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Abstract: Unsupervised domain adaptation, which aims to alleviate the domain shift between source
domain and target domain, has attracted extensive research interest; however, this is unlikely in
practical application scenarios, which may be due to privacy issues and intellectual rights. In this
paper, we discuss a more challenging and practical source-free unsupervised domain adaptation,
which needs to adapt the source domain model to the target domain without the aid of source
domain data. We propose label consistent contrastive learning (LCCL), an adaptive contrastive
learning framework for source-free unsupervised domain adaptation, which encourages target
domain samples to learn class-level discriminative features. Considering that the data in the source
domain are unavailable, we introduce the memory bank to store the samples with the same pseudo
label output and the samples obtained by clustering, and the trusted historical samples are involved
in contrastive learning. In addition, we demonstrate that LCCL is a general framework that can be
applied to unsupervised domain adaptation. Extensive experiments on digit recognition and image
classification benchmark datasets demonstrate the effectiveness of the proposed method.

Keywords: unsupervised domain adaptation; contrastive learning; source free domain adaptation

1. Introduction

Deep neural network [1–4] has achieved remarkable success in different application
scenarios, but the excellent performance of deep learning comes from large-scale data
annotation and long-time model training. In order to avoid expensive labeling cost and
training time, domain adaptation is proposed to make full use of previously labeled data
sets and unlabeled target domain datasets, and has achieved competitive results in the
fields of image recognition, object detection semantic segmentation and so on.

In the last decade, many scholars have conducted extensive research on domain
adaptation, especially in the scene of unsupervised domain adaptation [5,6]. The most
classic strategy in unsupervised domain adaptation is to align the domain distribution.
These works achieve domain alignment between the source domain and the target do-
main through various metrics, such as maximum mean dispersion [7] and Wasserstein
dispersion [8]. Another popular framework [5] is based on a domain adversarial network,
which aims to learn domain invariant features to minimize the discrepancy between the
two domains.
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In recent years, due to privacy issues and intellectual rights, the training data cannot
be directly accessed. These existing unsupervised domain adaptation often requires source
data, which may violate the policy of data privacy protection. In this paper, we discuss
a practical and challenging source-free unsupervised domain adaptation, which uses the
model trained in the source domain to adapt to the target domain. Specifically, only the
model trained by the source domain and the unlabeled data of the target domain is provided.
Our goal is to obtain knowledge from the source domain model and target domain data, so
as to adapt the model to the target domain and obtain competitive performance.

In source-free unsupervised domain adaptation, most methods are influenced by
SHOT [9] and use pseudo labeling technology for self-training. We believe that a good
classification model should meet two key conditions: (1) the class weight is located in
the class feature center in the feature space; (2) category semantic information should be
discriminative. In fact, the pseudo-label-based method only meets the first one, without
considering the second one. We believe that learning the distinguishability semantic
representation of unlabeled data can promote network adaptation together with pseudo
labels. Contrastive learning affirms that the samples of the same class should be closer
and the samples of different classes should be farther. In standard contrastive learning,
two related views of the same image can be naturally compared. Recently, some works
have introduced contrastive learning into domain adaptation and achieved good results.
In source-free unsupervised domain adaptation, due to data privacy and other reasons,
we cannot obtain the data of the source domain, so we cannot directly apply contrastive
learning between the source domain and the target domain; however, if we obtain the
feature of the same version of the credible historical version of the sample, we can make a
better contrast; therefore, domain adaptation may benefit from our contrastive learning.

In view of this, we introduce LCCL, a simple but effective contrastive learning frame-
work in source-free unsupervised domain adaptive scenarios. Given the source domain
model and target domain data, due to the discrepancy between domains, we use infor-
mation maximization to alleviate domain differences. Owing to the lack of labels in the
target domain, we use pseudo labeling technology to give pseudo labels, so as to promote
the self-training process. In order to make full use of trusted pseudo labels, we select the
features of samples with consistent network prediction and pseudo labels to store in the
memory bank. We minimize the distance between samples and samples of the same class in
the memory bank and maximize the distance between samples of different classes. Through
this mechanism, we can fully explore the structural information of the target domain and
better adapt the source domain model to the target domain.

In brief, we highlight our three-fold contributions.

• An adaptive contrastive learning framework that works at the class level for source-
free unsupervised domain adaptation is proposed.

• The proposed method introduces a memory bank that stores reliable samples with
consistent labels and encourages samples in the target domain to learn discriminative
features at the class level.

• Comprehensive experiments show that our method is competitive with existing meth-
ods in a series of source-free unsupervised domain adaptation scenarios.

2. Related Work

Unsupervised domain adaptation (UDA) has been widely studied in recent years.
Most of the existing methods [5,10–15] solve the domain adaptation problem by reduc-
ing domain discrepancy or adding adaptation layers to match feature distributions. For
example, DDC [12] uses moment matching to align feature distributions. DANN [5] and
MCD [16] learn domain invariants by designing domain discriminators. Not long ago,
someone introduced the prototype method and contrastive learning to solve the UDA prob-
lem. For example, TPN [17] tries to align the source domain and target domain through the
learned prototype feature representation. In addition, CAN [18] and CoSCA [19] methods
use contrastive learning to reduce the inter domain intra-class distance and maximize the
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inter-class distance; however, due to privacy issues, the source data may not be available in
practice, so these methods cannot be used in the source free scenario.

Source-free unsupervised domain adaptation (SFUDA) aims to adapt the network
to the target domain without the source domain data. There are two main methods at
present, one is the pseudo labeling method represented by SHOT [9], and the other is
the method of generating target style image represented by MA [20]; however, directly
using the pseudo labels in the target domain is very easy to produce the problem of noise
amplification. On the other hand, it is very difficult to directly generate the target style
image in the source model. Recently, BAIT [21] introduced additional classifiers to find
the features of misclassification. When the feature extractor is updated, these features
will be pushed to the right of the source decision boundary, so as to realize source free
unsupervised domain adaptation.

Contrastive learning (CL) is a self-supervised learning method, which helps the model
learn the discriminative feature between samples. Generally speaking, it is to make the
distance between similar samples smaller and the distance between different samples
larger in the feature space. Recently, various works [22,23] have shown that the selection
of data is very important for contrastive learning. There are generally two strategies in
unsupervised learning. One is to use clustering to pseudo label unlabeled data [24], so as
to guide the pair reconstruction. The other is to start from multiple perspectives, using
the augmentation of samples to construct data pairs [25]. The augmentations of the same
sample are its positive pairs and other samples are negative pairs. After a given data pair,
some contrastive learning losses are also proposed. Triple loss [26] is widely used in face
recognition, minimizing the distance between the anchor and positive, and maximizing
the distance between the anchor and negative. NCE [27] regards the problem as a binary
classification problem. The classifier can binary classify data samples and noise samples,
and this classifier is what we need. Contrastive learning does not need to pay attention to
the details at the pixel level, but only needs to learn to distinguish the data in the feature
space at the semantic level; therefore, the model and its optimization become simpler and
have a stronger generalization ability.

Comparison with existing work. For the classical SFUDA, it is obvious that we differ
from the existing work, because we propose a new framework to introduce contrastive
learning into the scene of source-free methods. Compared with the existing contrastive
learning [28] in the traditional unsupervised domain adaptation, we draw the differences
in Figure 1. Unsupervised domain adaptation generally uses all the data of source domain
and target domain to participate in contrastive learning. When we cannot access the source
domain data, we add the reliable samples with consistent labels into the memory bank
as the keys, which can reduce the impact of noise pseudo labels on the performance of
domain adaptation.
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Figure 1. Our label consistency contrastive learning is different from the traditional contrastive
learning in unsupervised domain adaptation.

3. Methodologies

Problem definition. In unsupervised domain adaptation, there are two domains with
different distributions: source domain and target domain. Here, we consider a K-class
classification task in which the source domain and the target domain share the same label
space. In source-free unsupervised domain adaptation, the data in the source domain are
invisible, and only the model trained in the source domain can be provided. Our goal is
to train a network, which can be divided into feature extractor G and classifier C. For a
sample x, the feature after passing through the feature extractor is z(x) = G(x), and the
final output of the network is p(x) = δ(C(G(x))), where δ is the softmax function. The
pipeline of our LCCL framework is shown in Figure 2.
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Figure 2. The pipeline of our LCCL framework. The source model consists of the feature learning
module and the classifier module. LCCL fix the weight parameters of classifier and utilizes the
feature learning module as initialization for target domain learning. The method includes three
losses, information maximization loss Lim, pseudo labeling loss Lpl and label consistency contrastive
learning loss Llccl .
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Information maximization loss. In UDA, many classical methods try to align different
domains through matching data distribution, which use maximum mean discrepancy [7]
or domain adversarial network [5]. In SFUDA, we also hope to learn a better target feature
extractor to align the feature distribution of source domain and target domain; however, we
have no access to the source domain data. On the other hand, if the distribution discrepancy
between the source domain and the target domain is alleviated, the output of unlabeled
data in the target domain should be similar to one-hot encoding; therefore, we introduce
information maximization loss, which can make the output of individual samples in the
target domain more confident, and make the whole have diversity to reduce the problem
of long tail. The formula of information maximization loss is as follows, including entropy
loss and diversity loss.

Lim = −Ex∈X0

K

∑
k=1

p(x) log p(x)

+
K

∑
k=1

p̄k log p̄k.

(1)

where p̄ = Ex∈X0 [p(x)] is the mean of the softmax outputs for the current batch.
Pseudo labeling loss. Although maximizing the loss of information can achieve

a more reliable prediction of the target domain, it will inevitably be affected by wrong
pseudo tag matching. In order to solve this problem, a general method is to use pseudo tag
technology for self-training and select more accurate pseudo labels to further promote the
migration effect of the network. In fact, we learn from the idea of k-means. Specifically, we
first calculate the centroid of each class by weighted k-means.

µ
(0)
k =

∑x∈X p(x)z(x)
∑x∈X p(x)

, (2)

where µ
(0)
k is the initial center for k-means, p(x) is the soft labels, z(x) is the feature generate

from the encoder. The centroid obtained for the target domain can better represent the
distribution of the target domain, resulting in more robust results.

Then we can give the sample pseudo label through the centroid of the nearest neighbor.

ŷt = arg min
k

D(z(x), µ
(0)
k ), (3)

where D(a, b) measures the cosine distance between a and b.
The process of obtaining the centroid by clustering and re-assigning the pseudo label

will last for multiple rounds. Finally, our pseudo label can be obtained through the final
class centroid.

µ
(1)
k =

∑x∈X ξ(ŷt = k)z(x)
∑x∈X ξ(ŷt)

,

ŷt = arg min
k

D(z(x), µ
(1)
k ).

(4)

where ξ(∗) is an indicator that produces 1 when the argument is true, ŷt are the final
calculated pseudo labels. As we all know, the cyclic calculation of K-means to re-assign
pseudo labels is carried out in multiple rounds, which is set as two round in our experiment.

Given the pseudo label, the loss function can be calculated by the standard cross-
entropy loss.

Lpl = −Ext∈Xt

K

∑
k=1

ξ(ŷt = k) log p(x). (5)

Label consistency contrastive learning loss. Due to the lack of source domain data
and target domain labels, the proposed label consistency contrastive learning learns the
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distinguishability relationship with historical model samples from unlabeled target samples.
The loss we use is the standard infoNCE loss, and the formula is defined as:

Llccl=− log
exp(φ(q, k+)/τ)

exp(φ(q, k+)/τ)+∑K−1
j=1 exp(φ(q, k−j )/τ)

. (6)

where q denotes a sample in the target domain. The key value is the historical characteristics
of the samples stored in the memory bank. k+ is the sample set of the same class as the
query samples in the memory bank, and k− is the sample set of all classes different from
the query samples in the memory bank. It should be noted that the size of the memory bank
is fixed to L. When updating, it is the same as the queue storage. The latest sample features
are sent to the queue, and the features at the end of the queue are eliminated. Moreover,
φ(a, b) denotes the cosine similarity and τ is a temperature factor.

In order to obtain a more reliable key set, so as to improve the performance of con-
trastive learning, under the influence of DTFLC [29], in each minibatch, we select samples of
the consistency between the labels given by clustering and the labels given by the network.
The formula is as follows.

ŷt = arg max
k

p(x)k. (7)

Only when the conditions of the formula are met, we add these samples to the memory
bank to learn better feature representation.

Overall, the total loss function can be formulated as follows:

L = Lim + αLpl + βLlccl . (8)

In order to better understand our algorithm, we also list the flow of our algorithm in
Algorithm 1.

Algorithm 1 LCCL algorithm for SFUDA task.

Input: source model fs = Gs ◦ Cs, target data xnt
i=1, maximum number of epochs Tm, trade-off

parameter α, β.
Initialization: Freeze the final classifier layer Ct = Cs, and copy the parameters from Gs to Gt as
initialization.
for epoch = 1 to Tm do

Obtain self-supervised pseudo labels via Equation (4)
for iter = 1 to nb do

# min-batch optimization
Sample a batch from target data and get the corresponding pseudo labels.
Update the parameters in Gt via L in Equation (8).
Select label consistency samples and add them into memory bank.

end for
end for

4. Experiment
4.1. Datasets

In order to prove the effectiveness of LCCL, we conducted experiments on the follow-
ing popular visual benchmarks.

VisDA-2017 [30] is a large simulation-to-real dataset, which is used for domain adap-
tation. There are more than 280,000 images in the field of training, verification and testing,
covering 12 categories. The training images are generated from the same object in the
simulation environment under different circumstances; the validation images are collected
from MSCOCO. The experiment result is listed in Table 1.

Digits is a benchmark dataset for domain adaptation that focuses on digit recognition.
It contains three domains, each of which consists of 10 categories. The three domains are:
SVHN (S); MNIST (M); USPS (U). Following DANN [5], We use the training set of each
domain to train our model, and report the recognition results on the standard test set of the
target domain,shown as Table 2.
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Office-31 [31] dataset is a common object in the office environment, such as keyboard,
laptop and mouse. The dataset consists of three domains: Amazon, DSLR and webcam,
each with 31 categories. The Amazon domain contains an average of 90 images per class,
including 2817 images in total, which are taken by businesses in a clean background.
The DSLR domain contains 498 low-noise high-resolution images (4288 × 2848), there are
five objects in each category. The webcam domain includes 795 low resolution images
(640 × 480) and it shows obvious noise, color and white balance artifacts.The experiment
result is listed in Table 3.

4.2. Implementation Details

Network architecture. We ensure that the Source-only model used is the same as
SHOT [9], which is the LeNet-5 [32] for digit recognition and resnet-50 [1] model for image
classification pre-trained in the source domain. The model includes a feature extractor, a
task-oriented classifier and a bottleneck layer between them. It should be noted that the
feature dimension of the extracted picture after the bottleneck layer is 256. The BN layer is
placed after the FC in the bottleneck layer and a weight normalization layer is used in the
last FC layer.

Table 1. Classification accuracies (%) on VisDA-2017 dataset (ResNet-101).

Method Plane Bcycl Bus Car Horse Knife Mcycl Person Plant Sktbrd Train Truck Per-Class

Source only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DANN [5] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
CDAN [33] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SAFN [34] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [35] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
TPN [17] 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4
MCC [36] 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8

PrDA [37] 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
SHOT [9] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
MA [20] 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
BAIT [21] 93.7 83.2 84.5 65.0 92.9 95.4 88.1 80.8 90.0 89.0 84.0 45.3 82.7

LCCL 92.8 86 78.7 60.4 92.9 93.9 87.0 81.1 91.5 91.3 86.5 59.3 83.4

4.3. Baselines

We compared LCCL with three types of baseline methods: (1) Source-only: ResNet [1];
(2) Unsupervised domain adaptation: DANN [5], MCD [16], ADR [38], CyCADA [39],
rRevGrad + CAT [40], CDAN [33], TPN [17], SAFN [34], SWD [35], MDD [41], CAN [18],
MCC [36], ; (3) Source-free unsupervised domain adaptation: SHOT [9], PrDA [37], MA [20]
and BAIT [21].

Network hyper-parameters. We implement our method under the PyTorch frame-
work [42]. The source-only model, consistent with SHOT, which is a model trained with
label smoothing technology. We train the whole network through back propagation, and the
learning rate of the network is fixed at 1 × 10−3. Specifically, we use minibatch SGD with
momentum of 0.9 and weight decay of 1× 10−3. We set the learning rates of η0 = 1 × 10−3

and η0 = 1 × 10−2 for the visda-2017 dataset and other datasets, respectively. We further
use the same learning rate scheduler η = η0 · (1 + 10 · p)−0.75 as SHOT to change the learn-
ing rate of the network. In addition, for all tasks, we set batch size to 64, α = 0.3, β = 0.5.
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Table 2. Classification accuracies (%) on Digits dataset (LeNet-5). S: SVHN, M:MNIST, U: USPS.

Method S→M U→M M→U Avg.

Source-only 70.2 88.0 79.7 79.3

ADDA [43] 76.0 90.1 89.4 85.2
ADR [38] 95.0 93.1 93.2 93.8
CDAN+E [33] 89.2 98.0 95.6 94.3
CyCADA [39] 90.4 96.5 95.6 94.2
rRevGrad+CAT [40] 98.8 96.0 94.0 96.3
SWD [35] 98.9 97.1 98.1 98.0

SHOT [9] 98.9 98.0 97.9 98.3
MA [20] 99.4 99.3 97.3 98.6

LCCL 99.4 98.8 97.9 98.7

Table 3. Accuracies (%) on Office-31 dataset (ResNet-50).

Method A→D A→W D→W W→D D→A W→A Avg.

Source-only 68.9 68.4 96.9 68.2 99.1 67.4 76.1

DANN [5] 79.7 82.0 96.9 99.1 67.4 68.2 82.2
MCD [16] 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [33] 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [41] 90.4 90.4 98.7 99.9 75.0 73.7 88.0
CAN [18] 95.0 94.5 99.1 99.6 70.3 66.4 90.6
MCC [36] 95.6 95.4 98.6 100.0 72.6 73.9 89.4

SHOT [9] 93.1 90.9 98.8 99.9 74.5 74.8 88.7
PrDA [37] 92.2 91.1 98.2 99.5 71.0 71.2 87.2
MA [20] 92.7 93.7 98.5 99.8 75.3 77.8 89.6
BAIT [21] 92.0 94.6 98.1 100.0 74.6 75.2 89.1

LCCL 94.5 92.2 98.9 99.9 75.3 75.1 89.3

4.4. Overall Results

Results. For data recognition, as shown in the Figure 2, LCCL obtains the best average
accuracy for each task; however, the advantages are not obvious, mainly because the digital
data set is relatively simple. For image recognition, as shown in the Figures 1 and 3, we
have achieved the highest average accuracy on office-31 and visda-2017 datasets, exceeding
shot 0.6% and 0.5%, respectively. Specifically, we exceeded all other results on the four
tasks in visda-2017. These convincing results show that our method has high performance,
thanks to the use of pseudo label technology for self-training, and on the other hand, the
use of contrastive learning has played an excellent performance on large datasets.

4.5. Experimental Analysis

Ablation experiment. In order to explore the impact of parts Lim, Lpl and Llccl on our
method, we conducted experiments on task office-31 dataset. It can be seen from the Table 4
that the model of source-only performs poorly. After adding Lim, the classification accuracy
is greatly improved. With the loss of Lpl , the method can also achieve good results. The
contrastive learning module further promotes the improvement of network performance.

Table 4. Ablation study of our method.

Datasets Digits Office-31 VisDA-2017

Source-only 79.3 76.1 52.4

+Lim 95.2 87.3 80.4
+Lim + Lpl 98.3 88.6 82.9
+Lim + Lpl + Llccl 98.7 89.3 83.4
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Parameter sensitivity analysis. As shown in the figure, we studied the sensitivity of
our method to parameters α and β. We randomly conducted experiments on A→W of
office-31, and reported the results in the Figure 3. There are similar results on other tasks. It
can be seen that the classification accuracy varies little in a large parameter range, which
shows the stability of our method.
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1.0
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70
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80
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Figure 3. Parameter sensitivity study of task A→W, office-31.

Effect of memory bank size. We conducted experiments on the VISDA dataset to
explore the impact of memory bank size on adaptation, and reported the results in the
Figure 4. It can be observed from the figure that the number of each class in the memory
bank performs best at 1000, and the size is too low or too high is not particularly good. On
the one hand, the memory bank capacity is too small and the number of samples saved
is limited, so it is difficult to estimate the distribution of the whole sample well. On the
other hand, if the capacity of the memory bank is too large, some redundant and outdated
features will be added to the memory bank, making the result less satisfactory.

100 200 500 1000 2000
Memory bank size

80

81
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83

84
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 (%
)

Figure 4. The impact of the memory bank size on visda-2017.

Beyond SFUAD. Our method can be used not only in source-free unsupervised
domain adaptation, but also in traditional unsupervised domain adaptation. We add our
method to the method DANN [5], and report the experimental accuracy in the Table 5. It
can be seen that our method can significantly benefit DANN, which shows that our method
is universal and has a wide application prospect.

Convergence analysis. In order to explore the convergence speed of network training
and the influence of contrast learning on class aggregation. We show that the accuracy of
the model and average distance between sample and centroid with the epoch of training
time on the A→D task in office-31. From the Figure 5, we can see that the accuracy of the
model increases steadily with the accumulation of training time, which shows that our
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method can select confident pseudo labels to promote network learning. At the same time,
the distance within our class also decreases, which shows that our contrastive learning
module can promote the same features to gather together in the feature space.

Table 5. The benefits of our approach to DANN.

Method A→D A→W D→W W→D D→A W→A Avg.

DANN [5] 79.7 82.0 96.9 99.1 67.4 68.2 82.2
DANN + Llccl 90.8 90.3 98.5 99.9 72.7 70.7 87.2
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Figure 5. The accuracy of the model and average distance between sample and centroid with the
epoch of training time on the A→D task in office-31.

Feature visualization. In order to more clearly show that our method can adapt to the
target domain very well, we further use t-sne [44] technology to visualize the classification
effect of source only model and our final model. It is not difficult to see that in the source
only model, different classes may mix up due to the offset between fields. Our method can
better realize all kinds of separation, thanks to our contrastive learning, which can pull the
samples of different classes far away and the samples of the same class closer.

Impact of label consistency (LC). In order to explore the impact of label consistency
on the contrastive learning module, we added all features to the memory bank during the
training process, and the results are shown in the Figure 6 and Table 6. By analyzing the
data in the table, we can find that if there is no label consistent constraint, the experimental
results will become worse, which shows that adding noise data to contrastive learning will
damage the performance of our network.
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Figure 6. Feature visualization of task A→W, office-31. (left: source-only model; right: ours)

Table 6. Impact of not label consistency. Accuracies (%) on office-31 dataset (ResNet-50).

Method A→D A→W D→W W→D D→A W→A Avg.

Source only model 92.4 91.3 96.5 99.9 74.8 73.9 88.1
Ours 94.5 92.2 98.9 99.9 75.3 75.1 89.3
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5. Conclusions

In this paper, we propose a simple yet effective framework LCCL to address a practical
setting called source-free unsupervised domain adaptation. LCCL merely needs the well-
trained source model and offers the feasibility of unsupervised DA without access to the
source data, which may be private issues. Specifically, LCCL learns the target-specific
model by exploiting the information maximization and pseudo labeling, and introduces
a memory bank that stores reliable samples with consistent labels for encouraging learn
discriminative features at the class level. Extensive experiments on multiple tasks verify
that LCCL achieves competitive and even state-of-the-art performance.

Future plan will address the limitations of the present work. The main limitation is that
the proposed method is based on the contrastive learning. Due to the lack of source domain
data and target domain labels, the proposed label consistency contrastive learning learns
the distinguishability relationship with the historical model samples from the unmarked
target samples. As a result, a memory bank is used to store historical sample feature, which
increases the burden of memory to a certain extent. In the future, new source domain data
and target domain labels will be collected using some specially designed experiments.
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