
Journal of Artificial Intelligence Research 55 (2016) 317-359 Submitted 08/15; published 02/16

Adaptive Contract Design for Crowdsourcing Markets:
Bandit Algorithms for Repeated Principal-Agent Problems

Chien-Ju Ho ch624@cornell.edu
Cornell University, Ithaca, NY, USA

Aleksandrs Slivkins slivkins@microsoft.com
Microsoft Research, New York, NY, USA

Jennifer Wortman Vaughan jenn@microsoft.com

Microsoft Research, New York, NY, USA

Abstract

Crowdsourcing markets have emerged as a popular platform for matching available
workers with tasks to complete. The payment for a particular task is typically set by the
task’s requester, and may be adjusted based on the quality of the completed work, for
example, through the use of “bonus” payments. In this paper, we study the requester’s
problem of dynamically adjusting quality-contingent payments for tasks. We consider a
multi-round version of the well-known principal-agent model, whereby in each round a
worker makes a strategic choice of the effort level which is not directly observable by the
requester. In particular, our formulation significantly generalizes the budget-free online task
pricing problems studied in prior work. We treat this problem as a multi-armed bandit
problem, with each “arm” representing a potential contract. To cope with the large (and
in fact, infinite) number of arms, we propose a new algorithm, AgnosticZooming, which
discretizes the contract space into a finite number of regions, effectively treating each region
as a single arm. This discretization is adaptively refined, so that more promising regions
of the contract space are eventually discretized more finely. We analyze this algorithm,
showing that it achieves regret sublinear in the time horizon and substantially improves
over non-adaptive discretization (which is the only competing approach in the literature).
Our results advance the state of art on several different topics: the theory of crowdsourcing
markets, principal-agent problems, multi-armed bandits, and dynamic pricing.

1. Introduction

Crowdsourcing harnesses human intelligence and common sense to complete tasks that are
difficult to accomplish using computers alone. Crowdsourcing markets, such as Amazon Me-
chanical Turk and CrowdFlower, are platforms designed to match available human workers
with tasks to complete. Using these platforms, requesters may post tasks that they would
like completed, along with the amount of money they are willing to pay. Workers then
choose whether or not to accept the available tasks and complete the work.

Of course not all human workers are equal, nor is all human-produced work. Some tasks,
such as proofreading English text, are easier for some workers than others, requiring less
effort to produce high quality results. Additionally, some workers are more dedicated than
others, willing to spend extra time to make sure a task is completed properly. To encourage
high quality results, requesters may set quality-contingent “bonus” payments on top of the
base payment for each task, rewarding workers for producing valuable output. This can be

c©2016 AI Access Foundation. All rights reserved.

Ho, Slivkins, & Vaughan

viewed as offering workers a “contract” that specifies how much they will be paid based on
the quality of their output.1

We examine the requester’s problem of dynamically setting quality-contingent payments
for tasks. We consider a setting in which time evolves in rounds. In each round, the requester
posts a new contract, a performance-contingent payment rule which specifies different levels
of payment for different levels of output quality. A random, unidentifiable worker then
arrives in the market and strategically decides whether to accept the requester’s task and
how much effort to exert; the choice of effort level is not directly observable by the requester.
After the worker completes the task (or chooses not to complete it), the requester observes
the worker’s output, pays the worker according to the offered contract, and adjusts the
contract for the next round. The properties of a random worker (formally: the distribution
over the workers’ types) are not known to the requester, but may be learned over time. The
goal of the requester is to maximize his expected utility, the value he receives from completed
work minus the payments made. We call it the dynamic contract design problem.

For concreteness, consider a special case in which a worker can strategically choose to
perform a task with low effort or with high effort, and the task may be completed either at
low quality or at high quality. The low effort incurs no cost and results in low quality, which
in turn brings no value to the requester. The high effort leads to high quality with some
positive probability (which may vary from one worker to another, and is unknown to the
requester). The requester only observes the quality of completed tasks, and therefore cannot
always infer the effort level. This example captures the two main tenets of our model: that
the properties of a random worker are unknown to the requester and that workers’ strategic
decisions are unobservable.

We treat the dynamic contract design problem as a multi-armed bandit (MAB) problem,
with each arm representing a potential contract. Since the action space is large (potentially
infinite) and has a well-defined real-valued structure, it is natural to consider an algorithm
that uses discretization. Our algorithm, AgnosticZooming, divides the action space into
regions, and chooses among these regions, effectively treating each region as a single “meta-
arm.” The discretization is defined adaptively, so that the more promising areas of the
action space are eventually discretized more finely than the less promising areas. While
the general idea of adaptive discretization has appeared in prior work on MAB (Kleinberg,
Slivkins, & Upfal, 2008; Bubeck, Munos, Stoltz, & Szepesvari, 2011a; Slivkins, 2014, 2011),
our approach to adaptive discretization is new and problem-specific. The main difficulty,
compared to this prior work, is that an algorithm is not given any information that links
the observable numerical structure of contracts and the expected utilities thereof.

To analyze performance, we propose a concept called “width dimension” which measures
how “nice” a particular problem instance is. We show that AgnosticZooming achieves
regret sublinear in the time horizon for problem instances with small width dimension.
In particular, if the width dimension is d, it achieves regret O(log T · T (d+1)/(d+2)) after
T rounds. For problem instances with large width dimension, AgnosticZooming matches
the performance of the naive algorithm which uniformly discretizes the space and runs a

1. For some tasks, such as labeling websites as relevant to a particular search query or not, verifying the
quality of work may be as difficult as completing the task. These tasks can be assigned in batches, with
each batch containing one or more instances in which the correct answer is already known (often called
“gold” data). Quality-contingent payments can then be based on the known instances.

318

Adaptive Contract Design for Crowdsourcing Markets

standard bandit algorithm. We illustrate our general results via some corollaries and special
cases, including the high-low example described above. We support the theoretical results
with simulations.

Further, we consider a special case of our setting where each worker only chooses whether
to accept or reject a given task. This special case corresponds to a dynamic task pricing
problem previously studied in the literature. Our results significantly improve over the prior
work on this problem.

Our contributions can be summarized as follows. We define a broad, practically impor-
tant setting in crowdsourcing markets; identify novel problem-specific structure, for both
the algorithm and the regret bounds; distill ideas from prior work to work with these
structures; argue that our approach is productive by deriving corollaries and comparing
to prior work; and identify and analyze specific examples where our theory applies. The
main conceptual contributions are the model itself and the adaptive discretization approach
mentioned above. Finally, this paper prompts further research on dynamic contract design
along several directions that we outline in the conclusion.

1.1 Related Work

Our work builds on three areas of research. First, our model can be viewed as a multi-round
version of the classical principal-agent model from contract theory (Laffont & Martimort,
2002). A single round of our model corresponds to the basic principal-agent setting, with
adverse selection (unknown worker’s type) and moral hazard (unobservable worker’s deci-
sions). Unlike much of the existing work in contract theory, the prior over worker types is
not known to the principal, but may be learned over time. Accordingly, our techniques are
very different from those employed in contract theory.

Second, our methods build on those developed in the rich literature on MAB with
continuous outcome spaces. The closest line of work is that on Lipschitz MAB (Kleinberg
et al., 2008), in which the algorithm is given a distance function on the arms, and the
expected rewards of the arms are assumed to satisfy Lipschitz-continuity (or a relaxation
thereof) with respect to this distance function (Agrawal, 1995; Kleinberg, 2004; Auer,
Ortner, & Szepesvári, 2007; Kleinberg et al., 2008; Bubeck et al., 2011a; Slivkins, 2014).
Most related to our techniques is the idea of adaptive discretization (Kleinberg et al., 2008;
Bubeck et al., 2011a; Slivkins, 2014), and in particular, the zooming algorithm (Kleinberg
et al., 2008; Slivkins, 2014). However, the zooming algorithm cannot be applied directly
in our setting because the required numerical similarity information is not immediately
available. This problem also arises in web search and advertising, where it is natural to
assume that an algorithm can only observe a tree-shaped taxonomy on arms (Kocsis &
Szepesvari, 2006; Munos & Coquelin, 2007; Pandey, Agarwal, Chakrabarti, & Josifovski,
2007) which can be used to explicitly reconstruct relevant parts of the underlying metric
space (Slivkins, 2011; Bull, 2013). We take a different approach, using a notion of “virtual
width” to estimate similarity information. Explicit comparisons between our results and
prior MAB work are made throughout the paper.

Finally, our work follows several other theoretical papers on pricing in crowdsourcing
markets (Kleinberg & Leighton, 2003; Badanidiyuru, Kleinberg, & Singer, 2012; Singer
& Mittal, 2013; Singla & Krause, 2013; Badanidiyuru, Kleinberg, & Slivkins, 2013). In

319

Ho, Slivkins, & Vaughan

particular, Badanidiyuru et al. (2012) and Singla and Krause (2013) study a version of our
setting with simple, single-price contracts (independent of the output), where the focus is
on dealing with a global budget constraint.

A more thorough literature review (including a discussion of some related empirical
work) can be found in Section 9.

2. Our Setting: The Dynamic Contract Design Problem

In this section, we formally define the problem that we set out to solve and discuss the
implications of several aspects of our model.

2.1 Our Model

We start by describing a static model, which captures what happens in a single round of
interaction between a requester and a worker. As described above, this is a version of the
standard principal-agent model (Laffont & Martimort, 2002). We then define our dynamic
model, an extension of the static model to multiple rounds, with a new worker arriving
each round. We then detail the objective of our pricing algorithm and the simplifying
assumptions that we make throughout the paper. Finally, we compare our setting to the
classic multi-armed bandit problem.

2.1.1 Static Model

We begin with a description of what occurs during each interaction between the requester
and a single worker. The requester first posts a task which may be completed by the worker,
and a contract specifying how the worker will be paid if she completes the task. If the task
is completed, the requester pays the worker as specified in the contract, and the requester
derives value from the completed task; for normalization, we assume that the value derived
is in [0, 1]. The requester’s utility from a given task is this value minus the payment to the
worker.

When the worker observes the contract and decides whether or not to complete the task,
she also chooses a level of effort to exert, which in turn determines her cost (in terms of time,
energy, or missed opportunities) and a distribution over the quality of her work. To model
quality, we assume that there is a (small) finite set of possible outcomes that result from the
worker completing the task (or choosing not to complete it), and that the realized outcome
determines the value that the requester derives from the task. The realized outcome is
observed by the requester, and the contract that the requester offers is a mapping from
outcomes to payments for the worker.

We emphasize two crucial (and related) features of the principal-agent model: that
the mapping from effort level to outcomes can be randomized, and that the effort level
is not directly observed by the requester. This is in line with a standard observation in
crowdsourcing that even honest, high-effort workers occasionally make errors.

The worker’s utility from a given task is the payment from the requester minus the
cost corresponding to her chosen effort level. Given the contract she is offered, the worker
chooses her effort level strategically so as to maximize her expected utility. Crucially, the
chosen effort level is not directly observable by the requester.

320

Adaptive Contract Design for Crowdsourcing Markets

The worker’s choice not to perform a task is modeled as a separate effort level of zero
cost (called the null effort level) and a separate outcome of zero value and zero payment
(called the null outcome) such that the null effort level deterministically leads to the null
outcome, and it is the only effort level that can lead to this outcome.

The mapping from outcomes to the requester’s value is called the requester’s value
function. The mapping from effort levels to costs is called the cost function, and the
mapping from effort levels to distributions over outcomes is called the production function.
For the purposes of this paper, a worker is completely specified by these two functions; we
say that the cost function and the production function comprise the worker’s type. Unlike
some traditional versions of the principal-agent problem, in our setting a worker’s type is
not observable by the requester, nor is any prior given.

2.1.2 Dynamic Model

The dynamic model we consider in this paper is a natural extension of the static model to
multiple rounds and multiple workers. We are still concerned with just a single requester.
In each round, a new worker arrives. We assume a stochastic environment in which the
worker’s type in each round is an i.i.d. sample from some fixed and unknown distribution
over types, called the supply distribution. The requester posts a new task and a contract
for this task. All tasks are of the same type, in the sense that the set of possible effort
levels and the set of possible outcomes are the same for all tasks. The worker strategically
chooses her effort level so as to maximize her expected utility from this task. Based on
the chosen effort level and the worker’s production function, an outcome is realized. The
requester observes this outcome (but not the worker’s effort level) and pays the worker the
amount specified by the contract. The type of the arriving worker is never revealed to the
requester. The requester can adjust the contract from one round to another, and his total
utility is the sum of his utility over all rounds. For simplicity, we assume that the number
of rounds is known in advance, though this assumption can be relaxed using the standard
“doubling trick” (Cesa-Bianchi & Lugosi, 2006) in which full executions of the algorithm
are repeated in “phases” with exponentially increasing time horizons.

2.1.3 The Dynamic Contract Design Problem

Throughout this paper, we take the point of view of the requester interacting with workers
in the dynamic model. The algorithms we examine dynamically choose contracts to offer
on each round with the goal of maximizing the requester’s expected utility. A problem
instance consists of several quantities, some of which are known to the algorithm, and some
of which are not. The known quantities are the number of outcomes, the requester’s value
function, and the time horizon T (i.e., the number of rounds). The latent quantities are the
number of effort levels, the set of worker types, and the supply distribution. The algorithm
adjusts the contract from round to round and observes the realized outcomes but receives
no other feedback.

We focus on contracts that are bounded (offer payments in [0, 1]), and monotone (assign
equal or higher payments for outcomes with higher value for the requester). Let X be the
set of all bounded, monotone contracts. We compare a given algorithm against a given
subset of “candidate contracts” Xcand ⊂ X. Letting OPT(Xcand) be the optimal utility over

321

Ho, Slivkins, & Vaughan

all contracts in Xcand, the goal is to minimize the algorithm’s regret R(T |Xcand), defined as
T × OPT(Xcand) minus the algorithm’s expected utility.

The subset Xcand may be finite or infinite, possibly Xcand = X. The most natural
example of a finite Xcand is the set of all bounded, monotone contracts with payments that
are integer multiples of some ψ > 0; we call it the uniform mesh with granularity ψ, and
denote it Xcand(ψ).

2.1.4 Notation

Let v(·) be the value function of the requester, with v(π) denoting the value of outcome π.
Let O be the set of all outcomes and let m be the number of non-null outcomes. We will
index the outcomes as O = {0, 1, 2 , . . . ,m} in the order of increasing value (ties broken
arbitrarily), with a convention that 0 is the null outcome.

Let ci(·) and fi(·) be the cost function and production function for type i. Then the
cost of choosing effort level e is ci(e), and the probability of obtaining outcome π having
chosen effort e is fi(π|e). Let Fi(π|e) =

∑
π′≥π fi(π

′|e) be the probability of obtaining an
outcome at least as good as π having chosen effort e.

Recall that a contract x is a function from outcomes to (non-negative) payments. If
contract x is offered to a worker sampled i.i.d. from the supply distribution, V (x) is the
expected value to the requester, P (x) ≥ 0 is the expected payment, and U(x) = V (x)−P (x)
is the expected utility of the requester. Let OPT(Xcand) = supx∈Xcand

U(x).

2.1.5 Assumption: First-Order Stochastic Dominance (FOSD)

Given two effort levels e and e′, we say that e has FOSD over e′ for type i if Fi(π|e) ≥ Fi(π|e′)
for all outcomes π, with a strict inequality for at least one outcome.2 We say that type i
satisfies the FOSD assumption if for any two distinct effort levels, one effort level has FOSD
over the other for type i. We assume that all types satisfy this assumption.

2.1.6 Assumption: Consistent Tie-Breaking

If multiple effort levels maximize the expected utility of a given worker for a contract x, we
assume the tie is broken consistently in the sense that this worker chooses the same effort
level for any contract that leads to this particular tie. This assumption is minor; it can
be avoided (with minor technical complications) by adding random perturbations to the
contracts. This assumption is implicit throughout the paper.

2.2 Discussion

Before jumping into our results, we discuss the implications of several aspects of our model
in more detail.

2.2.1 Number of Outcomes

Our results assume a small number of outcomes. This regime is important in practice
for several reasons. First, some tasks naturally have only a small number of outcomes.

2. This mimics the standard notion of FOSD between two distributions over a linearly ordered set.

322

Adaptive Contract Design for Crowdsourcing Markets

For example, a binary labeling task can only have four possible outcomes if completed:
{yes/no} × {correct/incorrect}. Second, it often makes sense to group together multiple
outcomes with similar value to the requester (such as false positives and false negatives) if
the value is not known very precisely. This has the added benefit that contracts become
simpler from the workers’ perspective. Third, even if a task can be completed in many
different ways, the quality may be difficult to evaluate in fine granularity; a good example
is a translation of a sentence. Fourth, even if a fine-grained quality evaluation exists, such
as the error count in speech transcription tasks, it may be difficult to make it consistent
across different tasks.

Even withm = 2 non-null outcomes, our setting has not been studied before. The special
case m = 1 is equivalent to the dynamic pricing problem from Kleinberg and Leighton
(2003); we obtain improved results for it, too.

2.2.2 The Benchmark

Our benchmark OPT(·) only considers contracts that are bounded and monotone. In practice,
restricting to such contracts may be appealing to all human parties involved. However, this
restriction is not without loss of generality: there are problem instances in which monotone
contracts are not optimal; see Appendix A for an example. Further, it is not clear whether
bounded monotone contracts are optimal among monotone contracts.

Our benchmark OPT(Xcand) is relative to a given set Xcand, which is typically a finite
discretization of the contract space. There are two reasons for this. First, crowdsourc-
ing platforms may require the payments to be multiples of some minimum unit (e.g., one
cent), in which case it is natural to restrict our attention to contracts satisfying the same
constraint. Second, achieving guarantees relative to OPT(X) for the full generality of our
problem appears beyond the reach of our techniques. As in many other machine learning
scenarios, it is useful to consider a restricted “benchmark set” – set of alternatives to com-
pare to.3 In such settings, it is considered important to handle arbitrary benchmark sets,
which is what we do.

One known approach to obtain guarantees relative to OPT(X) is to start with some
finite Xcand ⊂ X, design an algorithm with guarantees relative to OPT(Xcand), and then,
as a separate result, bound the discretization error OPT(X)− OPT(Xcand). Then the choice
of Xcand drives the tradeoff between the discretization error and regret R(T |Xcand), and
one can choose Xcand to optimize this tradeoff. However, while one can upper-bound the
discretization error in some (very) simple special cases (see Section 5), it is unclear whether
this can be extended to the full generality of dynamic contract design.

2.2.3 Alternative Worker Models

One of the crucial tenets in our model is that the workers maximize their expected utility.
This “rationality assumption” is very standard in economics, and is often used to make
the problem amenable to rigorous analysis. However, there is a considerable literature
suggesting that in practice workers may deviate from this “rational” behavior. Thus, it is
worth pointing out that our results do not rely heavily on the rationality assumption. The

3. A particularly relevant analogy is contextual bandits with policy sets (Dudik, Hsu, Kale, Karampatziakis,
Langford, Reyzin, & Zhang, 2011).

323

Ho, Slivkins, & Vaughan

FOSD assumption (which is also fairly standard) can be circumvented, too. In fact, all
our assumptions regarding worker behavior serve only to enable us to prove Lemma 3.1,
and more specifically to guarantee that the collective worker behavior satisfies a natural
“increment payment property” used in the proof of Lemma 3.1: if the requester increases
the “increment payment” for a particular outcome (as described in the next section), the
probability of obtaining an outcome at least that good also increases. In particular, this
property is consistent with worker behavior that takes into account long-term effects such
as changes in reputation scores. It is also consistent with workers acting upon subjective
(and possibly incorrect) beliefs about the offered contract, such as beliefs about how the
“guaranteed” base payment may actually depend on the quality of submitted work.4

2.2.4 Minimum Wage

For ethical or legal reasons one may want to enforce some form of minimum wage. This
can be expressed within our model as a minimal payment θ for a completed task, i.e.,
for any non-null outcome. Our algorithm can be easily modified to accommodate this
constraint. Essentially, it suffices to restrict the action space to contracts that pay at least
θ for a completed task. Formally, the “increment space” defined in Section 3 should be
[θ, 1] × [0, 1]m−1 rather than [0, 1]m, and the “quadrants” of each “cell” are defined by
splitting the cell in half in each dimension. All our results easily carry over to this version
(restricting Xcand to contracts that pay at least θ for a completed task). We omit further
discussion of this issue for the sake of simplicity.

2.2.5 Comparison to Multi-Armed Bandits (MAB)

Dynamic contract design can be modeled as special case of the MAB problem with some
additional, problem-specific structure. The basic MAB problem is defined as follows. An
algorithm repeatedly chooses actions from a fixed action space and collects rewards for the
chosen actions; the available actions are traditionally called arms. More specifically, time
is partitioned into rounds, so that in each round the algorithm selects an arm and receives
a reward for the chosen arm. No other information, such as the reward the algorithm
would have received for choosing an alternative arm, is revealed. In an MAB problem
with stochastic rewards, the reward of each arm in a given round is an i.i.d. sample from
some distribution which depends on the arm but not on the round. A standard measure
of an algorithm’s performance is regret with respect to the best fixed arm, defined as the
difference in expected total reward between a benchmark (usually the best fixed arm) and
the algorithm.

Thus, dynamic contract design can be naturally modeled as an MAB problem with
stochastic rewards, in which arms correspond to monotone contracts. The prior work on
MAB with large or infinite action spaces often assumes known upper bounds on the similar-
ity between arms. More precisely, this prior work would assume that an algorithm is given a
metric D on contracts such that expected rewards are Lipschitz-continuous with respect to

4. A worker model that incorporates such subjective beliefs has been suggested by Ho, Slivkins, Suri, and
Vaughan (2015) based on experimental evidence, and this model satisfies the increment payment property
mentioned above.

324

Adaptive Contract Design for Crowdsourcing Markets

D, i.e., we have upper bounds |U(x)−U(y)| ≤ D(x, y) for any two contracts x, y.5 However,
in our setting such upper bounds are absent. On the other hand, our problem has some
auxiliary structure compared to the standard MAB setting. In particular, the algorithm’s
reward decomposes into value and payment, both of which are determined by the outcome,
which in turn is probabilistically determined by the worker’s strategic choice of the effort
level. Effectively, this auxiliary structure provides some “soft” information on similarity
between contracts, in the sense that numerically similar contracts usually (but not always)
induce similar response from the workers.

2.2.6 Applicability of the Model

Despite a considerable generality, our model is somewhat idealized. Let us discuss several
potential concerns regarding how applicable and realistic the model is.

An implicit intuition behind using performance-based payments is that they can incen-
tivize better quality. A growing empirical literature on incentives in crowdsourcing markets
finds that it happens for some types of tasks but not for others. In particular, the exper-
iments in the work of Ho et al. (2015) suggest that it happens if and only if the task is
effort-responsive, in the sense that one can obtain higher quality work by increasing effort,
at effort levels that are not too costly for the worker. This observation is consistent with our
worker model: indeed, effort-responsiveness of a task is a joint property of the production
function and the cost function which implies a significant response to sufficiently increased
quality-based payments. Ho et al. propose pilot experiments to determine whether a given
type of tasks is effort-responsive, which in turn would shed light on whether to use quality-
based payments for these tasks in practice. A more comprehensive discussion of related
empirical work can be found in Section 9. We also observe that our model and results for
a single non-null outcome are applicable and novel even if the task is not effort-responsive.

Following the bulk of prior work on dynamic pricing and MAB, we assume that the
collective worker response to a given contract, as given by a distribution over the outcomes,
does not depend on the contracts that have been offered in the past, or on the algorithm used
to choose future contracts. Thus, we do not model the possibility that price experimentation
may alter future worker responses, or that the workers may try to “game the system.” Both
effects are not easy to model and extremely difficult to analyze, even in the relatively
simple scenario of a single non-null outcome with no emphasis on adaptive discretization.
Additionally, the available empirical work does not provide sufficient guidance on how to
choose a realistic model for these effects among theoretically plausible alternatives. We
leave this to future work.

From the MAB point of view, our model does not incorporate the possibility that the
worker response may intrinsically change over time, or the fact that requesters may have
hard budget constraints on the total amount of money that they can spend. This reflects
the limitations of state-of-the-art work on MAB: adaptive discretization, budgets, and ad-
versarial change over time are fairly well-understood separately, but any two of them (let
alone all three) have not been studied jointly. That said, we conjecture that our techniques
would be useful in generalizing dynamic pricing and dynamic contract design to these richer
settings.

5. Such upper bound is informative if and only if D(x, y) < 1.

325

Ho, Slivkins, & Vaughan

Likewise, we do not model a scenario when the requester’s stream of tasks overwhelms
the crowdsourcing market and causes a drastic change in the available worker population
(and therefore in the worker response). In particular, we assume that the worker pool is
sufficiently large to accommodate the requester. This is a relatively benign assumption for
a large crowdsourcing system.

To deploy dynamic selection of prices or contracts in practice (regardless of the particular
algorithm used) the crowdsourcing platform needs to enable requesters to change their
prices/contracts relatively fast in response to observed worker responses. While this feature
is not currently instrumented on commercial platforms such as Amazon Mechanical Turk,
it appears easily implementable from an engineering point of view. We believe the main
hurdle would be to incorporate dynamic price/contract selection into the overall economic
design of the market. Given the multitude of existing crowdsourcing markets and a relative
ease of deploying new market designs, we believe this direction is well worth studying.

3. Our Algorithm: AgnosticZooming

In this section, we specify our algorithm. We call it AgnosticZooming because it “zooms
in” on more promising areas of the action space, and does so without knowing a precise
measure of the similarity between contracts. This zooming can be viewed as a dynamic
form of discretization. Before stating the algorithm itself, we discuss the discretization of
the action space in more detail, laying the groundwork for our approach.

3.1 Discretization of the Action Space

In each round, the AgnosticZooming algorithm partitions the action space into several re-
gions and chooses among these regions, effectively treating each region as a “meta-arm.” In
this section, we discuss which subsets of the action space are used as regions, and introduce
some useful notions and properties of such subsets.

3.1.1 Increment Space and Cells

To describe our approach to discretization, it is useful to think of contracts in terms of
increment payments. Specifically, we represent each monotone contract x : O → [0,∞) as a
vector x ∈ [0,∞)m, where m is the number of non-null outcomes and xπ = x(π)−x(π−1) ≥
0 for each non-null outcome π. (Recall that by convention 0 is the null outcome and
x(0) = 0.) We call this vector the increment representation of contract x, and denote it
incr(x). Note that if x is bounded, then incr(x) ∈ [0, 1]m. Conversely, call a contract
weakly bounded if it is monotone and its increment representation lies in [0, 1]m. Such a
contract is not necessarily bounded.

We discretize the space of all weakly bounded contracts, viewed as a multi-dimensional
unit cube. More precisely, we define the increment space as [0, 1]m with a convention that
every vector represents the corresponding weakly bounded contract. Each region in the dis-
cretization is a closed, axis-aligned m-dimensional cube in the increment space; henceforth,
such cubes are called cells. The size of a cell is the length of any one side. A cell is called
relevant if it contains at least one candidate contract. A relevant cell is called atomic if it
contains exactly one candidate contract, and composite otherwise.

326

Adaptive Contract Design for Crowdsourcing Markets

In each composite cell C, the algorithm will only use two contracts: the maximal corner,
denoted x+(C), in which all increment payments are maximal, and the minimal corner,
denoted x−(C), in which all increment payments are minimal. These two contracts are
called the anchors of C. In each atomic cell C, the algorithm will only use one contract:
the unique candidate contract, also called the anchor of C. Note that anchors are not
necessarily candidate contracts.

3.1.2 Virtual Width

To take advantage of the problem structure, it is essential to estimate how similar the
contracts within a given composite cell C are. Ideally, we would like to know the maximal
difference in expected utility:

width(C) = supx,y∈C |U(x)− U(y)| .

We estimate the width using a proxy, called virtual width, which is expressed in terms of
the anchors:

VirtWidth(C) =
(
V (x+(C))− P (x−(C))

)
−
(
V (x−(C))− P (x+(C))

)
. (1)

This definition is one crucial place where the problem structure is used. (Note that it is
not the difference in utility at the anchors.) It is useful due to the following lemma (proved
in Section 3.3).

Lemma 3.1. If all types satisfy the FOSD assumption and consistent tie-breaking holds,
then width(C) ≤ VirtWidth(C) for each composite cell C.

Recall that the proof of this lemma is the only place in the paper where we use our
assumptions on worker behavior. All further developments hold for any model of worker
behavior which satisfies Lemma 3.1.

3.2 Description of the Algorithm

With these ideas in place, we are now ready to describe our algorithm. The high-level
outline of AgnosticZooming is very simple. The algorithm maintains a set of active cells
which cover the increment space at all times. Initially, there is only a single active cell
comprising the entire increment space. In each round t, the algorithm chooses one active
cell Ct using an upper confidence index and posts contract xt sampled uniformly at random
among the anchors of this cell. After observing the feedback, the algorithm may choose to
zoom in on Ct, removing Ct from the set of active cells and activating all relevant quadrants
thereof, where the quadrants of cell C are defined as the 2m sub-cells of half the size for
which one of the corners is the center of C. In the remainder of this section, we specify how
the cell Ct is chosen (the selection rule), and how the algorithm decides whether to zoom
in on Ct (the zooming rule).

Let us first introduce some notation. Consider cell C that is active in some round t. Let
U(C) be the expected utility from a single round in which C is chosen by the algorithm,
i.e., the average expected utility of the anchor(s) of C. Let nt(C) be the number of times
this cell has been chosen before round t. Consider all rounds in which C is chosen by

327

Ho, Slivkins, & Vaughan

the algorithm before round t. Let Ut(C) be the average utility over these rounds. For a
composite cell C, let V +

t (C) and P+
t (C) be the average value and average payment over

all rounds when anchor x+(C) is chosen. Similarly, let V −t (C) and P−t (C) be the average
value and average payment over all rounds when anchor x−(C) is chosen. Accordingly, we
can estimate the virtual width of composite cell C at time t as

Wt(C) =
(
V +
t (C)− P−t (C)

)
−
(
V −t (C)− P+

t (C)
)
. (2)

To bound the deviations, we define the confidence radius as

radt(C) =
√
crad log(T)/nt(C), (3)

for some absolute constant crad; in our analysis, crad ≥ 16 suffices. We will show that with
high probability all sample averages defined above will stay within radt(C) of the respective
expectations. If this high probability event holds, the width estimate Wt(C) will always be
within 4 radt(C) of VirtWidth(C).

The algorithm pseudocode is summarized in Algorithm 1. The selection rule and the
zooming rule are explained in more detail below.

ALGORITHM 1: AgnosticZooming

Inputs: subset Xcand ⊂ X of candidate contracts.
Data structure: Collection A of cells. Initially, A = { [0, 1]m }.
For each round t = 1 to T

Let Ct = argmaxC∈A It(C), where It(·) is defined as in Equation (4).
Sample contract xt u.a.r. among the anchors of Ct. \\ Anchors are defined in Section 3.1.
Post contract xt and observe feedback.
If |Ct ∩Xcand| > 1 and 5 radt+1(Ct) < Wt+1(Ct) then

A ← A∪ {all relevant quadrants of Ct} \ {Ct}. \\ C is relevant if |C ∩Xcand| ≥ 1.

3.2.1 Selection Rule

The selection rule is as follows. In each round t, the algorithm chooses an active cell C
with maximal index It(·). It(C) is an upper confidence bound on the expected utility of
any candidate contract in C, defined as

It(C) =

{
Ut(C) + radt(C) if C is an atomic cell,

Ut(C) +Wt(C) + 5 radt(C) otherwise.
(4)

If nt(C) = 0, Ut(C) and Wt(C) can be initialized to any finite values. Since radt(C) is
infinite when nt(C) = 0, AgnosticZooming will first select the cell that is never selected
before time t.

3.2.2 Zooming Rule

We zoom in on a composite cell Ct if

Wt+1(Ct) > 5 radt+1(Ct),

328

Adaptive Contract Design for Crowdsourcing Markets

i.e., the uncertainty due to random sampling, expressed by the confidence radius, becomes
sufficiently small compared to the uncertainty due to discretization, expressed by the virtual
width. We never zoom in on atomic cells.

3.2.3 Notes on Integer Payments

In practice it may be necessary to only allow contracts in which all payments are integer
multiples of some amount ψ, e.g., whole cents. (In this case we can assume that candidate
contracts have this property, too.) Then we can redefine the two anchors of each composite
cell: the maximal (resp., minimal) anchor is the nearest allowed contract to the maximal
(resp., minimal) corner. Width can be redefined as a supremum over all allowed contracts
in a given cell. With these modifications, the analysis goes through without significant
changes. We omit further discussion of this issue.

3.3 Proof of Lemma 3.1 (virtual width)

For two vectors x,x′ ∈ <m, write x′ � x if x′ pointwise dominates x, i.e., if x′j ≥ xj for all
j. For two monotone contracts x, x′, write x′ � x if incr(x′) � incr(x).

Claim 3.2. Consider a worker whose type satisfies the FOSD assumption and two weakly
bounded contracts x, x′ such that x′ � x. Let e (resp., e′) be the effort levels exerted by this
worker when he is offered contract x (resp., x′). Then e does not have FOSD over e′.

Proof. For the sake of contradiction, assume that e has FOSD over e′. Note that e 6= e′.
Let i be the worker’s type. Recall that Fi(π|e) denotes the probability of generating an

outcome π′ ≥ π given the effort level e. Define F = (Fi(1|e) , . . . , Fi(m|e)), and define F′

similarly for e′.
Let x and x′ be the increment representations for x and x′. Given contract x, the

worker’s expected utility for effort level e is Ui(x|e) = x · F − ci(e). Since e is the optimal
effort level given this contract, we have Ui(x|e) ≥ Ui(x|e′), and therefore

x · F− x · F′ ≥ ci(e)− ci(e′).

Similarly, since e′ is the optimal effort level given contract x′, we have

x′ · F′ − x′ · F ≥ ci(e′)− ci(e).

Combining the above two inequalities, we obtain

(x− x′) · (F− F′) ≥ 0. (5)

Note that if Equation (5) holds with equality then Ui(x|e) = Ui(x|e′) and Ui(x
′|e) =

Ui(x
′|e′), so the worker breaks the tie between e and e′ in a different way for two different

contracts. This contradicts the consistent tie-breaking assumption. However, Equation (5)
cannot hold with a strict equality, either, because x′ � x and (since e has FOSD over e′)
we have F � F′ and Fi(π|e) > Fi(π|e′) for some outcome π > 0. Therefore we obtain a
contradiction, completing the proof.

The proof of Claim 3.2 is the only place in the paper where we directly use the consistent
tie-breaking assumption. (But the rest of the paper relies on this claim.)

329

Ho, Slivkins, & Vaughan

Claim 3.3. Assume all types satisfy the FOSD assumption. Consider weakly bounded
contracts x, x′ such that x′ � x. Then V (x′) ≥ V (x) and P (x′) ≥ P (x).

Proof. Consider some worker, let i be his type. Let e and e′ be the chosen effort levels for
contracts x and x′, respectively. By the FOSD assumption, either e = e′, or e′ has FOSD
over e, or e has FOSD over e′. Claim 3.2 rules out the latter possibility.

Define vectors F and F′ as in the proof of Claim 3.2. Note that F′ � F.
Then P = x · F and P ′ = x′ · F′ is the expected payment for contracts x and x′,

respectively. Further, letting v denote the increment representation of the requester’s value
for each outcome, V = v · F and V ′ = v · F′ is the expected requester’s value for contracts
x and x′, respectively. Since x′ � x and F′ � F, it follows that P ′ ≥ P and V ′ ≥ V . Since
this holds for each worker, this also holds in expectation over workers.

To finish the proof of Lemma 3.1, consider a composite cell C with anchors x+ =
x+(C) and x− = x−(C), and fix a contract x ∈ C. Since x+ � x � x−, by Claim 3.3
it follows that V (x+) ≥ V (x) ≥ V (x−) and P (x+) ≥ P (x) ≥ P (x−). Therefore |U(x) −
U(y)| ≤ VirtWidth(C). Taking the supremum over all x ∈ C over, we obtain width(C) ≤
VirtWidth(C), as claimed.

4. Regret Bounds and Discussion

We present the main regret bound for AgnosticZooming. Formulating this result requires
some new, problem-specific structure. Stated in terms of this structure, the result is some-
what difficult to access. To explain its significance, we state several corollaries, and compare
our results to prior work.

4.1 The Main Result

We start with the main regret bound. Like the algorithm itself, this regret bound is pa-
rameterized by the set Xcand of candidate contracts; our goal is to bound the algorithm’s
regret with respect to candidate contracts.

Recall that OPT(Xcand) = supx∈Xcand
U(x) is the optimal expected utility over candidate

contracts. The algorithm’s regret with respect to candidate contracts is R(T |Xcand) =
T OPT(Xcand)− U , where T is the time horizon and U is the expected cumulative utility of
the algorithm.

Define the badness ∆(x) of a contract x ∈ X as the difference in expected utility between
an optimal candidate contract and x: ∆(x) = OPT(Xcand) − U(x). Let Xε = {x ∈ Xcand :
∆(x) ≤ ε}.

We will only be interested in cells that can potentially be used by AgnosticZooming.
Formally, we recursively define a collection of feasible cells as follows: (i) the cell [0, 1]m is
feasible, (ii) for each feasible cell C, all relevant quadrants of C are feasible. Note that the
definition of a feasible cell implicitly depends on the set Xcand of candidate contracts: by
definition, a feasible cell is one that contains a candidate contract.

Let Fε denote the collection of all feasible, composite cells C such that VirtWidth(C) ≥
ε. For Y ⊂ Xcand, let Fε(Y) be the collection of all cells C ∈ Fε that overlap with Y , and
let Nε(Y) = |Fε(Y)|; sometimes we will write Nε(Y |Xcand) in place of Nε(Y) to emphasize
the dependence on Xcand.

330

Adaptive Contract Design for Crowdsourcing Markets

Using the structure defined above, the main theorem is stated as follows. We prove this
theorem in Section 6.

Theorem 4.1. Consider the dynamic contract design problem with all types satisfying the
FOSD assumption and a constant number of outcomes. Consider AgnosticZooming, pa-
rameterized by some set Xcand of candidate contracts. Assume T ≥ max(2m + 1, 18). There
is an absolute constant β0 > 0 such that for any δ > 0,

R(T |Xcand) ≤ δT +O(log T)
∑

ε=2−j≥δ: j∈N

Nε β0(Xε|Xcand)

ε
. (6)

Remark 1. As discussed in Section 2.2, we target the practically important case of a small
number of outcomes. The impact of larger m is an exponential dependence on m in the
O() notation, and, more importantly, increased number of candidate policies (typically
exponential in m for a given granularity).

Remark 2. Our regret bounds do not depend on the number of worker types, in line with
prior work on dynamic pricing. Essentially, this is because bandit approaches tend to
depend only on expected reward of a given “arm” (and perhaps also on the variance), not
the finer properties of the distribution.

Equation (6) has a shape similar to several other regret bounds in the literature, as
discussed below. To make this more apparent, we observe that regret bounds in “bandits
in metric spaces” are often stated in terms of covering numbers. (For a fixed collection
F of subsets of a given ground set X, the covering number of a subset Y ⊂ X relative
to F is the smallest number of subsets in F that is sufficient to cover Y .) The numbers
Nε(Y |Xcand) are, essentially, about covering Y with feasible cells with virtual width close to
ε. We make this point more precise as follows. Let an ε-minimal cell be a cell in Fε which
does not contain any other cell in Fε. Let Nmin

ε (Y) be the covering number of Y relative
to the collection of ε-minimal cells, i.e., the smallest number of ε-minimal cells sufficient to
cover Y . Then

Nε(Y) ≤ dlog 1
ψ e N

min
ε (Y) for any Y ⊂ Xcand and ε ≥ 0, (7)

where ψ is the smallest size of a feasible cell.6 Thus, Equation (6) can be easily restated
using the covering numbers Nmin

ε (·) instead of Nε(·).

4.2 Corollary: Polynomial Regret

Literature on regret-minimization often states “polynomial” regret bounds of the form
R(T) = Õ(T γ), γ < 1. While covering-number regret bounds are more precise and versa-
tile, the exponent γ in a polynomial regret bound expresses algorithms’ performance in a
particularly succinct and lucid way.

For “bandits in metric spaces” the exponent γ is typically determined by an appro-
priately defined notion of “dimension”, such as the covering dimension,7 which succinctly

6. To prove Equation (7), observe that for each cell C ∈ Fε(Y) there exists an ε-minimal cell C′ ⊂ C, and
for each ε-minimal cell C′ there exist at most dlog 1

ψ
e cells C ∈ Fε(Y) such that C′ ⊂ C.

7. Given covering numbers Nε(·), the covering dimension of Y is the smallest d ≥ 0 such that Nε(Y) =
O(ε−d) for all ε > 0.

331

Ho, Slivkins, & Vaughan

captures the difficulty of the problem instance. Interestingly, the dependence of γ on the
dimension d is typically of the same shape; γ = (d+ 1)/(d+ 2), for several different notions
of “dimension”. In line with this tradition, we define the width dimension:

WidthDimα = inf
{
d ≥ 0 : Nε β0(Xε|Xcand) ≤ α ε−d for all ε > 0

}
, α > 0. (8)

Note that the width dimension depends on Xcand and the problem instance, and is param-
eterized by a constant α > 0. By optimizing the choice of δ in Equation (6), we obtain the
following corollary.

Corollary 4.2. Consider the the setting of Theorem 4.1. For any α > 0, let d = WidthDimα.
Then

R(T |Xcand) ≤ O(α log T) T (1+d)/(2+d). (9)

The width dimension is similar to the “zooming dimension” in the work of Kleinberg
et al. (2008) and “near-optimality dimension” in the work on “bandits in metric spaces”
(Bubeck et al., 2011a).

4.3 Comparison to Prior Work

Below we compare our results with previous work in non-adaptive discretization and bandits
in metric spaces.

4.3.1 Non-Adaptive Discretization

One approach from prior work that is directly applicable to the dynamic contract design
problem is non-adaptive discretization. This is an algorithm, call it NonAdaptive, which
runs an off-the-shelf MAB algorithm, treating a set of candidate contracts Xcand as arms.8

For concreteness, and following the prior work (Kleinberg & Leighton, 2003; Kleinberg,
2004; Kleinberg et al., 2008), we use a well-known algorithm UCB1 (Auer, Cesa-Bianchi, &
Fischer, 2002) as an off-the-shelf MAB algorithm.

To compare AgnosticZooming with NonAdaptive, it is useful to derive several “worst-
case” corollaries of Theorem 4.1, replacing Nε(Xε) with various (loose) upper bounds.9

Corollary 4.3. In the setting of Theorem 4.1, the regret of AgnosticZooming can be upper-
bounded as follows:

(a) R(T |Xcand) ≤ δT +
∑

ε=2−j≥δ: j∈N Õ(|Xε| /ε), for each δ ∈ (0, 1).

(b) R(T |Xcand) ≤ Õ(
√
T |Xcand|).

Here the Õ() notation hides the logarithmic dependence on T and δ.

The best known regret bounds for NonAdaptive coincide with those in Corollary 4.3 up
to poly-logarithmic factors. However, the regret bounds in Theorem 4.1 may be significantly
better than the ones in Corollary 4.3. We further discuss this in the next section, in the
context of a specific example.

8. To simplify the proofs of the lower bounds, we assume that the candidate contracts are randomly
permuted when given to the MAB algorithm.

9. We use the facts that Xε ⊂ Xcand, Nε(Y) ≤ N0(Y), and N min
0 (Y) ≤ |Y | for all subsets Y ⊂ X.

332

Adaptive Contract Design for Crowdsourcing Markets

4.3.2 Bandits in Metric Spaces

Consider a variant of dynamic contract design in which an algorithm is given a priori
information on similarity between contracts: a function D : Xcand×Xcand → [0, 1] such that
|U(x)− U(y)| ≤ D(x, y) for any two candidate contracts x, y. If an algorithm is given this
function D (call such algorithm D-aware), the machinery from “bandits in metric spaces”
(Kleinberg et al., 2008; Bubeck et al., 2011a) can be used to perform adaptive discretization
and obtain a significant advantage over NonAdaptive. We argue that we obtain similar
results with AgnosticZooming without knowing the D.

In practice, the similarity information D would be coarse, probably aggregated according
to some predefined hierarchy. To formalize this idea, the hierarchy can be represented as
a collection F of subsets of Xcand, so that D(x, y) is a function of the smallest subset in
F containing both x and y. The hierarchy F should be natural given the structure of
the contract space. One such natural hierarchy is the collection of all feasible cells, which
corresponds to splitting the cells in half in each dimension. Formally, D(x, y) = f(Cx,y) for
some f with f(Cx,y) ≥ width(Cx,y), where Cx,y is the smallest feasible cell containing both
x and y.

Given this shape of D, let us state the regret bounds for D-aware algorithms in the work
of Kleinberg et al. (2008) and Bubeck et al. (2011a). To simplify the notation, we assume
that the action space is restricted to Xcand. The regret bounds have a similar “shape” as
that in Theorem 4.1:

R(T |Xcand) ≤ δT +O(log T)
∑

ε=2−j≥δ: j∈N

N∗Ω(ε)(Xε)

ε
, (10)

where the numbers N∗ε (·) have a similar high-level meaning as Nε(·), and nearly coincide
with Nmin

ε (·) when D(x, y) = VirtWidth(Cx,y). One can use Equation (10) to derive a
polynomial regret bound like Equation (9).

For a more precise comparison, we focus on the results in the work of Kleinberg et al.
(2008). (The regret bounds in Bubeck et al., 2011a are very similar in spirit, but are stated
in terms of a slightly different structure.) The “covering-type” regret bound in the work of
Kleinberg et al. (2008) focuses on balls of radius at most ε according to distance D, so that
N∗ε (Y) is the smallest number of such balls that is sufficient to cover Y . In the special case
D(x, y) = VirtWidth(Cx,y) balls of radius ≤ ε are precisely feasible cells of virtual width
≤ ε. This is very similar (albeit not technically the same) as the ε-minimal cells in the
definition of Nmin

ε (·).
Further, the covering numbers N∗ε (Y) determine the “zooming dimension”:

ZoomDimα = inf
{
d ≥ 0 : N∗ε/8(Xε) ≤ α ε−d for all ε > 0

}
, α > 0. (11)

This definition coincides with the covering dimension in the worst case, and can be much
smaller for “nice” problem instances in which Xε is a significantly small subset of Xcand.
With this definition, one obtains a polynomial regret bound which is a version of Equa-
tion (9) with d = ZoomDimα.

We conclude that AgnosticZooming essentially matches the regret bounds for D-aware
algorithms, despite the fact that D-aware algorithms have access to much more information.

333

Ho, Slivkins, & Vaughan

5. A Special Case: The “High-Low Example”

We apply the machinery in Section 4 on a special case, and we show that AgnosticZooming
significantly outperforms NonAdaptive.

The most basic special case is when there is just one non-null outcome. Essentially, each
worker makes a strategic choice whether to accept or reject a given task (where “reject”
corresponds to the null effort level), and this choice is fully observable. This setting has been
studied before (Kleinberg & Leighton, 2003; Badanidiyuru et al., 2012; Singla & Krause,
2013; Badanidiyuru et al., 2013); we will call it dynamic task pricing. Here the contract
is completely specified by the price p for the non-null outcome. The supply distribution is
summarized by the function S(p) = Pr[accept|p], so that the corresponding expected utility
is U(p) = S(p)(v − p), where v is the value for the non-null outcome. This special case
is already quite rich, because S(·) can be an arbitrary non-decreasing function. By using
adaptive discretization, we achieve significant improvement over prior work; see Section 8
for further discussion.

We consider a somewhat richer setting in which workers’ strategic decisions are not
observable; this is a salient feature of our setting, called moral hazard in the contract
theory literature. There are two non-null outcomes (low and high), and two non-null effort
levels (low and high). Low outcome brings zero value to the requester, while high outcome
brings value v > 0. Low effort level inflicts zero cost on a worker and leads to low outcome
with probability 1. We assume that workers break ties between effort levels in a consistent
way: high better than low better than null. (Hence, as low effort incurs zero cost, the
only possible outcomes are low and high.) We will call this the high-low example; it is
perhaps the simplest example that features moral hazard.

In this example, the worker’s type consists of a pair (ch, θh), where ch ≥ 0 is the cost for
high effort and θh ∈ [0, 1] is the probability of high outcome given high effort. Note that
dynamic task pricing is equivalent to the special case θh = 1.

The following claim states a crucial property of the high-low example.

Claim 5.1. Consider the high-low example with a fixed supply distribution. Then the proba-
bility of obtaining high outcome given contract x Pr[high outcome | contract x] depends only
on p = x(high)−x(low); denote this probability by S(p). Moreover, S(p) is non-decreasing
in p. Therefore:
• expected utility is U(x) = S(p)(v − p)− x(low).
• discretization error OPT(X)− OPT(Xcand(ψ)) is at most 3ψ, for any ψ > 0.

To bound the discretization error, it is essential that S(p) is non-decreasing in p.
Recall that Xcand(ψ), the uniform mesh with granularity ψ > 0, consists of all bounded,

monotone contracts with payments in ψN.
For our purposes, the supply distribution is summarized via the function S(·). Denote

Ũ(p) = S(p)(v − p). Note that U(x) is maximized by setting x(low) = 0, in which case
U(x) = Ũ(p). Thus, if an algorithm knows that it is given a high-low example, it can set
x(low) = 0, thereby reducing the dimensionality of the search space. Then the problem
essentially reduces to dynamic task pricing with the same S(·).

However, in general an algorithm does not know whether it is presented with the high-
low example (because the effort levels are not observable). So in what follows we will
consider algorithms that do not restrict themselves to x(low) = 0.

334

Adaptive Contract Design for Crowdsourcing Markets

5.1 “Nice” Supply Distribution

We focus on a supply distribution D that is “nice”, in the sense that S(·) satisfies the
following two properties:
• S(p) is Lipschitz-continuous: |S(p)− S(p′)| ≤ L|p− p′| for some constant L.
• Ũ(p) is strongly concave, in the sense that Ũ ′′(·) exists and satisfies Ũ ′′(·) ≤ C < 0.

Here L and C are absolute constants. We call such D strongly Lipschitz-concave.
The above properties are fairly natural. For example, they are satisfied if θh is the same

for all worker types and the marginal distribution of ch is piecewise uniform such that the
density is between 1

λ and λ, for some absolute constant λ ≥ 1.
We show that for any choice Xcand ⊂ X, AgnosticZooming has a small width dimension

in this setting, and therefore small regret.

Lemma 5.2. Consider the high-low example with a strongly Lipschitz-concave supply dis-
tribution. Then the width dimension is at most 1

2 , for any given Xcand ⊂ X. Therefore,

AgnosticZooming with this Xcand has regret R(T |Xcand) = O(log T)T 3/5.

We contrast this with the performance of NonAdaptive, parameterized with the natural
choice Xcand = Xcand(ψ). We focus on R(T |X): regret w.r.t. the best contract in X. We
show that AgnosticZooming achieves R(T |X) = Õ(T 3/5) for a wide range of Xcand, whereas
NonAdaptive cannot do better than R(T |X) = O(T 3/4) for any Xcand = Xcand(ψ), ψ > 0.

Lemma 5.3. Consider the setting of Lemma 5.2. Then:
(a) AgnosticZooming with Xcand ⊃ Xcand(T

−2/5) has regret R(T |X) = O(T 3/5 log T).
(b) NonAdaptive with Xcand = Xcand(ψ) cannot achieve regret R(T |X) < o(T 3/4) over
all problem instances, for any ψ > 0. 10

5.2 Proofs

Proof of Claim 5.1. Consider a contract x with x(low) = b and x(high) = b + p, and a
worker of type (ch, θh). If the worker exerts high effort, she pays cost ch and receives
expected payment θh(p + b) + (1 − θh)b, for a total expected payoff pθh + b − ch. Her
expected payoff for exerting low effort is b. Therefore she will choose to exert high effort
if and only if pθh + b − ch ≥ b, i.e., if ch/θh ≤ p, and choose to exert low effort otherwise.
Therefore

Pr[high outcome | contract x] = E
(ch,θh)

[
θh 1{ch/θh≤p}

]
.

This is a function of p, call it S(p). Moreover, this is a non-decreasing function simply
because the expression inside the expectation is non-decreasing in p.

It trivially follows that U(x) = S(p)(v − p)− x(low).
We can upper-bound the discretization error using a standard approach from the work

on dynamic pricing (Kleinberg & Leighton, 2003). Fix discretization granularity ψ > 0. For
any ε > 0, there exists a contract x∗ ∈ X such that OPT(X)− U(x∗) < ε. Round x∗(high)

10. This lower bound holds even if UCB1 in NonAdaptive is replaced with any other MAB algorithm.

335

Ho, Slivkins, & Vaughan

and x∗(low) up and down, respectively, to the nearest integer multiple of ψ; let x ∈ Xcand(ψ)
be the resulting contract. Denoting p = x(high)−x(low) and p∗ = x∗(high)−x∗(low), we
see that p∗ ≤ p ≤ p∗ + 2ψ. It follows that

U(x) ≥ U(x∗)− 3ψ ≥ OPT(X)− ε− 3ψ.

Since this holds for any ε > 0, we conclude that OPT(X)− OPT(Xcand(ψ)) ≤ 3ψ.

Proof of Lemma 5.2. To calculate the width dimension, we need to count the number of
feasible cells in the increment space which (i) have virtual width larger than or equal to
O(ε) and (ii) overlap with Xε, the set of contracts with badness smaller than ε.

We first characterize Xε. We use xp,b to denote the contract with x(high) = p+ b and
x(low) = b. The benefit of this representation is that, p and b would then be the two axes
in the increment space. Let xp∗,0 be an optimal contract. Since U(xp,b) is strongly concave
in p, we know that for any b, there exist constants c1 and c2 such that for any p ∈ [0, 1],
c1(p∗ − p)2 ≤ U(xp∗,b)− U(xp,b) ≤ c2(p∗ − p)2. Also we know that U(xp∗,b) = U(xp∗,0)− b.
Therefore.

Xε = {xp,b : (p− p∗)2 + b ≤ O(ε)}

We can also write it as

Xε = {xp,b : p∗ − θh(
√
ε) ≤ p ≤ p∗ + θh(

√
ε) and b ≤ O(ε)}

Intuitively, Xε contains contracts {xp,b} with p not O(
√
ε) away from p∗ and b not O(ε)

away from b∗ = 0.
Next we characterize the virtual width of a cell. We use Cp,b,d to denote the cell with

size d and with anchors {xp,b, x(p+d),(b+d)}. We can derive the expected payment and value
on the two anchors as:
• P+(Cp,b,d) = (p+ d)S(p+ d) + b+ d
• V +(Cp,b,d) = vS(p+ d)
• P−(Cp,b,d) = pS(p) + b
• V −(Cp,b,d) = vS(p)

By definition, we can get that (we use dF to represent S(p+ d)− S(p) for simplification)

VirtWidth(Cp,b,d) = (v + p)dF + dS(p) + d dF + d.

Now we can count the number of feasible cells with virtual width larger than θh(ε) which
overlaps with Xε. Note that since the total number of feasible cells Cp,b,d with large d is
small, we can treat the number of cells with large d as a constant. Also, for any relevant
cell Cp,b,d, we have p ≈ p∗. Therefore, we only care about feasible cells Cp,b,d with small d
and when p is close to p∗.

Since S(p) is Lipschitz, we have dF = O(d). Therefore, for any relevant cell Cp,d,

VirtWidth(Cp,b,d) = O(d)

Given the above two arguments, we know that the number of cells with virtual width
larger than ε which also overlaps with Xε is O(ε/ε) × O(

√
ε/ε) = O(ε−1/2). Therefore the

width dimension is 1/2.

336

Adaptive Contract Design for Crowdsourcing Markets

Proof Sketch of Lemma 5.3(b). Consider a version of NonAdaptive that runs an off-the-
shelf MAB algorithm ALG on candidate contracts Xcand = Xcand(ψ). For ALG, the “arms”
are the candidate contracts; recall that the arms are randomly permuted before they are
given to ALG.

Fix ψ > 0. It is easy to construct a problem instance with discretization error Error ,
OPT(X) − OPT(Xcand(ψ)) ≥ Ω(ψ). Note that Xcand contains N = Ω(ψ−2) suboptimal con-
tracts that are suboptimal w.r.t. OPT(Xcand). (For example, all contracts x with x(low) > 0
are suboptimal.)

Fix any problem instance I of MAB with N suboptimal arms. Using standard lower-
bound arguments for MAB, one can show that if one runs ALG on a problem instance
obtained by randomly permuting the arms in I, then the expected regret in T rounds is at
least Ω(

√
NT).

Therefore, R(T |Xcand) ≥ Ω(
√
NT). It follows that

R(T |X) ≥ Ω(
√
NT) + Error · T ≥ Ω(

√
T/ψ + ψT) ≥ Ω(T 3/4).

6. Proof of the Main Regret Bound (Theorem 4.1)

We now prove the main result from Section 4. Our high-level approach is to define a
clean execution of an algorithm as an execution in which some high-probability events are
satisfied, and derive bounds on regret conditional on the clean execution. The analysis of
a clean execution does not involve any “probabilistic” arguments. This approach tends to
simplify regret analysis.

We start by listing some simple invariants enforced by AgnosticZooming:

Invariant 6.1. In each round t of each execution of AgnosticZooming:

(a) All active cells are relevant,
(b) Each candidate contract is contained in some active cell,
(c) Wt(C) ≤ 5 radt(C) for each active composite cell C.

Note that the zooming rule is essential to ensure Invariant 6.1(c).

Throughout, we say that the algorithm activates a cell if this cell is added to the
collection of active cells. A cell stays active once it is activated.

6.1 Analysis of the Randomness

Definition 6.2 (Clean Execution). An execution of AgnosticZooming is called clean if for
each round t and each active cell C it holds that

|U(C)− Ut(C)| ≤ radt(C), (12)

|VirtWidth(C)−Wt(C)| ≤ 4 radt(C) (if C is composite). (13)

Lemma 6.3. Assume crad ≥ 16 and T ≥ max(1 + 2m, 18). Then:

(a) Pr [Equation (12) holds ∀ rounds t, active cells C] ≥ 1− 2T−2.
(b) Pr [Equation (13) holds ∀ rounds t, active composite cells C] ≥ 1− 16T−2.

Consequently, an execution of AgnosticZooming is clean with probability at least 1− 1/T .

337

Ho, Slivkins, & Vaughan

Lemma 6.3 follows from the standard concentration inequality known as “Chernoff
Bounds”. However, one needs to be careful about conditioning and other details.

Proof of Lemma 6.3(a). Consider an execution of AgnosticZooming. Let N be the total
number of activated cells. Since at most 2m cells can be activated in any one round,
N ≤ 1+2mT ≤ T 2. Let Cj be the min(j,N)-th cell activated by the algorithm. (If multiple
“quadrants” are activated in the same round, order them according to some fixed ordering
on the quadrants.)

Fix some feasible cell C and j ≤ T 2. We claim that

Pr [|U(C)− Ut(C)| ≤ radt(C) for all rounds t | Cj = C] ≥ 1− 2T−4. (14)

Let n(C) = n1+T (C) be the total number of times cell C is chosen by the algorithm.
For each s ∈ N: 1 ≤ s ≤ n(C) let Us be the requester’s utility in the round when C is
chosen for the s-th time. Further, let DC be the distribution of U1, conditional on the
event n(S) ≥ 1. (That is, the per-round reward from choosing cell C.) Let U ′1 , . . . , U

′
T be

a family of mutually independent random variables, each with distribution DC . Then for
each n ≤ T , conditional on the event {Cj = C} ∧ {n(C) = n}, the tuple (U1 , . . . , Un) has
the same joint distribution as the tuple (U ′1 , . . . , U

′
n). Consequently, applying Chernoff

Bounds to the latter tuple, it follows that

Pr
[∣∣U(C)− 1

n

∑n
s=1 Us

∣∣ ≤√ 1
n crad log(T)

∣∣∣ {Cj = C} ∧ {n(C) = n}
]

≥ 1− 2T−2crad ≥ 1− 2T−5.

Taking the Union Bound over all n ≤ T , and plugging in radt(Cj), nt(Cj), and Ut(Cj), we
obtain Equation (14).

Now, let us keep j fixed in Equation (14), and integrate over C. More precisely, let us
multiply both sides of Equation (14) by Pr[Cj = C] and sum over all feasible cells C. We
obtain, for all j ≤ T 2:

Pr [|U(Cj)− Ut(Cj)| ≤ radt(Cj) for all rounds t] ≥ 1− 2T−4. (15)

(Note that to obtain Equation (15), we do not need to take the Union Bound over all
feasible cells C.) To conclude, we take the Union Bound over all j ≤ 1 + T 2.

Proof Sketch of Lemma 6.3(b). We show that

Pr
[∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C) ∀ rounds t, active composite cells C

]
≥ 1− 4

T 2 , (16)

and similarly for V −(), P+() and P−(). Each of these four statements is proved similarly,
using the technique from Lemma 6.3(a). In what follows, we sketch the proof for one of the
four cases, namely for Equation (16).

For a given composite cell C, we are only interested in rounds in which anchor x+(C)
is selected by the algorithm. Letting n+

t (C) be the number of times this anchor is chosen
up to time t, let us define the corresponding notion of “confidence radius”:

rad+
t (C) =

1

2

√
crad log T

n+
t (C)

.

338

Adaptive Contract Design for Crowdsourcing Markets

With the technique from the proof of Lemma 6.3(a), we can establish the following
high-probability event: ∣∣V +(C)− V +

t (C)
∣∣ ≤ rad+

t (C). (17)

More precisely, we can prove that

Pr [Equation (17) holds ∀ rounds t, active composite cells C] ≥ 1− 2T−2.

Further, we need to prove that w.h.p. the anchor x+(C) is played sufficiently often.
Noting that E[n+

t (C)] = 1
2 nt(C), we establish an auxiliary high-probability event:11

n+
t (C) ≥ 1

2 nt(C)− 1
4 radt(C). (18)

More precisely, we can use Chernoff Bounds to show that, if crad ≥ 16,

Pr [Equation (18) holds ∀ rounds t, active composite cells C] ≥ 1− 2T−2. (19)

Now, letting n0 = (crad log T)1/3, observe that

nt(C) ≥ n0 ⇒ n+
t (C) ≥ 1

4 nt(C) ⇒ rad+
t (C) ≤ radt(C),

nt(C) < n0 ⇒ radt(C) ≥ 1 ⇒
∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C).

Therefore, once Equations (17) and (18) hold, we have
∣∣V +(C)− V +

t (C)
∣∣ ≤ radt(C). This

completes the proof of Equation (16).

6.2 Analysis of a Clean Execution

The rest of the analysis focuses on a clean execution. Recall that Ct is the cell chosen by
the algorithm in round t.

Claim 6.4. In any clean execution, I(Ct) ≥ OPT(Xcand) for each round t.

Proof. Fix round t, and let x∗ be any candidate contract. By Invariant 6.1(b), there exists
an active cell, call it C∗t , which contains x∗.

We claim that It(C
∗
t) ≥ U(x∗). We consider two cases, depending on whether C∗t is

atomic. If C∗t is atomic then the anchor is unique, so U(C∗t) = U(x∗), and It(C
∗
t) ≥ U(x∗)

by the clean execution. If C∗t is composite then

It(C
∗
t) ≥ U(C∗t) + VirtWidth(C∗t) by clean execution

≥ U(C∗t) + width(C∗t) by Lemma 3.1

≥ U(x∗) by definition of width, since x∗ ∈ C∗t .

We have proved that It(C
∗
t) ≥ U(x∗). Now, by the selection rule we have It(Ct) ≥ It(C∗t) ≥

U(x∗). Since this holds for any candidate contract x∗, the claim follows.

11. The constant 1
4

in Equation (18) is there to enable a consistent choice of n0 in the remainder of the
proof.

339

Ho, Slivkins, & Vaughan

Claim 6.5. In any clean execution, for each round t, the index It(Ct) is upper-bounded as
follows:

(a) if Ct is atomic then I(Ct) ≤ U(Ct) + 2 radt(Ct).
(b) if Ct is composite then I(Ct) ≤ U(x) +O(radt(Ct)) for each contract x ∈ Ct.

Proof. Fix round t. Part (a) follows because It(Ct) = Ut(Ct) +radt(Ct) by definition of the
index, and Ut(Ct) ≤ U(Ct) + radt(Ct) by clean execution.

For part (b), fix a contract x ∈ Ct. Then:

Ut(Ct) ≤ U(Ct) + radt(Ct) by clean execution

≤ U(x) + width(Ct) + radt(Ct) by definition of width

≤ U(x) + VirtWidth(Ct) + radt(Ct) by Lemma 3.1

≤ U(x) +Wt(Ct) + 5 radt(Ct) by clean execution. (20)

It(Ct) = Ut(Ct) +Wt(Ct) + 5 radt(Ct) by definition of index

≤ U(x) + 2Wt(Ct) + 10 radt(Ct) by Equation (20)

≤ U(x) + 20 radt(Ct) by Invariant 6.1(c).

For each relevant cell C, define badness ∆(C) as follows. If C is composite, ∆(C) =
supx∈C ∆(x) is the maximal badness among all contracts in C. If C is atomic and x ∈ C
is the unique candidate contract in C, then ∆(C) = ∆(x).

Claim 6.6. In any clean execution, ∆(C) ≤ O(radt(C)) for each round t and each active
cell C.

Proof. By Claims 6.4 and 6.5, ∆(Ct) ≤ O(radt(Ct)) for each round t. Fix round t and
let C be an active cell in this round. If C has never be selected before round t, the claim
is trivially true. Else, let s be the most recent round before t when C is selected by the
algorithm. Then ∆(C) ≤ O(rads(C)). The claim follows since rads(C) = radt(C).

Claim 6.7. In a clean execution, each cell C is selected ≤ O(log T/(∆(C))2) times.

Proof. By Claim 6.6, ∆(C) ≤ O(radT (C)). The claim follows from the definition of radT
in Equation (3).

Let n(x) and n(C) be the number of times contract x and cell C, respectively, are chosen
by the algorithm. Then regret of the algorithm is

R(T |Xcand) =
∑

x∈X n(x) ∆(x) ≤
∑

cells C n(C) ∆(C). (21)

The next result (Lemma 6.8) upper-bounds the right-hand side of Equation (21) for a clean
execution. By Lemma 6.3, this suffices to complete the proof of Theorem 4.1

Lemma 6.8. Consider a clean execution of AgnosticZooming. For any δ ∈ (0, 1),∑
cells C n(C) ∆(C) ≤ δT +O(log T)

∑
ε=2−j≥δ: j∈N

|Fε(X2ε)|
ε .

340

Adaptive Contract Design for Crowdsourcing Markets

The proof of Lemma 6.8 relies on some simple properties of ∆(·), stated below.

Claim 6.9. Consider two relevant cells C ⊂ Cp. Then:
(a) ∆(C) ≤ ∆(Cp).
(b) If ∆(C) ≤ ε for some ε > 0, then C overlaps with Xε.

Proof. To prove part (a), one needs to consider two cases, depending on whether cell Cp is
composite. If it is, the claim follows trivially. If Cp is atomic, then C is atomic, too, and so
∆(C) = ∆(Cp) = ∆(x), where x is the unique candidate contract in Cp.

For part (b), there exists a candidate contract x ∈ C. It is easy to see that ∆(x) ≤ ∆(C)
(again, consider two cases, depending on whether C is composite.) So, x ∈ Xε.

Proof of Lemma 6.8. Let Σ denote the sum in question. Let A∗ be the collection of all
cells ever activated by the algorithm. Among such cells, consider those with badness on the
order of ε:

Gε := { C ∈ A∗ : ∆(C) ∈ [ε, 2ε) } .
By Claim 6.7, the algorithm chooses each cell C ∈ Gε at most O(log T/ε2) times, so
n(C) ∆(C) ≤ O(log T/ε).

Fix some δ ∈ (0, 1) and observe that all cells C with ∆(C) ≤ δ contribute at most δT
to Σ. Therefore it suffices to focus on Gε, ε ≥ δ/2. It follows that

Σ ≤ δT +O(log T)
∑

ε=2−i≥δ/2
|Gε|
ε . (22)

We bound |Gε| as follows. Consider a cell C ∈ Gε. The cell is called a leaf if it is never
zoomed in on (i.e., removed from the active set) by the algorithm. If C is activated in the
round when cell Cp is zoomed in on, Cp is called the parent of C. We consider two cases,
depending on whether or not C is a leaf.

(i) Assume cell C is not a leaf. Since ∆(C) < 2ε, C overlaps with X2ε by Claim 6.9(b).
Note that C is zoomed in on in some round, say in round t− 1. Then

5 radt(C) ≤Wt(C) by the zooming rule

≤ VirtWidth(C) + 4 radt(C) by clean execution,

so radt(C) ≤ VirtWidth(C). Therefore, using Claim 6.6, we have

ε ≤ ∆(C) ≤ O(radt(C)) ≤ O(VirtWidth(C)).

It follows that C ∈ FΩ(ε)(X2ε).

(ii) Assume cell C is a leaf. Let Cp be the parent of C. Since C ⊂ Cp, we have ∆(C) ≤
∆(Cp) by Claim 6.9(a). Therefore, invoking case (i), we have

ε ≤ ∆(C) ≤ ∆(Cp) ≤ O(VirtWidth(Cp)).

Since ∆(C) < 2ε, C overlaps with X2ε by Claim 6.9(b), and therefore so does Cp. It
follows that Cp ∈ FΩ(ε)(X2ε).

Combing these two cases, it follows that |Gε| ≤ (2m + 1)
∣∣FΩ(ε)(X2ε)

∣∣. Plugging this into
(22) and making an appropriate substitution ε→ Θ(ε) to simplify the resulting expression,
we obtain the regret bound in Theorem 4.1

341

Ho, Slivkins, & Vaughan

7. Simulations

We evaluate the performance of AgnosticZooming through simulations. AgnosticZooming
is compared with two versions of NonAdaptive that use, respectively, two standard bandit
algorithms: UCB1 (Auer et al., 2002) and Thompson Sampling (Thompson, 1933) with
Gaussian priors. In both algorithms, in each round a numerical score (called index) is
computed for each arm, and an arm with a maximal index is chosen. In UCB1, the index of
an arm is a high-confidence upper bound on the expected reward of this arm. In Thompson
Sampling, the index is sampled independently from the Bayesian posterior distribution of
the arm’s expected reward.

7.1 Setup

We consider a generalized version of the high-low example from Section 5 in which the
requester’s value of the low outcome could be nonzero. In the results reported below, we
set the requester’s values to V (high) = 1 and V (low) = .3, and the probability of obtaining
high outcome given high effort to θh = .8. While we do not explicitly report the results, we
additionally tried a wide range of alternative values of V (high), V (low), and θh and found
that they were similar qualitatively. Intuitively, varying the requester’s values and θh only
changes which contracts the algorithms converge to (that is, the optimal arms), but does
not impact the problem structure; the width dimension is the same for all settings.

In this generalized high-low example, the worker’s type is characterized by the cost ch
for high effort. We consider three supply distributions:

• Uniform: ch is uniformly distributed on [0, 1].

• Homogeneous: ch is the same for every worker.

• Two-type: ch is uniformly distributed over two values, c′h and c′′h.

These first two distributions represent the extreme cases in which workers are either
extremely homogeneous or extremely diverse. The third distribution is one way to get
at the middle ground. For each distribution, we run each algorithm 100 times.12 For the
Homogeneous Supply Distribution, ch is drawn uniformly at random from [0, 1] for each run.
For the Two-Type Supply Distribution, c′h and c′′h are drawn independently and uniformly
from [0, 1] on each run.

For both UCB1 and AgnosticZooming, we replace the logarithmic confidence terms with
small constants. We find this beneficial in practice for both algorithms, which is consistent
with prior work (Radlinski, Kleinberg, & Joachims, 2008; Slivkins, Radlinski, & Gollapudi,
2013). For both algorithms, we tried several different constants and found that performance
is not very sensitive to the particular constant used as long as it is on the order of 1. In the
results reported below, we set these confidence terms equal to 1. For UCB1, this means that
if a given arm a has been played na times, its index is the average reward plus 1/

√
na. For

AgnosticZooming, it means that radt(·) =
√

1/nt(·).
All three algorithms are run with Xcand = Xcand(ψ), where ψ > 0 is a parameter

specifying the granularity of discretization.

12. The standard errors in all plots are in the order of 0.001 or less. (Note that each point is not only the
average of 100 runs but also the average of all previous rounds.)

342

Adaptive Contract Design for Crowdsourcing Markets

7.2 Overview of the Results.

Across all simulations, AgnosticZooming either outperforms or nearly matches NonAdaptive.
Its performance does not appear to suffer from the large “hidden constants” that appear in
the analysis. We find that AgnosticZooming converges faster than NonAdaptive when ψ
is near-optimal or smaller. This is consistent with the intuition that AgnosticZooming

focuses on exploring the more promising regions of contract space. When ψ is large,
AgnosticZooming converges more slowly than NonAdaptive, but eventually achieves similar
performance. Further, we find that AgnosticZooming with small ψ performs well compared
to NonAdaptive with larger ψ. In particular, it is not much worse initially, and much better
eventually.

Our simulations suggest that if time horizon T is known in advance and one can tune
ψ to T , then NonAdaptive can achieve near-optimal performance. However, in real applica-
tions approximately optimal ψ may be difficult to compute, and the T may not be known in
advance. AgnosticZooming performs consistently well with a wide range of ψ and therefore
does not require prior knowledge of T or careful tuning of ψ.

7.3 Detailed Results

For each algorithm, we compute the time-averaged cumulative utility after T rounds given
granularity ψ, denoted Û(T, ψ), for various values of T and ψ.

First, we fix the time horizon T to 5,000 rounds, and study how Û(T, ψ) changes with
ψ. The results are shown in Figure 1. We observe that AgnosticZooming either closely
matches or outperforms both versions of NonAdaptive across all supply distributions and
all values of ψ. AgnosticZooming performs consistently well with different ψ while the
performance of both versions of NonAdaptive decreases rapidly when ψ is small.

Second, we study how the three algorithms perform over time. Specifically, we plot
T vs. Û(T, ψ), for three values of ψ, namely 0.02, 0.08, and 0.2. Since setting ψ =
0.08 is close to optimal in our examples, these values of ψ represent, respectively, val-
ues that are too small, adequate, and too large. The results are shown in Figure 2. For
small values of ψ, AgnosticZooming quickly “zooms in” on promising regions of the con-
tract space, leading to faster converge than the alternatives. However, when ψ is large,
AgnosticZooming converges more slowly, but eventually achieves similar performance. In
this regime, AgnosticZooming does not reap the benefits of adaptive discretization because
the mesh of candidate contracts is too sparse, but still suffers the overhead. This suggests
that if the time horizon T is known in advance and one can optimize ψ given this T , then
NonAdaptive can achieve near-optimal performance. AgnosticZooming performs consis-
tently with different choices of ψ and therefore does not require either the prior knowledge
of T or the careful tuning of ψ.

To further demonstrate the benefit of not having to know T or tune ψ, we compare the
performance of AgnosticZooming with small ψ against that of NonAdaptive with different
values of ψ. For each algorithm and each choice of ψ, we plot T vs. Û(T, ψ). See Figure 3.
We only show the results for the Uniform Supply Distribution since the results for other dis-
tributions are very similar. Additionally, we omit the results for Thompson Sampling since
UCB1 performed better in these experiments.13 We find that for small T , AgnosticZooming

13. We conjecture that this is because we replaced the logarithmic confidence term in UCB1 with 1.

343

Ho, Slivkins, & Vaughan

0.00 0.05 0.10 0.15 0.20
ψ

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4
A
v
e
ra

g
e
 U

ti
lit

y

AgnosticZooming

UCB1

ThompsonSampling

(a) Uniform Supply Distribution

0.00 0.05 0.10 0.15 0.20
ψ

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 U

ti
lit

y

AgnosticZooming

UCB1

ThompsonSampling

(b) Homogeneous Supply Distribution

0.00 0.05 0.10 0.15 0.20
ψ

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 U

ti
lit

y

AgnosticZooming

UCB1

ThompsonSampling

(c) Two-Type Supply Distribution

Figure 1: The requester’s average per-round utility after 5,000 rounds vs. the choice of
initial discretization ψ.

with small ψ converges nearly as fast as NonAdaptive with larger ψ. When T is large,
AgnosticZooming with small ψ matches NonAdaptive with the optimal ψ.

Finally, in Figure 4, we confirm the intuition that OPT(Xcand(ψ)) decreases with the
granularity ψ. To this end, we run AgnosticZooming for 50,000 rounds (so the algorithm
has time to nearly converge to the optimal contract), and examine the average utility over
the last 5,000 rounds. As expected, we see that the average requester utility achievable
when ψ is small is significantly higher than the utility achievable when ψ is larger.

Our simulation results suggest that AgnosticZooming performs well across different
supply distributions and different settings of ψ, not requiring careful tuning of the algorithm
parameters. Given that the smaller the value of ψ, the better the payoff of the optimal
contract OPT(Xcand(ψ)), AgnosticZooming with small ψ is a good algorithm for a variety
of settings.

344

Adaptive Contract Design for Crowdsourcing Markets

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4 Uniform: ψ=0.02 Uniform: ψ=0.08 Uniform: ψ=0.20

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4 Two-Type: ψ=0.02 Two-Type: ψ=0.08 Two-Type: ψ=0.20

0 1000 2000 3000 4000 5000

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4 Homogeneous: ψ=0.02

0 1000 2000 3000 4000 5000

Homogeneous: ψ=0.08

0 1000 2000 3000 4000 5000

Homogeneous: ψ=0.20

Time

A
v
e
ra

g
e
 U

ti
lit

y

AgnosticZooming UCB1 ThompsonSampling

Figure 2: The requester’s average per-round utility over time under different supply distri-
butions and discretization sizes.

8. Application to Dynamic Task Pricing

We discuss dynamic task pricing, which can be seen as the special case of dynamic contract
design in which there is exactly one non-null outcome. We identify an important family of
problem instances for which AgnosticZooming out-performs NonAdaptive.

8.1 Background

The dynamic task pricing problem, in its most basic version, is defined as follows. There
is one principal (buyer) who sequentially interacts with multiple agents (sellers). In each
round t, an agent arrives, with one item for sale. The principal offers price pt for this item,
and the agent agrees to sell if and only if pt ≥ ct, where ct ∈ [0, 1] is the agent’s private
cost for this item. The principal derives value v for each item bought; his utility is the
value from bought items minus the payment. The time horizon T (the number of rounds)
is known. Each private cost ct is an independent sample from some fixed distribution,
called the supply distribution. We are interested in the prior-independent version, where
the supply distribution is not known to the principal. The algorithm’s goal is to choose the
offered prices pt so as to maximize the expected utility of the principal.

345

Ho, Slivkins, & Vaughan

0 1000 2000 3000 4000 5000
Time

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

A
v
e
ra

g
e
 U

ti
lit

y

Uniform

AgnosticZooming: ψ=.02

UCB1: ψ=.02

UCB1: ψ=.08

UCB1: ψ=.20

Figure 3: The requester’s average per-round utility over time using AgnosticZooming with
small ψ compared with NonAdaptive with three different values of ψ.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ψ

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

A
v
e
ra

g
e
 U

ti
lit

y
 o

f
La

st
 5

k
ro

u
n
d
s

Uniform

AgnosticZooming

Figure 4: Average requester utility over the last 5,000 rounds in a 50,000-round run of
AgnosticZooming for different values of ψ.

Dynamic task pricing can be seen as the special case of dynamic contract design in
which there is exactly one non-null outcome (which corresponds to a sale). Indeed, in this
special case there is exactly one non-null effort level e without loss of generality (because
any non-null effort levels deterministically lead to the non-null outcome).

346

Adaptive Contract Design for Crowdsourcing Markets

One crucial simplification compared to the full generality of dynamic contract design is
that the discretization error can now be easily bounded from above: 14

OPT(X)− OPT(Xcand(ψ)) ≤ ψ for each ψ > 0.

Worst-case regret bounds are implicit in prior work on dynamic inventory-pricing (Klein-
berg & Leighton, 2003).15 Let NonAdaptive(ψ) denote algorithm NonAdaptive withXcand =
Xcand(ψ). Then, by the analysis in the work of Kleinberg and Leighton (2003), NonAdaptive(ψ)
achieves regret R(T) = Õ(ψT + ψ−2). This is optimized to R(T) = Õ(T 2/3) if and only
if ψ = Õ(T−1/3). Moreover, there is a matching lower bound: R(T) = Ω(T 2/3) for any
algorithm.

Further, it is a folklore result that NonAdaptive(ψ) achieves regret R(T) = Õ(T 2/3) if
and only if ψ = Θ̃(T−1/3). (We sketch a lower-bounding example in the proof of Lemma 8.4,
to make the paper more self-contained.)

8.2 Preliminaries

Each contract is summarized by a single number: the offered price p for the non-null
outcome. Let F (p) be the probability of a worker accepting a task at price p, and let
U(p) = F (p) (v − p) be the corresponding expected utility of the algorithm.

Note that all contracts are trivially monotone and any optimal contract is bounded
without loss of generality. It follows that OPT(X) = supp≥0 U(p), the optimal expected
utility over all possible prices.

A cell C is just a price interval C = [p, p′] ⊂ [0, 1], and its virtual width is

VirtWidth(C) =
(
v F (p′)− pF (p)

)
−
(
v F (p)− p′ F (p′)

)
.

8.3 Our Results: The General Case

We will be using AgnosticZooming with Xcand = X.
First, let us prove that this is a reasonable choice in the worst case: namely, that we

achieve the optimal Õ(T 2/3) regret.

Lemma 8.1. Consider the dynamic task pricing problem. AgnosticZooming with Xcand =
X achieves regret O(T 2/3 log T).

Proof Sketch. Fix ε > 0. The key observation is that if VirtWidth(C) ≥ ε then either
p′ − p ≥ ε

4 , or F (p′) − F (p) ≥ ε
4 . Call C a red cell if the former happens, and blue cell

otherwise. Therefore in any collection of mutually disjoint cells of virtual width ≥ ε there
can be at most O(1

ε) red cells and at most O(1
ε) blue cells, hence at most O(1

ε) cells total.
It follows that there can be at most O(1

ε) active cells of virtual width ≥ ε.
So, in the notation of Theorem 4.1 we have Nε(·) ≤ O(1

ε). It follows that the width
dimension is at most 1, which in turn implies the desired regret bound.

14. Recall that Xcand(ψ) denotes the set of all prices in [0, 1] that are integer multiples of a given ψ > 0; call
this set the additive ψ-mesh.

15. The algorithmic result for dynamic task pricing is an easy modification of the analysis in the work of
Kleinberg and Leighton (2003) for dynamic inventory-pricing. The lower bound in the work of Kleinberg
and Leighton can also be “translated” from dynamic inventory-pricing to dynamic task pricing without
introducing any new ideas. We omit the details from this version.

347

Ho, Slivkins, & Vaughan

8.4 Our Results: “Nice” Problem Instances

We focus on problem instances with piecewise-uniform costs and bounded density. Formally,
we say that an instance of dynamic task pricing has k-piecewise-uniform costs if the interval
[0,1] is partitioned into k ∈ N sub-intervals such that the supply distribution is uniform
on each sub-interval. A problem instance has λ-bounded density, λ ≥ 1 if the supply
distribution has a probability density function almost everywhere, and the density is between
1
λ and λ. Using the full power of Theorem 4.1, we obtain the following regret bound.

Theorem 8.2. Consider the dynamic task pricing problem with k-piecewise-uniform costs
and λ-bounded density, for some absolute constants k ∈ N and λ > 1. AgnosticZooming

with Xcand = X achieves regret R(T) = Õ(T 3/5).

Proof Sketch. Since the supply distribution has density at most λ, it follows that F (·) is a
Lipschitz-continuous function with Lipschitz constant λ. It follows that each cell of virtual
width at least ε has diameter at least Ω(ε/λ), for any ε > 0. (Note that each “cell” is now
simply a sub-interval [p, q] ⊂ [0, 1], so its diameter is simply q − p.)

Second, we claim that Xε is contained in a union of k intervals of diameter O(
√
ελ). To

see this, consider the partition of [0, 1] into k subintervals such that the supply distribution
has a uniform density on each subinterval. Let [pj , qj] be the j-th subinterval. Let p∗j be the
local optimum of U(·) on this subinterval, and let Xj,ε = {x ∈ [pj , qj] : U(p∗j)− U(x) ≤ ε}.
Then Xε ⊂ ∪jXj,ε. We can show that Xj,ε ⊂ [p∗j − δ, p∗j + δ] for some δ = O(

√
ελ).

Recall that Nεβ0(Xε) is the number of feasible cells of virtual width at least εβ0 which
overlap with Xε. It follows that Nεβ0(Xε) is at most k times the maximal number of
feasible cells of diameter at least Ω(ε/λ) that overlap with an interval of diameter O(

√
ελ).

Therefore: Nεβ0(Xε) = O(kλ3/2ε−1/2 log 1
ε). Moreover, we have a less sophisticated upper

bound on Nεβ0(Xε): it is at most the number of feasible cell of diameter at least Ω(ε/λ).
So Nεβ0(Xε) = O(λ/ε)(log 1

ε). The theorem follows by plugging both upper bounds on
Nεβ0(Xε) into Equation (6).

8.5 Comparison with NonAdaptive

Consider NonAdaptive(ψ0), where ψ0 = Θ̃(T−1/3) is the granularity required for the optimal
worst-case performance. Call a problem instance nice if it has 2-piecewise-uniform costs
and λ-bounded density, for some sufficiently large absolute constant λ; say λ = 4 for
concreteness. We claim that AgnosticZooming outperforms NonAdaptive(ψ0) on the “nice”
problem instances.

Lemma 8.3. NonAdaptive(ψ0) achieves regret R(T) = Ω(T 2/3) in the worst case over all
“nice” problem instances.

Proof Sketch. Recall that for k = 2 the supply distribution has density λ1 on interval
[0, p0], and density λ2 on interval [p0, 1], for some numbers λ1, λ2, p0. We pick p0 so that
it is sufficiently far from any point in Xcand(ψ0). Note that the function U(·) is a parabola
on each of the two intervals. We adjust the densities so that U(·) achieves its maximum at
p0, and the maximum of either of the two parabolas is sufficiently far from p0. Then the
discretization error of Xcand(ψ0) is at least Ω(ψ0), which implies regret Ω(ψ0T).

348

Adaptive Contract Design for Crowdsourcing Markets

8.6 Lower Bound for NonAdaptive

We provide a specific lower-bounding example for the worst-case performance of NonAdaptive(ψ),
for an arbitrary ψ > 0. Let F be the family of all problem instances with k-piecewise-
uniform costs and λ-bounded density, for all k ∈ N and λ = 4.

Lemma 8.4. Let Rψ(T) be the maximal regret of NonAdaptive(ψ) over all problem in-
stances in F . Then Rψ(T) = Ω(ψT +

√
T/ψ) ≥ Ω(T 2/3).

Proof Sketch. For piecewise-uniform costs, we have F (0) = 0 and F (p) = 1. Assume that
the principal derives value v = 1 from each item. Then the expected utility from price p is
U(p) = F (p)(1− p).

Fix ψ > 0. Use the following problem instance. Let Pδ = [2
5 ,

3
5] ∩ {4jψ + δ : j ∈ N}.

Set U(p) = 1
4 for each p ∈ P0. Further, pick some p∗ ∈ Pψ/2 and set U(p∗) = 1

4 + Ω(ψ).
This defines F (p) for p ∈ P ∪ {0, 1, p∗}. For the rest of the prices, define F (·) via linear
interpolation. This completes the description of the problem instance.

We show that Xψ consists of N = Ω(1
ψ) candidate contracts. Therefore, using stan-

dard lower-bounding arguments for MAB, we obtain R(T |Xcand) ≥ Ω(
√
TN) = Ω(

√
T/ψ).

Further, we show that the discretization error is at least Ω(ψ), implying that R(T) ≥
R(T |Xcand) + Ω(ψT).

9. Related Work

This paper is related to three different areas: contract theory, market design for crowd-
sourcing, and online decision problems. Below we outline connections to each of these
areas.

9.1 Contract Theory

Our model can be viewed as an extension of the classic principal-agent model from contract
theory (Laffont & Martimort, 2002). In the most basic version of the classic model, a
single principal interacts with a single agent whose type (specified by a cost function and
production function, as described in Section 2) is generally assumed to be known. The
principal specifies a contract mapping outcomes to payments that the principal commits to
make to the agent. The agent then chooses an action (i.e., effort level) that stochastically
results in an outcome in order to maximize his expected utility given the contract. The
principal observes the outcome, but cannot directly observe the agent’s effort level, creating
a moral hazard problem. The goal of the principal is to design a contract to maximize
her own expected utility, which is the difference between the utility she receives from the
outcome and the payment she makes. This maximization can be written as a constrained
optimization problem, and it can be shown that linear contracts are optimal.

The adverse selection variation of the principal-agent problem relaxes the assumption
that the agent’s type is known. Most existing literature on the principal-agent problem with
adverse selection focuses on applying the revelation principle (Laffont & Martimort, 2002).
In this setting, the principal offers a menu of contracts, and the contract chosen by the agent
reveals the agent’s type. The problem of selecting a menu of contracts that maximizes the
principal’s expected utility can again be formulated as a constrained optimization.

349

Ho, Slivkins, & Vaughan

Our work differs from the classic setting in that we consider a principal interacting with
multiple agents, and the principal may adjust her contract over time in an online manner.
Several other authors have considered extensions of the classic model to multiple agents.
Levy and Vukina (2002) show that with multiple agents it is optimal to set individual
linear contracts for each agent rather than a single uniform contract for all agents, but offer
a variety of descriptive explanations for why it is more common to see uniform contracts
in practice. Babaioff, Feldman, and Nisan (2006) consider a setting in which one principal
interacts with multiple agents, but observes only a single outcome which is a function of
all agents’ effort levels. Misra, Nair, and Daljord (2012) consider a variant in which the
algorithm must decide both how to set a uniform contract for many agents and how to
select a subset of agents to hire.

Alternative online versions of the problem have been considered in the literature as well.
In dynamic principal agent problem (Sannikov, 2008; Williams, 2009; Sannikov, 2012), a
single principal interacts with a single agent repeatedly over a period of time. The agent
can choose to exert different effort at different time, and the outcome at time t is a function
of all the efforts exerted by the agent before t. The principal cannot observe the agent’s
efforts but can observe the outcome. The goal of the principal is to design an optimal
contract over time to maximize his payoff. Our work is different from this line of work since
we consider the setting with multiple agents with different, unknown types. Our algorithm
needs to learn the distribution of agent types and design an optimal contract accordingly.

Conitzer and Garera (2006) study the online principal agent problem with a similar
setting to ours. However, they focus on empirically comparing different online algorithms,
including bandit approaches with uniform discretization, gradient ascent, and Bayesian
update approaches to the problem. Our goal is to provide an algorithm with nice theoretical
guarantees.

Bohren and Kravitz (2013) study the setting when the outcome is unverifiable. To
address this issue, they propose to assign a bundle of tasks to each worker. To verify
the outcome, each task in the bundle is chosen as a verifiable task with some non-trivial
probability. A verifiable task can either be a gold standard task with known answer or a
task which is assigned to multiple workers for verification. The payment for a task bundle
is then conditional only on the outcome of verified tasks. In our setting, we assume the task
outcome is verifiable. We can relax this assumption by adopting similar approaches.

9.2 Incentives in Crowdsourcing Systems

Researchers have recently begun to examine the design of incentive mechanisms to encourage
high-quality work in crowdsourcing systems. Jain, Chen, and Parkes (2012) explore ways in
which to award virtual points to users in online question-and-answer forums to improve the
quality of answers. Ghosh and Hummel (2011, 2013) and Ghosh and McAfee (2011) study
how to distribute user generated content (e.g., Youtube videos) to users to encourage the
production of high-quality internet content by people who are motivated by attention. Ho,
Zhang, Vaughan, and van der Schaar (2012) and Zhang and van der Schaar (2012) consider
the design of two-sided reputation systems to encourage good behavior from both workers
and requesters in crowdsourcing markets. While we also consider crowdsourcing markets,

350

Adaptive Contract Design for Crowdsourcing Markets

our work differs in that it focuses on how to design monetary contracts, perhaps the most
natural incentive scheme, to incentivize workers to exert effort.

The problem closest to ours which has been studied in the context of crowdsourcing
systems is the online task pricing problem in which a requester has an unlimited supply of
tasks to be completed and a budget B to spend on them (Badanidiyuru et al., 2012; Singer
& Mittal, 2013). Workers with private costs arrive online, and the requester sets a single
price for each arriving worker. The goal is to learn the optimal single fixed price over time.
Our work can be viewed as a generalization of the task pricing problem, which is a special
case of our setting with the number of non-null outcomes m fixed at 1.

There has also been empirical work examining how workers’ behavior varies based on the
financial incentives offered in crowdsourcing markets. Mason and Watts (2009) study how
workers react to changes of performance-independent financial incentives. In their study,
increasing financial incentives increases the number of tasks workers complete, but not the
quality of their output. Yin, Chen, and Sun (2013) provide a potential explanation for this
phenomenon using the concept of “anchoring effect”: a worker’s cost for completing a task
is influenced by the first price the worker sees for this task. Horton and Chilton (2010) run
experiments to estimate workers’ reservation wage for completing tasks. They show that
many workers respond rationally to offered contracts, whereas some of the workers appeared
to have some “target payment” in mind.

Some recent research studies the effects of performance-based payments (PBPs). Harris
(2011) runs MTurk experiments on resume screening, where workers can get a bonus if
they perform well. He concludes that the quality of work is better with PBPs than with
uniform payments. Yin et al. (2013) show that varying the magnitude of the bonus does
not have much effect in certain settings. Ho et al. (2015) perform a more comprehensive set
of experiments aimed at determining whether, when, and why PBPs increase the quality
of submitted work. Their results suggest that PBPs can increase quality on tasks for
which increased time or effort leads to higher quality work. Their results also suggest that
workers may interpret a contract as performance-based even if it is not stated as such (since
requesters always have the option to reject work). Based on this evidence, they propose a
new model of worker behavior that extends the principal-agent model to explicitly reflect
workers’ subjective beliefs about their likelihood of being paid.

Overall, previous empirical work demonstrates that workers in crowdsourcing markets
do respond to the change of financial incentives, but that their behavior does not always
follow the traditional rational-worker model — similar to people in any real-world market.
In our work, we start our analysis with the rational-worker assumption ubiquitous in eco-
nomic theory, but demonstrate that our results can still hold without these assumptions as
long as the collective worker behavior satisfies some natural properties (namely, as long as
Lemma 3.1 holds). We note that our results hold under the generalized worker model pro-
posed by Ho et al. (2015), which is consistent with their experimental evidence as discussed
above.

351

Ho, Slivkins, & Vaughan

9.3 Sequential Decision Problems

In sequential decision problems, an algorithm makes sequential decisions over time. Two
directions that are relevant to this paper are multi-armed bandits (MAB) and dynamic
pricing.

MAB have been studied since 1933 (Thompson, 1933) in operations research, economics,
and several branches of computer science including machine learning, theoretical computer
science, AI, and algorithmic economics. A survey of prior work on MAB is beyond the scope
of this paper; the reader is encouraged to refer to the work of Cesa-Bianchi and Lugosi (2006)
or Bubeck and Cesa-Bianchi (2012) for background on prior-independent MAB, and to the
work of Gittins, Glazebrook, and Weber (2011) for background on Bayesian MAB. Below
we briefly discuss the lines of work on MAB that are directly relevant to our paper.

Our setting can be modeled as prior-independent MAB with stochastic rewards: the re-
ward of a given arm i is an i.i.d. sample of some time-invariant distribution, and neither this
distribution nor a Bayesian prior on it are known to the algorithm. The basic formulation
(with a small number of arms) is well understood (Lai & Robbins, 1985; Auer et al., 2002;
Bubeck & Cesa-Bianchi, 2012). To handle problems with a large or infinite number of arms,
one typically needs side information on similarity between arms. A typical way to model
this side information, called Lipschitz MAB (Kleinberg et al., 2008), is that an algorithm
is given a distance function on the arms, and the expected rewards are assumed to satisfy
Lipschitz-continuity (or a relaxation thereof) with respect this distance function (Agrawal,
1995; Kleinberg, 2004; Auer et al., 2007; Kleinberg et al., 2008; Bubeck et al., 2011a;
Slivkins, 2014). Most related to this paper is the idea of adaptive discretization which is
often used in this setting (Kleinberg et al., 2008; Bubeck et al., 2011a; Slivkins, 2014), and
particularly the zooming algorithm (Kleinberg et al., 2008; Slivkins, 2014). In particular,
the general template of our algorithm is similar to the one in the zooming algorithm (but
our “selection rule” and “zooming rule” are very different, reflecting the lack of a priori
known similarity information).

In some settings (including ours), the numerical similarity information required for Lip-
schitz MAB is not immediately available. For example, in applications to web search and
advertising it is natural to assume that an algorithm can only observe a tree-shaped tax-
onomy on arms (Kocsis & Szepesvari, 2006; Munos & Coquelin, 2007; Pandey et al., 2007;
Slivkins, 2011; Bull, 2013). In particular, Slivkins (2011) and Bull (2013) explicitly re-
construct (the relevant parts of) the metric space defined by the taxonomy. In a different
direction, Bubeck, Stoltz, and Yu (2011b) study a version of Lipschitz MAB where the
Lipschitz constant is not known, and essentially recover the performance of NonAdaptive
for this setting.

In MAB with partial monitoring (Audibert & Bubeck, 2010; Bartók, Foster, Pál,
Rakhlin, & Szepesvári, 2014; Antos, Bartók, Pál, & Szepesvári, 2013), in each round the
algorithm receives auxiliary feedback about rewards in this round (along with the reward
of the chosen arm), and the goal is to take advantage of this auxiliary feedback. Dynamic
task pricing can be cast in this framework: if a given price p is accepted, then any higher
price would be too, and if it is rejected, then any lower price would be. However, we are
not aware of any way to link dynamic task pricing to existing results on partial monitoring

352

Adaptive Contract Design for Crowdsourcing Markets

via this connection. The general version of dynamic contract design does not appear to fit
the partial monitoring framework, essentially due to moral hazard.

Dynamic pricing (a.k.a. online posted-price auctions) refers to settings in which a
principal interacts with agents that arrive over time and offers each agent a price for a
transaction, such as selling or buying an item. The version in which the principal sells items
has been extensively studied in operations research, typically in a Bayesian setting; see the
work of den Boer (2015) for a through literature review. The study of prior-independent,
non-parameterized formulations has been initiated in the work of Blum, Kumar, Rudra,
and Wu (2003) and Kleinberg and Leighton (2003) and continued by several others (Besbes
& Zeevi, 2009; Babaioff, Dughmi, Kleinberg, & Slivkins, 2015; Besbes & Zeevi, 2012; Wang,
Deng, & Ye, 2014; Badanidiyuru et al., 2013; Badanidiyuru, Langford, & Slivkins, 2014).
Further, Badanidiyuru et al. (2012) and Singla and Krause (2013) studied the version in
which the principal buys items, or equivalently commissions tasks; we call this version
dynamic task pricing. Modulo budget constraints, this is essentially the special case of our
setting where in each round a worker is offered the chance to perform a task at a specified
price, and can either accept or reject this offer. In particular, the worker’s strategic choice
is directly observable. More general settings have been studied (Badanidiyuru et al., 2013,
2014; Agrawal & Devanur, 2014; Agrawal, Devanur, & Li, 2015).16 However, all this work
(after the initial papers, see Blum et al., 2003 and Kleinberg & Leighton, 2003) has focused
on models with constraints on the principal’s supply or budgets, and does not imply any
improved results when specialized to unconstrained settings.

10. Conclusions

Motivated by applications to crowdsourcing markets, we define the dynamic contract design
problem, a multi-round version of the principal-agent model with unobservable strategic
decisions. We treat this problem as a multi-armed bandit problem, design an algorithm for
this problem, and derive regret bounds which compare favorably to prior work. Our main
conceptual contribution, aside from identifying the model, is the adaptive discretization
approach that does not rely on Lipschitz-continuity assumptions. We provably improve
on the uniform discretization approach from prior work, both in the general case and in
some illustrative special cases. These theoretical results are supported by simulations. The
generality and the shortcomings of our model are discussed in Section 2.2.

We believe that the dynamic contract design problem deserves further study, in several
directions that we outline below.

1. It is not clear whether our provable results can be improved, perhaps using substantially
different algorithms and relative to different problem-specific structures. In particular, one
needs to establish lower bounds in order to argue about optimality; no lower bounds for
dynamic contract design are currently known.

2. Our adaptive discretization approach may be fine-tuned to improve its performance
in practice. In particular, the definition of the “index” It(C) of a given feasible cell C

16. The papers by Badanidiyuru et al. (2014) and Agrawal and Devanur (2014) are concurrent and inde-
pendent work with respect to the conference publication of this paper, and the work of Agrawal et al.
(2015) is subsequent work.

353

Ho, Slivkins, & Vaughan

may be re-defined in several different ways. First, it can use the information from C in
a more sophisticated way, similar to the more sophisticated indices for the basic K-armed
bandit problem; for example, see the work of Garivier and Cappé (2011). Second, the index
can incorporate information from other cells. Third, it can be defined in a “smoother”,
probabilistic way, e.g., as in Thompson Sampling (Thompson, 1933).

3. Deeper insights into the structure of the (static) principal-agent problem are needed,
primarily in order to optimize the choice of Xcand, the set of candidate contracts. The
most natural target here is the uniform mesh Xcand(ε). To optimize the granularity ε, one
needs to upper-bound the discretization error OPT(Xcand)− OPT(Xcand(ε)) in terms of some
function f(ε) such that f(ε) → 0 as ε → 0. The first-order open question is to resolve
whether this can be done in the general case, or provide a specific example when it cannot.
A related open question concerns the effect of increasing the granularity: upper-bound the
difference OPT(Xcand(ε))− OPT(Xcand(ε

′)), ε > ε′ > 0, in terms of some function of ε and ε′.
Further, it is not known whether the optimal mesh of contracts is in fact a uniform mesh.

Also of interest is the effect of restricting our attention to monotone contracts. While
we prove that monotone contracts may not be optimal (Appendix A), the significance of
this phenomenon is unclear. One would like to characterize the scenarios when restricting
to monotone contracts is alright (in the sense that the best monotone contract is as good,
or not much worse, than the best contract), and the scenarios when this restriction results
in a significant loss. For the latter scenarios, different algorithms may be needed.

4. A much more extensive analysis of special cases is in order. Our general results are
difficult to access (which appears to be an inherent property of the general problem), so the
most immediate direction for special cases is deriving lucid corollaries from the current regret
bounds. In particular, it is desirable to optimize the choice of candidate contracts. Apart
from “massaging” the current results, one can also design improved algorithms and derive
specialized lower bounds. Particularly appealing special cases concern supply distributions
that are mixtures of a small number of types, and supply distributions that belong to a
(simple) parameterized family with unknown parameter.

Going beyond our current model, a natural direction is to incorporate a budget con-
straint, extending the corresponding results on dynamic task pricing. The main difficulty
for such settings is that a distribution over two contracts may perform much better than
any fixed contract; see the work of Badanidiyuru et al. (2013) for discussion. Effectively,
an algorithm needs to optimize over the distributions. As a first step, one can use non-
adaptive discretization in conjunction with the general algorithms for bandits with budget
constraints, sometimes called “bandits with knapsacks” (Badanidiyuru et al., 2013; Agrawal
& Devanur, 2014). However, it is not clear how to choose an optimal mesh of contracts
(as we discussed throughout the paper), and this mesh is not likely to be uniform (because
it is not uniform for the special case of dynamic task pricing with a budget; see Badani-
diyuru et al., 2013 for discussion). The eventual target in this research direction is to marry
adaptive discretization and the techniques from prior work on “bandits with knapsacks.”

354

Adaptive Contract Design for Crowdsourcing Markets

Acknowledgments

We thank the anonymous reviewers for their useful comments. Much of this research was
completed while Ho was an intern at Microsoft Research. This research was partially sup-
ported by the NSF under grant IIS-1054911. Any opinions, findings, conclusions, or recom-
mendations are those of the authors alone.

Appendix A. Monotone Contracts May Not Be Optimal

In this section we provide an example of a problem instance for which all monotone contracts
are suboptimal (at least when restricting attention to only those contracts with non-negative
payoffs). In this example, there are three non-null outcomes (i.e., m = 3), and two non-null
effort levels, “low” effort and “high” effort, which we denote e` and eh respectively. There
is only a single worker type. Since there is only one type, we drop the subscript when
describing the cost function c. We let c(e`) = 0, and let c(eh) be any positive value less
than 0.5(v(2)− v(1)). If a worker chooses low effort, the outcome is equally likely to be 1 or
3. If the worker chooses high effort, it is equally likely to be 2 or 3. It is easy to verify that
this type satisfies the FOSD assumption. Finally, for simplicity, we assume that all workers
break ties between high effort and any other effort level in favor of high effort, and that all
workers break ties between low effort and the null effort level in favor of low effort.

Let’s consider the optimal contract. Since there is just a single worker type and all
workers of this type break ties in the same way, we can consider separately the best contract
that would make all workers choose the null effort level, the best contract that would make
all workers choose low effort, and the best contract that would make all workers choose high
effort, and compare the requester’s expected value for each.

Since c(e`) = 0 and workers break ties between low effort and null effort in favor of low
effort, there is no contract that would cause workers to choose null effort; workers always
prefer low effort to null effort.

It is easy to see that the best contract (in terms of requester expected value) that would
make workers choose low effort would set x(1) = x(3) = 0 and x(2) sufficiently low that
workers would not be enticed to choose high effort; setting x(2) = 0 is sufficient. In this
case, the expected value of the requester would be 0.5(v(1) + v(3)).

Now let’s consider contracts that cause workers to choose high effort. If a worker chooses
high effort, the expected value to the requester is

0.5(v(2)− x(2) + v(3)− x(3)). (23)

Workers will choose high effort if and only if

0.5(x(1) + x(3)) ≤ 0.5(x(2) + x(3))− c(eh)

or
0.5x(1) ≤ 0.5x(2)− c(eh). (24)

So to find the contract that maximizes the requester’s expected value when workers choose
high effort, we want to maximize Equation 23 subject to the constraint in Equation 24.
Since x(3) doesn’t appear in Equation 24, we can set it to 0 to maximize Equation 23.

355

Ho, Slivkins, & Vaughan

Since x(1) does not appear in Equation 23, we can set x(1) = 0 to make Equation 24 as
easy as possible to satisfy. We can then see that the optimal occurs when x(2) = 2c(eh).

Plugging this contact x into Equation 23, the expected utility in this case is 0.5(v(2) +
v(3))− c(eh). Since we assumed that c(eh) < 0.5(v(2)− v(1))), this is strictly preferable to
the constant 0 contract, and is in fact the unique optimal contract. Since x(2) > x(3), the
unique optimal contract is not monotonic.

References

Agrawal, R. (1995). The continuum-armed bandit problem. SIAM J. Control and Opti-
mization, 33 (6), 1926–1951.

Agrawal, S., & Devanur, N. R. (2014). Bandits with concave rewards and convex knapsacks.
In 15th ACM Conf. on Economics and Computation (EC).

Agrawal, S., Devanur, N. R., & Li, L. (2015). Contextual bandits with global constraints
and objective.. Technical report, arXiv:1506.03374.

Antos, A., Bartók, G., Pál, D., & Szepesvári, C. (2013). Toward a classification of finite
partial-monitoring games. Theor. Comput. Sci., 473, 77–99.

Audibert, J., & Bubeck, S. (2010). Regret Bounds and Minimax Policies under Partial
Monitoring. J. of Machine Learning Research (JMLR), 11, 2785–2836.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem.. Machine Learning, 47 (2-3), 235–256.

Auer, P., Ortner, R., & Szepesvári, C. (2007). Improved Rates for the Stochastic Continuum-
Armed Bandit Problem. In 20th Conf. on Learning Theory (COLT), pp. 454–468.

Babaioff, M., Dughmi, S., Kleinberg, R. D., & Slivkins, A. (2015). Dynamic pricing with
limited supply. ACM Trans. on Economics and Computation, 3 (1), 4.

Babaioff, M., Feldman, M., & Nisan, N. (2006). Combinatorial agency. In 7th ACM Conf.
on Electronic Commerce (EC).

Badanidiyuru, A., Kleinberg, R., & Singer, Y. (2012). Learning on a budget: posted price
mechanisms for online procurement. In 13th ACM Conf. on Electronic Commerce
(EC), pp. 128–145.

Badanidiyuru, A., Kleinberg, R., & Slivkins, A. (2013). Bandits with knapsacks. In 54th
IEEE Symp. on Foundations of Computer Science (FOCS).

Badanidiyuru, A., Langford, J., & Slivkins, A. (2014). Resourceful contextual bandits. In
27th Conf. on Learning Theory (COLT).

Bartók, G., Foster, D. P., Pál, D., Rakhlin, A., & Szepesvári, C. (2014). Partial monitoring
- classification, regret bounds, and algorithms. Math. Oper. Res., 39 (4), 967–997.

Besbes, O., & Zeevi, A. (2009). Dynamic pricing without knowing the demand function:
Risk bounds and near-optimal algorithms. Operations Research, 57, 1407–1420.

Besbes, O., & Zeevi, A. J. (2012). Blind network revenue management. Operations Research,
60 (6), 1537–1550.

356

Adaptive Contract Design for Crowdsourcing Markets

Blum, A., Kumar, V., Rudra, A., & Wu, F. (2003). Online learning in online auctions. In
14th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 202–204.

Bohren, J. A., & Kravitz, T. (2013). Incentives for spot market labor when output is
unverifiable. Working paper.

Bubeck, S., & Cesa-Bianchi, N. (2012). Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Foundations and Trends in Machine Learning, 5 (1),
1–122.

Bubeck, S., Munos, R., Stoltz, G., & Szepesvari, C. (2011a). Online Optimization in X-
Armed Bandits. J. of Machine Learning Research (JMLR), 12, 1587–1627.

Bubeck, S., Stoltz, G., & Yu, J. Y. (2011b). Lipschitz bandits without the lipschitz constant.
In 22nd Intl. Conf. on Algorithmic Learning Theory (ALT), pp. 144–158.

Bull, A. D. (2013). Adaptive-treed bandits. Tech. rep. 1302.2489, arxiv.org.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge Univ.
Press.

Conitzer, V., & Garera, N. (2006). Online learning algorithms for online principal-agent
problems (and selling goods online). In International Conference on Machine Learning
(ICML).

den Boer, A. V. (2015). Dynamic pricing and learning: Historical origins, current research,
and new directions. Surveys in Operations Research and Management Science. Forth-
coming.

Dudik, M., Hsu, D., Kale, S., Karampatziakis, N., Langford, J., Reyzin, L., & Zhang, T.
(2011). Efficient optimal leanring for contextual bandits. In 27th Conf. on Uncertainty
in Artificial Intelligence (UAI).

Garivier, A., & Cappé, O. (2011). The KL-UCB Algorithm for Bounded Stochastic Bandits
and Beyond. In 24th Conf. on Learning Theory (COLT).

Ghosh, A., & Hummel, P. (2011). A game-theoretic analysis of rank-order mechanisms for
user-generated content. In 12th ACM Conf. on Electronic Commerce (EC).

Ghosh, A., & Hummel, P. (2013). Learning and incentives in user-generated content: Multi-
armed bandits with endogenous arms. In Proc. 4th Conference on Innovations in
Theoretical Computer Science (ITCS).

Ghosh, A., & McAfee, P. (2011). Incentivizing high-quality user-generated content. In 20th
Intl. World Wide Web Conf. (WWW).

Gittins, J., Glazebrook, K., & Weber, R. (2011). Multi-Armed Bandit Allocation Indices.
John Wiley & Sons.

Harris, C. G. (2011). You’re hired! an examination of crowdsourcing incentive models in
human resource tasks. In CSDM.

Ho, C., Slivkins, A., Suri, S., & Vaughan, J. W. (2015). Incentivizing high quality crowd-
work. In 24th Intl. World Wide Web Conf. (WWW).

Ho, C.-J., Zhang, Y., Vaughan, J. W., & van der Schaar, M. (2012). Towards social norm
design for crowdsourcing markets. In HCOMP.

357

Ho, Slivkins, & Vaughan

Horton, J. J., & Chilton, L. B. (2010). The labor economics of paid crowdsourcing. In 11th
ACM Conf. on Electronic Commerce (EC).

Jain, S., Chen, Y., & Parkes, D. (2012). Designing incentives for online question-and-answer
forums. Games and Economic Behavior.

Kleinberg, R. (2004). Nearly tight bounds for the continuum-armed bandit problem. In
18th Advances in Neural Information Processing Systems (NIPS).

Kleinberg, R., & Leighton, T. (2003). The value of knowing a demand curve: Bounds
on regret for online posted-price auctions.. In 44th IEEE Symp. on Foundations of
Computer Science (FOCS), pp. 594–605.

Kleinberg, R., Slivkins, A., & Upfal, E. (2008). Multi-armed bandits in metric spaces. In
40th ACM Symp. on Theory of Computing (STOC), pp. 681–690.

Kleinberg, R. D., & Leighton, F. T. (2003). The value of knowing a demand curve: Bounds
on regret for online posted-price auctions. In IEEE Symp. on Foundations of Computer
Science (FOCS).

Kocsis, L., & Szepesvari, C. (2006). Bandit Based Monte-Carlo Planning. In 17th European
Conf. on Machine Learning (ECML), pp. 282–293.

Laffont, J.-J., & Martimort, D. (2002). The Theory of Incentives: The Principal-Agent
Model. Princeton University Press.

Lai, T. L., & Robbins, H. (1985). Asymptotically efficient Adaptive Allocation Rules.
Advances in Applied Mathematics, 6, 4–22.

Levy, A., & Vukina, T. (2002). Optimal linear contracts with heterogeneous agents. In
European Review of Agricultural Economics.

Mason, W., & Watts, D. (2009). Financial incentives and the “performance of crowds”. In
HCOMP.

Misra, S., Nair, H. S., & Daljord, O. (2012). Homogenous contracts for heterogeneous
agents: Aligning salesforce composition and compensation. Working Paper.

Munos, R., & Coquelin, P.-A. (2007). Bandit algorithms for tree search. In 23rd Conf. on
Uncertainty in Artificial Intelligence (UAI).

Pandey, S., Agarwal, D., Chakrabarti, D., & Josifovski, V. (2007). Bandits for Taxonomies:
A Model-based Approach. In SIAM Intl. Conf. on Data Mining (SDM).

Radlinski, F., Kleinberg, R., & Joachims, T. (2008). Learning diverse rankings with multi-
armed bandits. In 25th Intl. Conf. on Machine Learning (ICML), pp. 784–791.

Sannikov, Y. (2008). A continuous-time version of the principal-agent problem. In The
Review of Economics Studies.

Sannikov, Y. (2012). Contracts: The theory of dynamic principal-agent relationships and
the continuous-time approach. In 10th World Congress of the Econometric Society.

Singer, Y., & Mittal, M. (2013). Pricing mechanisms in crowdsourcing markets. In 22nd
Intl. World Wide Web Conf. (WWW).

Singla, A., & Krause, A. (2013). Truthful incentives in crowdsourcing tasks using regret
minimization mechanisms. In 22nd Intl. World Wide Web Conf. (WWW).

358

Adaptive Contract Design for Crowdsourcing Markets

Slivkins, A. (2011). Multi-armed bandits on implicit metric spaces. In 25th Advances in
Neural Information Processing Systems (NIPS).

Slivkins, A. (2014). Contextual bandits with similarity information. J. of Machine Learning
Research (JMLR), 15 (1), 2533–2568. Preliminary version in COLT 2011.

Slivkins, A., Radlinski, F., & Gollapudi, S. (2013). Ranked bandits in metric spaces: Learn-
ing optimally diverse rankings over large document collections. J. of Machine Learning
Research (JMLR), 14 (Feb), 399–436. Preliminary version in 27th ICML, 2010.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples.. Biometrika, 25 (3-4), 285–294.

Wang, Z., Deng, S., & Ye, Y. (2014). Close the gaps: A learning-while-doing algorithm for
single-product revenue management problems. Operations Research, 62 (2), 318–331.

Williams, N. (2009). On dynamic principal-agent problems in continuous time. Working
Paper.

Yin, M., Chen, Y., & Sun, Y.-A. (2013). The effects of performance-contingent financial
incentives in online labor markets. In AAAI.

Zhang, Y., & van der Schaar, M. (2012). Reputation-based incentive protocols in crowd-
sourcing applications. In Infocom.

359

