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Abstract

In this paper, a novel feature named Adaptive Contour
Feature (ACF) is proposed for human detection and seg-
mentation. This feature consists of a chain of a number of
granules in Oriented Granular Space (OGS) that is learnt
via the AdaBoost algorithm. Three operations are defined
on the OGS to mine object contour feature and feature co-
occurrences automatically. A heuristic learning algorithm
is proposed to generate an ACF that at the same time define
a weak classifier for human detection or segmentation. Ex-
periments on two open datasets show that the ACF outper-
form several well-known existing features due to its stronger
discriminative power rooted in the nature of its flexibility
and adaptability to describe an object contour element.

1. Introduction

Human detection has attracted lots of attention in com-
puter vision fields in the past decades due to its wide spread
of potential applications including automated visual surveil-
lance, smart human computer interaction, driver assistant
systems, etc. Nowadays, although face detection or at least
frontal face detection is a well accepted solved problem
in academic society, human detection remains a big chal-
lenge due to a wide viewpoint change of highly articulated
body postures, varying illumination conditions and occlu-
sions. The framework of human detection is more or less
similar to face detection. However not as face detection
which has been approached mainly on texture features due
to its more consistent appearance pattern, human detection
usually relies on gradient contour or silhouette features in
order to across additional changes due to clothing, articu-
lation and occlusion. In literature review, we find that the
kind of features selected in successive learning algorithms
plays a crucial rule in performance of the developed detec-
tors [1, 21, 15, 19]. Therefore in this paper, we dedicate to
develop a more discriminative and robust feature which can

Figure 1. Describe Contour with Adaptive Contour Feature

mine object contour and feature co-occurrences adaptively
for object detection.

In nature, object detection is an asymmetric classifica-
tion problem since we can just describe what a positive sam-
ple looks like while we cannot tell what a negative sample
should be. Enlighten by this idea, we target at developing
features that can strongly describe an object. Since gradient
or contour features have been proved with great advantage
in human detection [1, 21, 15, 19], the mission changes to
find a flexible and robust way to describe object contour el-
ements. Inspired by this idea, we propose a novel feature
named Adaptive Contour Feature (ACF) as shown in Fig-
ure 1. An ACF is defined as a chain of square patches called
granules in Oriented Granular Space (OGS) to describe a
curve. The feature value of ACF is designed to measure
the similarity between the contour described by ACF and
the actual one. Some simple operations in the OGS and
a heuristic learning algorithm are proposed to mine object
contour features and feature co-occurrences automatically.

The contribution of this paper has three aspects: first,
a novel feature called Adaptive Contour Feature (ACF) is
proposed which has great discriminative power and can
mine object contour features adaptively and feature co-
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occurrences automatically; second, a heuristic learning al-
gorithm is developed to learn ACF and its corresponding
weak classifier for AdaBoost at the same time; third, a
coarse human segmentation is presented with ACF learned
in detection.

The structure of this paper is as follows. In Section 2
we review the related work on the human detection. In Sec-
tion 3 we give the detail of the ACF and some parameter
refinement issue for the feature. A coarse segmentation is
presented by boosting on the learned ACF in Section 4. In
Section 5 we present some experiments to show the ACF’s
privileged performance in human detection and segmenta-
tion. Finally, we conclude in Section 6.

2. Related Work
The research works on human or pedestrian detection be-

fore 2005 could be found in a survey [14] and also in an
experimental study [13]. We will mainly focus on more re-
cent research works that were roughly divided into three
categories as follows.

The first category is building generative models via
shape matching. Gavrila [4] detected humans using a hi-
erarchical template matching to find all candidates and a
verification RBF network classifier was applied to cut down
false alarms. Lin et al. [11] proposed a hierarchical part-
template matching method that could handle partial occlu-
sions and articulations flexibly.

The second category is learning from low-level local im-
age features. Volia et al. [20] applied Haar-like features
from both appearance and motion in AdaBoost learning.
Dalal and Triggs [1] used Histogram of Oriented Gradi-
ent (HOG) features in training Support Vector Machines
(SVMs). Later, Zhu et al. [25] used HOG features in
AdaBoost learning that significantly improved efficiency.
Wu and Nevatia [21] introduced local edge features called
edgelets and trained both full body detector and part de-
tectors to handle occlusions. Sabzmeydani and Mori [15]
presented a set of mid-level features called shapelet in a
two fold AdaBoost learning. Tuzel et al. [19] used covari-
ant matrices as image descriptors in LogitBoost learning on
Riemannian Manifolds. And finally, Wu and Nevatia [24]
integrated heterogeneous features in AdaBoost learning to
achieve higher performance.

Instead of using low-lever image features directly, the
third category uses the Implicit Shape Model (ISM) to build
a codebook for human detection. Leibe et al. [8] learned
visual words descriptor for humans and built a genera-
tive model for detection and segmentation, where a top-
down verification step by Chamfer is applied to reduce false
alarms. Shotton et al. [18] first built a class dictionary of
spatially localized contour fragments from the input seg-
mentation masks and then learned the detector by boosting
on these contours fragments. Ferrai et al. [2, 3] used adja-

cent contour segments mined from edges to build a code-
book for object detection.

For multi-pose and multi-view human detection, Hou et
al. [5] divided all variations into three views to learn a detec-
tor using Vector Boosting. Since sometimes human view-
point is difficult to category even manually, Wu and Neva-
tia [22] proposed a cluster boosted tree classifier which cat-
egories samples into groups automatically by feature clus-
tering, while Shan et al. [17] clusted humans into catego-
rization by learning discriminative exemplars.

As for human segmentation, Wu and Nevatia [23]
learned human segmentation in the same frame work as hu-
man detection by boosting on local edgelet feature. Lin et
al. [11, 10] used hierarchical part-template matching to seg-
ment human.

Our work is most related to [1, 21, 2]. However,
our ACF can describe an object contour more accurately
than HOG [1]. Compared with predefined pixel level
edgelet [21], ACF is learned from the training samples,
which is more invariant with pose variation. And differ-
ent from [2] in which contour fragments are learned from
segmented input masks, ACF is mined out in learning dis-
criminative features for detection and is object independent.

3. Adaptive Contour Features
HOG features [1] and edgelet features [21] have been

proved very effective in human detection, however there
are some limitations. HOG features just compute the gra-
dient distribution in a rectangle which cannot describe the
actual object shape well. And an edgelet feature is defined
on pixel level which suffers to change with object deforma-
tion and articulation. Especially, these features are all pre-
defined ones that neither take into account the prior knowl-
edge of particular object category nor consider its feature
co-occurrences. To overcome these limitations, the pro-
posed ACF in this paper is expected to have the following
merits: first, it can capture contour elements of an object
category well which means learning what its shape looks
like; second, it is robust with reasonable object deformation
as HOG; third, it can mine its shape feature co-occurrences
automatically, for example, human’s shoulder and leg co-
occurrence.

3.1. ACF in Oriented Granular Space

The Granular Space as defined in [7] is a special scale
space of the original image in which each layer (bitmap)
corresponds to the granules (a square window patch) of a
certain scale. Originally a granule is defined as a triplet
G = (x, y, s), where (x, y) is the position, s is the size or
scale (in practice we use 2×2, 4×4, 8×8). In this paper, we
extended it to a quaternion group G = (x, y, s, o), where an
additional parameter o is the orientation of the granule as
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Figure 2. (a) orientation bins (b) Oriented Granular Space. Each layer represents granules in one orientation. (c) definition of LG and LGS.

shown in Figure 2(b), which we called the Oriented Granu-
lar Space (OGS).

As illustrated in Figure 1, the essential idea of ACF is to
represent object contour elements as a chain of a number of
granules. As HOG [1], given an input image I , the gradient
magnitude M and edge orientation O over the image are
calculated of which the orientation is quantized into Nb = 9
bins [k π

Nb
, (k + 1) π

Nb
], where k = 0, ..., Nb − 1(shown in

Figure 2(a)). M(u, v) and O(u, v) are gradient magnitude
and orientation of image I respectively at position (u, v).
Two kinds of feature values of a granule are calculated (as
equations 1 and 2), which are accumulated edge strength
at its orientation: E(G(x, y, s, o)) and its relative strength
over all orientations: E(G(x, y, s, o)) in its corresponding
square window patch.

E(G(x, y, s, o)) =
∑

(u,v)∈G

M(u, v)δ(o, O(u, v)) (1)

E(G(x, y, s, o)) =
E(G(x, y, s, o))∑
(u,v)∈G M(u, v)

(2)

δ(i, j) =
{

1 i = j
0 i �= j

(3)

The two feature values together represent the edge re-
sponse in the specific orientation of the granule G. The
larger the response, the higher the probability of a true edge
with the orientation of the granule is. And different size of
the granules can describe the edge in different scale level.
Small granules describe fine edges while large granules de-
scribe coarse edges.

With granules and their feature values defined, we intro-
duce the Linked Granules (LG) and Linked Granules Set
(LGS) shown in Figure 2(c) as following:

1. LG is defined as a chain of a number of granules to
describe a continuous contour as equation 4.

LG = {Gi|i = 1...k} (4)
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Figure 3. (a) Grow orientation of different granule. The blue gran-
ule is current one and the red granules are the candidates to grow.
Green arrows are granules’ orientation. (b) A example of Linked
Granules generated by grow operation.

The linkage method of the granules is learned in Sec-
tion 3.2. The strength and the relative strength of a LG
are defined as the sum over all its granules:

E(LG) =
∑

Gi∈LG

E(Gi) (5)

E(LG) =
∑

Gi∈LG

E(Gi) (6)

2. LGS is defined as combination of several LGs to de-
scribe co-occurrence features. The feature values of
LGS are defined in equations 7 and 8.

E(LGS) =
∑

LGi∈LGS

E(LGi) (7)

E(LGS) =
∑

LGi∈LGS

E(LGi) (8)

One thing to mention, in implementation those feature
values of OGS can be computed hierarchically in prepro-
cessing that guarantees a very high efficiency.

Finally we define an ACF as a LGS. An ACF is learned
in OGS with a heuristic algorithm (see section 3.2) under
three operations (shown in Figure 4): Grow, Combine and
Cut.
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Figure 4. Operations defined on Oriented Granular Space (OGS).

1. Grow Operation: Grow an existing LG by adding a
candidate granule of the same scale on its head or tail
with a constraint on contour continuity:

LGnew = LG ∪ {G} (9)

As shown in Figure 3(a), a LG is grown from its head
or tail (in blue) as current granule, in which the added
granule (in red) should be its neighbor and be con-
sistent in orientation. By consistent we mean in the
implementation that both the orientation difference of
the two linked granules and the orientation difference
between the line linking their centers and the candi-
date’s orientation must be at most ±45◦(as shown in
Figure 3).

2. Combine Operation: Combine several LGs or equiv-
alently grow an existing LGS by adding a candidate
LG to represent co-occurrence features:

LGSnew = LGS ∪ {LG} (10)

Mita et al. [12] have proved that some feature co-
occurrences of object can improve the discriminative
power greatly. As shown in Figure 4(b) co-occurrence
of human shoulder and leg provides a stronger evi-
dence of human appearance. In our framework, feature
co-occurrences are also automatically found in the fea-
ture learning procedure.

3. Cut Opeartion: Cut off a granule from a head or tail
of an existing LG:

LGnew = LG − {G} (11)

In summary, Grow operation searches for object contour
elements; Combine operation mines feature co-occurrences
and Cut operation refines for better features. Since edge
features are computed in granule level of different scale,
ACF is robust with object appearance changes under rea-
sonable deformation and articulation as HOG feature.

3.2. Heuristic Learning Algorithm for ACF

We adopt the cascade detector framework of Viola and
Jones [20] and used Real AdaBoost [16] in training a nested

• Init LGS feature pool as Open List Feature Pool (OLFP )
• For search iteration SI < MAX ITERATION

• Select the most discriminative SEED LGS features
from OLFP, add them to Close List Feature Pool
(CLFP ) and remove them from OLFP

• For each seed feature j selected

– Find the most discriminative features Growj ,
Comj and Cutj with operations Grow, Com-
bine and Cut

• Add Growj , Comj and Cutj to OLFP

• SI + +

• Construct Heuristic Feature Pool (HFP ) from OLFP
and CLFP

• Train the best weak classifier from HFP

Figure 5. Heuristic algorithm to construct ACF

cascade detector [6] for human detection. However, instead
of selecting features from a predefined feature pool, we con-
struct ACF features and their corresponding weak classifiers
and then select the most discriminative one heuristically in
each boosting round as in Figure 5 over training set.

The open list is initialized with all single granules in the
OGS. For each loop, some best seeds are selected from the
open list and expanded by the Grow, Combine and Cut op-
erations defined in Section 3.1. Finally, a best ACF is se-
lected from the constructed feature pool and its correspond-
ing weak classifier is fused to the strong classifier.

3.3. ACF Parameters

In practice, there are three main parameters in ACF
learning: the number of granules in a LG allowed (N ),
that is the length of contour element; the number of LGs
in a LGS allowed (S), that is, the degree of feature co-
occurrences allowed; and the total number of granules in
a LGS allowed (M ), which affects the feature complex-
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Figure 6. Adaptive Contour Feature Parameters and Comparison with EOH.
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Figure 7. Selected EOH features and ACFs

ity and computation efficiency. In order to analyze the dis-
criminative power of ACF with different parameter settings,
we compared with the AdaBoosted Edge Orientation His-
togram (EOH) features [9] that are in fact corresponding to
single granule features of this paper but with rectangle win-
dow patches learned by Real AdaBoost, which is in fact an
enhanced HOG feature [5].

We collect 3,700 human samples and 3,700 non-human
ones of the size 24 × 58. Both EOH features and ACFs
are trained on this set with Real AdaBoost. We search 30
rounds for each boosting round (MAX ITERATION =
30), and use 10 features as seeds (SEED = 10) for each
searching round. As in Figure 6, it can be seen that ACFs
are much more discriminative than EOH features and con-
verge to lower false alarm rate more quickly.

In Figure 6(a), the discriminablity improves as the num-

ber of granules in a LG allowed (N ) increases from 2 to 8,
which means longer contour is better. While in Figure 6(b),
the degree of feature co-occurrences allowed (S) could have
respective impact on the performance, which means more
co-occurrence features are preferred. And in Figure 6(c),
we can see that the more the total number of granules in a
LGS allowed (M ) the better the performance. However, M
has a direct impact on computation expense. And given a
certain M , the choice of N and S must be compromised ac-
cording to the experiments in Figure 6(a)(b). In our imple-
mentation, for efficiency we set N = 8, S = 2, and M = 8.
Some EOH and ACF features learned in the early boosting
rounds are shown in Figure 7. It can be seen that ACFs de-
scribe human contour elements and feature co-occurrences
well.

4. Simultaneous Detection and Segmentation

ACF is constructed mainly by Grow and Combine opera-
tions, where Grow operation mines object contour elements
and Combine operation mines feature co-occurrences. In-
spired by ACF’s advantage in describing object contour el-
ements, we apply ACFs in human segmentation in the same
way as Wu and Nevatia [23] to show their power on charac-
terizing the object contours.

For input samples of the size w × h, a cascade classi-
fier is trained for detection, and a number of w × h classi-
fiers are trained simultaneously for per-pixel segmentation.
The samples for detection are denoted as Sd = {(xi, yi)},
where yi = ±1, and samples for segmentation are Ss =
{xi, +1, mi}, where mi is segmentation mask of the same
dimension with xi. The foreground pixels are treated as
positive samples in segmentation while the background pix-
els as negative. In each boosting round, an ACF is learned
for detection as described in Section 3.2. Then the ACF is
applied to the pixels in the ACF’s effective field for seg-
mentation. The effective field of an ACF’s is defined as the
pixels located in the granules of the ACF. The segmenta-
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• Given an intial set for detection Sd = {(xi, yi)},where yi = ±1, and a sample set for segmentation Ss =
{xi, +1, mi},where mi is mask, and a human free negative sample set.
• Set the cascade layer L; the maximum weak classifier T ; the detection false alarm F ; the cascade classifier Hc; the
segmentation classifier Hs

• Initialize the segmentation sample weight Ds, where Ds(u) is a pixel weight at position u; the cascade layer l = 0
• While l < L

• Initialize the detection sample weight Dd; set layer false alarm f = 1.0, layer boosting round t = 0, layer detection
classifier hd

• While t < T and f > F

– Construct and select an ACF as described in Section 3.2
– Add selected ACF to hd, and update Dd

– Add ACF to Hs in its effective field and update Ds

– Update threshold and recompute false rate f

– t + +

• Recollect negative samples for detection from human free images

• l + +

• Output the cascade classifier Hc for detection and the strong classifier Hs for segmentation

Figure 8. Simultaneous detection and segmentation with ACF.

tion classifier is trained together with the cascade structure
detector as shown in Figure 8.

As in the detection procedure, there may be many detec-
tion responses for one human. The segmentation classifier
is applied to each of these responses. The final segmenta-
tion result is achieved using a simple voting method.

5. Experiment Results
Detection experiments are carried out on two different

datasets: one is USC Pedestrian Set A [21] which con-
tains 205 real-life photos and 313 different humans with
front/rear and has no heavy inter-object occlusion, another
one is INRIA dataset [1] which is more challenging with
pose variation, inter-object occlusion and complex back-
ground.

Since USC Pedestrian Set A has no training set, we col-
lect 3,700 front/rear human samples (7,400 after left-right
reflections). The samples are normalized to 24×58 and neg-
ative samples are collected from 9,000 human-free images.
The parameter setting is the same as described in Section 3
which is a tradeoff between feature’s discriminability and its
computation efficiency. We compare our ACF with edgelet
feature (Wu and Nevatia [21]) and EHOG feature (Hou et
al. [5]) in Figure 10(a). It can be seen in Figure 10(a) that
ACF obviously outperforms the other two features.

INRIA dataset is a complete set with both train and test
samples. It consists of 1,239 pedestrian images (2,478 with

Figure 9. Samples for segmentation train.

their left-right reflections) and 1,218 person-free images for
training. In the test set there are 566 pedestrian examples
(1,132 with their left-right reflections) and 453 person-free
images. All the human samples are cut from images and
scaled to 24×58. We also use the Cascade structure and col-
lect negative samples from person-free images with a boot-
strap procedure. Detection rate under different false alarm
level is achieved by tuning layers of the Cascade. Unlike the
ROC curve in Figure 10(a), miss-rate/FPPW (False Positive
Per Window) curves is adopted as shown in Figure 10(b).
Some results on INRIA set and our own images are shown
in Figure 11.

In order to train human segmentation, we labeled 620
(1,240 after left-right reflection) humans of the size 24×58
(some samples are shown in Figure 9). As described in Sec-
tion 4, the segmentation classifiers are trained directly with
the ACF learned for detection. Some results of segmenta-
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Figure 10. (a) ROC curve comparison on USC Set A. (b) detection-rate/FPPW curve on INRIA Set .

tion after detection are shown in Figure 12.

The cascade detector can scan about 680,000 windows
per second. And in average for detection and segmentation
it takes totally about 120ms on a 400 × 300 image with a
popular PC.

6. Conclusion

A novel feature called Adaptive Contour Feature (ACF)
is proposed for object detection and segmenation. An Ori-
ented Granular Space (OGS) is first constructed from a
gradient image, and three simple operations are defined
to generate ACF features from a single granule. We pro-
pose a heuristic algorithm to construct ACFs with high dis-
criminative power as weak classifiers. ACFs can describe
object contour elements adaptively in different levels and
search for feature co-occurrences automatically. It is also
robust with reasonable object deformation and articulation
as HOG feature. Experiments on two open human detection
datasets: USC Set A and INRIA Set, show the advantage of
ACFs in object detection. To demonstrate the contour de-
scription ability of ACFs, a coarse human segmentation is
also done with the ACFs learned in detection to show its
description power. Although ACF is proposed for human
detection and segmentation, it can also be used in other ob-
ject detection and segmentation problems.
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