delays for each agent are τ1 = 1.4, τ2 = 1.5, τ3 = 1.6,

τ4 = 1.7, τ5 = 1.8, τ6 = 1.9, respectively. The adjacency

matrix A and the Laplacian matrix L of the two nonlinear

multiagent examples are defined as follows:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.0 0.3 0.0 0.0 0.0 0.5

0.3 0.0 0.4 0.0 0.0 0.0

0.0 0.4 0.0 0.1 0.0 0.0

0.0 0.0 0.1 0.0 0.3 0.0

0.0 0.0 0.0 0.3 0.0 0.6

0.5 0.0 0.0 0.0 0.6 0.0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

L =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0.8 −0.3 0.0 0.0 0.0 −0.5

−0.3 0.7 −0.4 0.0 0.0 0.0

0.0 −0.4 0.5 −0.1 0.0 0.0

0.0 0.0 −0.1 0.4 −0.3 0.0

0.0 0.0 0.0 −0.3 0.9 −0.6

−0.5 0.0 0.0 0.0 −0.6 1.1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Example 1: The nonlinear multiagent time-delay system is

given in the following:
d

dt

(

xi1(t)

xi2(t)

)

=
(

xi2(t) sin(αi1xi1(t))

xi1(t) cos(αi2x2
i2(t))

)

+ui +
(

hi1(xi (t − τi ))

hi2(xi (t − τi ))

)

i = 1, . . . , 6.

(28)

where hi1(xi (t)) = βi1xi1 cos(xi2), hi2(xi (t)) = βi2xi2

sin (xi1). αi1, αi2, βi1, and βi2 are shown in Tables I and II.

The initial positions of six agents are x1(0) = (6, 2)T ,

x2(0) = (3, 3
√

3)T , x3(0) = (−3, 3
√

3)T , x4(0) =
(−6,−2)T , x5(0) = (−3,−3

√
3)T , and x6(0) = (3,−3

√
3)T ,

respectively.

Apparently, by choosing ρi (xi ) =
√

(βi1xi1)2 + (βi2xi2)2,

Assumption 1 is satisfied and also Assumption 2 is satisfied

by choosing τmax = 2.
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TABLE I

VALUES OF αi1, αi2 IN THE ith AGENT’S DYNAMICS

TABLE II

VALUES OF βi1 , βi2 IN THE i th AGENT’S DYNAMICS

Fig. 1. Consensus performance of six agents in a 3-D view.

Fig. 2. Consensus performance of six agents.

In this example, we choose a RBFNN that consists of

36 nodes with centers, µl , l = 1, 2, . . . , 36, evenly spaced

in the range of [−6, 6] × [−6, 6], the same widths for all,

φi = 2, and Si (xi ) = [s1(xi ), . . . , s36(xi )]T with sl (xi) =
exp[−(xi − µl)

T (xi − µl)/φ
2
l ], l = 1, 2, . . . , 36.

The adaptive consensus controllers, ui , i = 1, . . . , 6, and

the adaptive update laws, Ŵi (t), i = 1, . . . , 6 can be given in

Fig. 3. Trajectory of the first coordinate of six agents.

Fig. 4. Consensus performance of the first coordinate of six agents.

the following:

ui (t) =
{

−ki ei (t)−Ŵ T
i (t)Si (xi )− 1

2
e−1

i ρ2
i (xi), otherwise

0, ‖ei‖ < ci

(29)

˙̂
Wi (t) = Ŵi

[

Si (xi )e
T
i −σi Ŵi (t)

]

(30)

where Ŵi = diag{4}, σi = 2, ci = 10−7, i = 1, . . . , 6 and

ei is given by (7). The initial weights Ŵi (0) = [0]36×2,

where [0]36×2 denotes to a zero matrix of dimension

36 × 2. ki (t) = ki0 + ki1(t), ki0 = 270, i = 1,

2, . . . , 6, are constants and ki1(t) is chosen as ki1(t) = 1/2 +
1/ωi [1 + λmax(D)/2 + 1/‖ei‖2

∫ t

t−τmax
(1/2)Ui(xi (τ ))dτ ] by

(27), where ωi = 10, i = 1, . . . , 6.

Figs. 1–6 show the simulation results of applying con-

sensus controller (29) to the nonlinear multiagent time-delay
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Fig. 5. Trajectory of the second coordinate of six agents.

Fig. 6. Consensus performance of the second coordinate of six agents.

systems (28). From Figs. 1, 2, 4, and 6, we can see that the

agreement behavior of multiagent systems (28) is achieved.

Example 2: In this example, a multiple collaborative manip-

ulators system is used to demonstrate the effectiveness of the

proposed consensus control method. This collaborative system

can be considered as multiple manipulators are holding up

an object or loading a workpiece. Fig. 7 shows the profile

of a two-link manipulator of the multiagent systems. The

multimanipulator system dynamic is described as follows:

q̇i1 = qi2 Mi (qi1)q̇i2 + Vi (qi1, qi2)qi2 + Gi (qi1)

+ fi (qi2(t − τi )) = ζi , i = 1, . . . , 6 (31)

where state vector qi1, qi2 ∈ R2 denote the joint position,

velocity of the i th manipulator, respectively, Mi (qi1) ∈ R2×2

is the inertia matrix of the i th manipulator. To match the

system equations described in (1), we assume Mi (qi1) = I2×2,

Fig. 7. Two-link revolute manipulator.

TABLE III

VALUES OF αi1, αi2 IN THE i th AGENT’S DYNAMICS

TABLE IV

VALUES OF βi1, βi2 IN THE i th AGENT’S DYNAMICS

where I2×2 is identity matrix of dimension 2 × 2

Vi (qi1, qi2) =
(

Vi11 Vi12

Vi21 Vi22

)

∈ R2×2

is the centripetal-Coriolis matrix of the i th manipulator and

Vi11 = −mi2ri1ri2 sin(qi12)qi22, Vi12 = −mi2ri1ri2 sin(qi12)

qi22 − mi2ri1ri2 sin(qi12)qi21, Vi21 = mi2ri1ri2 sin(qi12)qi22,

Vi22 = 0; Gi = (Gi11, Gi12)
T ∈ R2 is gravitational vector

of the i th manipulator and Gi1 = (mi1 + mi2)gri1 sin(qi11)+
mi2gri2 sin(qi11 + qi12), Gi2 = mi2gdi2 sin(qi11 + qi12);

fi (qi2(t))=(αi1qi21 + βi1sgn(qi21), αi2qi22 + βi2sgn(qi22))
T

is friction force vectors, αi1 , αi2 , βi1, βi2 are shown in

Tables III and IV; τi is time delay, ζi ∈ R2 is the i th

manipulator’s torque input vector. The physical parameters

of each manipulator are set as g = 9.8 m/s2, di1 = 1.5 m,

di2 = 1 m, mi1 = 1 kg, and mi2 = 2 kg (i = 1, . . . , 6).

The initial joint position and the initial joint velocity of six

manipulators are shown in Table V.

For the multiagent consensus control, we design the consen-

sus controller to realize the consensus control of the velocity

state qi2, i = 1, . . . , 6. According to proposed consensus

controller (25) and adaptive update law (26), the correlation

parameter are chosen as ki0 = 120, ωi = 6, Ŵi = diag{0.4},
σi = 0.2, i = 1, . . . , 6.
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TABLE V

VALUES OF qi11, qi12 , qi21 AND qi22 IN THE i th AGENT’S DYNAMICS

Fig. 8. Consensus performance of the first joint velocity of six manipulators.

Fig. 9. Consensus performance of the second joint velocity of six
manipulators.

In the example, we choose a RBFNN that consists of

25 nodes with centers, µl , l = 1, 2, . . . , 25, evenly spaced in

the range of [−5, 5] × [−5, 5], and the same widths, φi = 2,

for all.

In Figs. 8 and 9, the simulation results are obtained by

applying proposed control method to the multimanipulator

system (31). From Figs. 8 and 9, we can see that the velocity

consensus state of six manipulators is achieved.

V. CONCLUSION

In this paper, an adaptive NN consensus control scheme

is proposed for a class of nonlinear multiagent systems

with state time delay. In designing the consensus controller,

the uncertain nonlinearity and the time delay of agent’s

dynamics are compensated by employing an RBFNN that

approximates the nonlinearity and by choosing an appropriate

Lyapunov–Krasovskii functional, respectively. By letting the

consensus error converge to a “ball” region rather than a

single origin, the singularity problem in controller is avoided.

Finally, stable results were obtained on the basis of Lypunov

function method. Two simulations are carried out to verify the

effectiveness of the proposed approach.

APPENDIX

Proof: Choosing Lyapunov function candidate as follows:

V (t) = Vx (t) + VU (t) + 1

2

n
∑

i=1

Tr
(

W̃ T
i (t)Ŵ−1

i W̃i (t)
)

(32)

where W̃i (t) = Ŵi (t) − W∗
i .

When ei ∈ �o
ci

, according to (22), the time derivative of

V (t) is

V̇ (t) ≤
n
∑

i=1

(

eT
i ui + eT

i fi (xi) + 1

2
‖ei‖2 + 1

2
ρ2

i (xi )

)

+
n
∑

i=1

Tr
(

W̃ T
i (t)Ŵ−1

i
˙̂

Wi (t)
)

. (33)

Substituting (24)–(26) into (33), we have

V̇ (t) ≤
n
∑

i=1

(

−ki(t) ‖ei‖2 − eT
i Ŵ T

i (t)Si (xi )

+eT
i W∗T

i Si (xi ) + eT
i εi (xi ) + 1

2
‖ei‖2

)

+
n
∑

i=1

Tr
(

W̃ T
i (t)

[

Si (xi)e
T
i − σi Ŵi (t)

])

≤
n
∑

i=1

(

−
(

ki (t) − 1

2

)

‖ei‖2 − eT
i W̃ T

i (t)Si (xi )

+eT
i εi (xi ) + Tr

(

W̃ T
i (t)Si (xi )e

T
i

)

−σi Tr
(

W̃ T
i (t)Ŵi (t)

)

)

. (34)

According to trace operator property in matrix algebra below

aT b = Tr
(

abT
)

= Tr
(

baT
)

∀a, b ∈ Rn (35)

the following inequality can be satisfied:

V̇ (t) ≤
n
∑

i=1

(

−
(

ki (t) − 1

2

)

‖ei‖2 + eT
i εi (xi )

−σi Tr(W̃ T
i (t)Ŵi (t))

)

. (36)

Given ki (t) = ki0 + ki1(t), (36) becomes

V̇ (t) ≤
n
∑

i=1

(

−
(

ki1(t) − 1

2

)

‖ei‖2 − ki0 ‖ei‖2

+eT
i εi (xi ) − σi Tr

(

W̃ T
i (t)Ŵi (t)

)

)

. (37)
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According to the Cauchy’s inequality and Young’s inequality,

the following inequalities can be obtained:

−ki0 ‖ei‖2 + eT
i εi (xi ) ≤ ‖εi(xi )‖2

4ki0
≤

ε2
Ni

4ki0
, i = 1, . . . , n.

(38)

With Tr(W̃ T
i (t)Ŵi (t)) = 1/2(Tr(W̃ T

i (t)W̃i (t)) + Tr(Ŵ T
i (t)

Ŵi (t))−Tr(W∗T
i W∗

i )), i = 1, . . . , n, the following inequalities

are obtained:

−σi Tr
(

W̃ T
i (t)Ŵ (t)i

)

≤ −1

2
σi

(

Tr
(

W̃ T
i (t)W̃i (t)

)

+Tr
(

W∗T
i W∗

i

))

i = 1, . . . , n.

(39)

Substituting (27), (38), and (39) into (37), we have

V̇ (t) ≤
n
∑

i=1

(

− 1

ωi

[

1+ λmax(D)

2

]

‖ei‖2− 1

2ωi

t
∫

t−τmax

Ui (xi (τ ))dτ

−1

2
σi Tr(W̃ T

i (t)W̃i (t)) + �i

)

(40)

where �i = (1/2)σi Tr(W∗T
i W∗

i ) + ε2
Ni

/4ki0, i = 1, . . . , n

With the condition of Assumption 2 that τi ≤ τmax, the

inequalities 1/2
∫ t

t−τi
Ui (xi (τ ))dτ ≤ 1/2

∫ t

t−τmax
Ui (xi (τ ))dτ ,

i = 1, . . . , n are hold.

From (9) and (14), we have

V̇ (t) ≤ − 1

ω
Vx(t) − 1

ω
VU (t)

−1

2

n
∑

i=1

(

σi Tr
(

W̃ T
i (t)W̃i (t)

))

+
n
∑

i=1

�i (41)

where ω = max
{

ω1, ω2, . . . , ωn

}

.

Furthermore, we have the following inequality:

V̇ (t) ≤ − 1

ω
Vx (t) − 1

ω
VU (t)

−1

2

n
∑

i=1

[

σi

λmax(Ŵ
−1
i )

Tr
(

W̃ T
i (t)Ŵ−1

i W̃i (t)
)

]

+
n
∑

i=1

�i

≤ −K V (t) + � (42)

where � =
∑n

i=1 �i and the positive constant K is defined

by

σ = min
1≤i≤n

{

σi

λmax(Ŵ
−1
i )

}

, K = min

{

1

ω
, σ

}

. (43)

For ei ∈ �o
ci

, according to Lemma 2 and (42), the following

fact can be obtained:

0 < V (t) ≤ ρ + (V (0) − ρ)e−K t (44)

where ρ = �/K .

From (9), (20) and (44), we have

λmin(D)

2

n
∑

i=1

‖ei (t)‖2 ≤ Vx ≤ ρ + (V (0) − ρ)e−K t

≤ ρ + V (0)e−K t . (45)

Further, we have

n
∑

i=1

‖ei (t)‖2 ≤ 2

λmin(D)
ρ + 2

λmin(D)
V (0)e−K t (46)

which implies that given υ >
√

2ρ/λmin(D), there exists T >0

such that for all t > T , then

‖ei (t)‖ < υ, i = 1, . . . , n (47)

where υ can be a small constant which depends on the

NN approximation error εi and controller parameters ωi , σi ,

and Ŵi . It is easily know that the decrease in the control gain

ωi and increase the adaptive gain Ŵi and NN node number pi

will result in a better consensus performance.

In addition, it is obvious that the consensus state has been

obtained when ei ∈ �ci . �.
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