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Abstract

The control of physical systems in the presence of time-delays becomes particularly chal-
lenging when parametric uncertainties are present. To cope with these ubiquitous uncertainties,
we propose an adaptive controller in this paper that can accommodate both a time-delay and
parametric uncertainties. The controller includes (a) a control architecture that is based on
the plant relative degree rather than the plant order, (b) an integral implementation of the well
known Posicast Controller so as to accommodate unstable plants, (c) high-order tuners for
parameter adaptation, and (d) a Lyapunov-Krasvoskii functional that allows adaptive stabiliza-
tion. The controller is shown to be semi-global in the time-delay τ and to result in asymptotic
tracking. The implications of the adaptive controller are explored in the context of combus-
tion control through simulation studies. Robustness properties of the controller are briefly
discussed.

1 Introduction

Delay systems represent a class of infinite-dimensional systems where mechanisms related to trans-

port, propagation, or other effects related to a significant time-lag are present. One such example is

in combustion systems where recent modeling efforts have shown that one of the most challenging

factors for successful control is the presence of large time-delays [1]. In addition to this, even small

perturbations in the operating conditions introduce large and unpredictable changes in the system

dynamics mandating a controller that can adapt to these uncertainties. The field of adaptive control

has addressed parametric uncertainties in various kinds of dynamic systems including linear and

nonlinear, single and multivariable, continuous and discrete, deterministic and stochastic systems.
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Very few of the results in this area pertain to problems where large time-delays are present. The

main implication of this is that all results currently available are applicable to time-delay systems

only when the delay values are small. The results in this paper help in bridging the gap between

currently available results and practical needs of control problems.

A unique approach for controlling systems with a known time-delay was originated by Otto

Smith in the fifties [2] by compensating for the delayed output using input values stored over a

time window of [t − τ, t] and estimating the plant output using a model of the plant. In [3], this

idea was extended to include unstable plants as well using finite-time integrals of the delayed input

values thereby avoiding unstable pole-zero cancellations that may occur in Smith’s controller. In

[4, 5], pole-placement and adaptive versions of [3] were developed, and it was shown that the plant

can be adaptively controlled in a stable manner in the large. More recently, in [6]-[8], an adaptive

posi-cast controller has been proposed whose design is based on the relative degree of the plant to

be controlled. While in [6], controllers were developed for plants with relative degree two, in this

paper, we consider plants of arbitrary order and relative degree whose zeros are stable and whose

high frequency gain is known.

The advantages of the controller proposed in this paper over those in [4, 5] are two-fold: Denot-

ing Wm(s) as the transfer function of the reference model that the plant in closed-loop is required

to match, the first advantage is that in cases where Wm(s) is unknown or too difficult to determine,

the controller proposed here can be determined unlike those in [5] which require Wm(s). The

second is that the controller proposed here is much simpler, which is enabled by making use of

properties of positive real transfer functions. We also note that the controller proposed here has

been directly utilized in both simulation and experimental studies of a practical combustion system

and has been shown to be successful in the presence of fairly large delays [7].

In Section 2, we state the problem. In Section 3, we consider the delay-free case, and present

the controller structure, the adaptive laws, the proof of stability, and the robustness properties of

the controller. Application to the combustion control problem is also treated in this section. In

Section 4, we consider the case when time-delays are present, and present the requisite adaptive

controller and its proof of stability. Section 5 contains a summary of the paper.
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2 Statement of the Problem

The problem is the control of a plant given by the input-output description

y(t) = Wp(s)[u(t − τ)], Wp(s) =
Zp(s)

Rp(s)
(1)

where Wp(s) is the transfer function of a finite-dimensional system whose order n is unknown,

relative degree m is known, zeros are in IC−, and its high frequency gain is known.The time-delay

τ is assumed to be known as well. The plant poles and zeros are unknown and it is assumed that

all poles have multiplicity one. For ease of exposition, in what follows we assume that the high

frequency gain is known and is unity.

It is required that the plant output follow the output of a reference model with a transfer function

ym(t) = Wm(s)[r(t− τ)], Wm(s) =
1

Rm(s)
(2)

where Rm is a monic Hurwitz polynomial of degree m, and km > 0. Our goal is to determine a

stable adaptive controller for this class of problems whose order depends on m and not on n. These

controllers are motivated by problems where the order of the plant is large. In particular, in prob-

lems related to distributed parameter systems, the underlying system is truly infinite-dimensional,

in which case any rational finite-dimensional approximations thereof inevitably leads to a large n.

It is attractive in such cases to design a controller that depends on the number of integrations in the

system, i.e. the relative degree, rather than the number of state-variables in the system, by making

use of the stable zeros if the latter are present.

Since the control architecture that we propose is quite similar to that in the delay free case, we

first present the controller for a plant with no delays.

3 The Adaptive Controller in the Delay-free Case

The problem that we address in this section is the control of

y(t) = Wp(s)[u(t)], Wp(s) =
Zp(s)

Rp(s)
(3)

where Wp(s) is the transfer function of a finite-dimensional system whose order n is unknown,

relative degree m is known, zeros are in IC−, and its high frequency gain is unity. The plant poles

and zeros are unknown and it is assumed that all poles have multiplicity one.
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3.1 The controller structure

It is well known that any linear plant with stable zeros and a relative degree m can be stabilized by

a controller of the form

u = kc
(s + zc)

m−1

pc(s)
y (4)

where pc(s) is a monic polynomial of degree m − 1, for suitable values of kc and coefficients of

pc(s) . In particular, we realize the controller in (4) in the following form.

u = − p(s)

(s + zc)m−1
u − k1y (5)

p(s) = k21 + k22s + . . . + k2(m−1)s
m−2 (6)

The controller as in (5) and (6) together with the plant as in (3) results in a closed-loop transfer

function of the form

Wcl(s) =
(s + zc)

m−1Zp(s)

Rp(s)pc(s) + k1(s + zc)m−1Zp(s)
(7)

pc(s) = (s + zc)
m−1 + p(s) (8)

For a large k1, the n + m − 1 poles of Wcl(s) can be shown, using Routh-Hurwitz arguments, to

be close to the zeros of (s + zc)
m−1Zp(s) and other m stable locations, for suitable values of k2i,

i = 1, . . . , m − 1 (see Appendix A and [9] for further details).

We note that the controller in (5) and (6) can be represented by the state-variable form

ω̇1 = Λω1 + �u (9)

u = −kT
2 ω1 − k1y + r (10)

where Λ ∈ IRm×m, (Λ, �) is controllable, and

kT
2 (sI − Λ)−1� =

p(s)

(s + zc)m−1
. (11)

The above discussions also indicate that for a suitable value k∗
1 and k∗

2 of k1 and k2 respectively,

the closed-loop transfer function is stable and is given by Wcl(s).
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3.2 The adaptive controller

The controller structure in (9) and (10) suggests that when the plant parameters are unknown, an

adaptive controller with time-varying parameters of the following form can be used:

ω̇1 = Λω1 + �u (12)

u = kT
2 (t)ω1 + k1(t)y + r (13)

Expressing the control parameters as k1(t) = k∗
1 + k̃1(t), k2(t) = k∗

2 + k̃2(t), ω = [ωT
1 , y]T ,

k̃ = [k̃T
1 , k̃T

2 ]T , the closed-loop system equations can be described as

y = Wcl(s)(k̃
T ω) + r. (14)

Wcl(s) is not strictly positive real (SPR), but has stable poles, stable zeros, and is of relative degree

m. Due to these properties, it is reasonable to assume that one can find a strictly positive real

transfer function of the form

Wm(s) = Wcl(s)(s + a)m−1.

We note that there may be other ways of choosing Wm. For example, instead of adding m − 1

zeros all at −a, they could be added at m − 1 distinct locations, but for simplicity, let us assume

the above.

To enable the realization of Wm(s) in closed-loop, we choose the control input, instead of

kT (t)ω(t) + r(t), as follows:

u(t) = (s + a)m−1[kT ω′(t) + r′] (15)

ω′(t) =
1

(s + a)m−1
[ω(t)] (16)

r′(t) =
1

(s + a)m−1
[r(t)]

This will lead to

y = Wm(s)(k̃T ω′ + r′). (17)

Now, the problem is to realize (15) without explicitly differentiating any signal. Let p = m−1.

Using binomial expansion and the chain rule for differentiation, we obtain that

u = kT d0 + pk̇T d1 + ... + (pCi
)k(i)T di

+ ... + pk(p−1)T dp−1 + k(p)T dp + r (18)
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where

di(t) =

[
1

(s + a)i

]
[ω(t)], i = 1, . . . , p.

Note that all terms involving k and di are realizable. So, the only remaining piece is the realization

of derivatives of k to pth order.

The overall problem can be summarized as follows: Given the error model in Eq. (17) where

ω′ is given by (16), determine an adaptive law for adjusting k so that it is differentiable p times and

all the signals in the loop are bounded. The time-domain representation of the error model in (17)

is given by

ė = Ase + bs(k − k∗)T ω′, e1 = hT
s e (19)

where

hT
s (sI − As)

−1bs = Wm(s).

Since Wm(s) is SPR, we have that

AT
s Ps + PsAs = −Q ≤ 0, Psbs = hs (20)

We note that ω′ is differentiable p times. In what follows, ω ′
i and ki denote the ith element of a

vector ω′ and k, respectively.

Using the high-order tuners developed in [10], the following adaptive law is suggested for

adjusting k:

k̇′ = −e1ω
′ (21)

ẋi = (Axi + bk′
i)f(ω′

i), f(x) = 1 + µx2 (22)

ki = cT xi, (23)

for i = 1, . . . , m, where (c, A, b) are chosen so that

cT (sI − A)−1b =
α(0)

α(s)
(24)

and α(s) is an arbitrary stable polynomial of degree p. The choice of k as in (21)-(24) guarantees

that k is differentiable p times.
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3.3 Proof of stability

We choose a Lyapunov function candidate of the form

V = eT Pse + (k′ − k∗)T (k′ − k∗) + δ
m∑

i=1

zT
i Pzi

where

zi = xi + A−1bk′
i (25)

AT P + PA = −I

Note that from (23) and (24), it follows that

żi = Azif(ω′
i) + A−1bk̇′

i (26)

ki − k′
i = cT zi (27)

Also Eq. (19) can be expressed as

ė = Ase + bs(k
′ − k∗)T ω′ + bs(k − k′)T ω′,

e1 = hT
s e. (28)

By choosing the parameters µ and δ appropriately, we will show that V is a Lyapunov function.

Using Eqs. (20)-(28), we obtain that

V̇ = −eT Qe + 2e1

m∑
i=1

(
cT zi

)
ω′

i − δ
∑
i=1

‖zi‖2 f(ω′
i) − 2δ

∑
i=1

zT
i PA−1be1ω

′
i.

If we choose δ and µ as

δ =
‖c‖

‖PA−1b‖ µ =
4||hs||2m‖c‖2

εδ
,

and ε to be the smallest eigenvalue of Q, we can show that

V̇ ≤ −δ
m∑

i=1

‖zi‖2 −
m∑

i=1

(√
ε

m
‖e‖ −

√
δµ‖zi‖|ω′

i|
)2

.

Hence, V̇ ≤ 0. This implies that e, k ′ and zi are bounded. Therefore xi and k are bounded. Using

Barbalat’s lemma, it can be argued that limt e1(t) = 0.
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3.3.1 Robustness properties

The controller proposed in this section can be viewed as a high-gain controller similar to those in

[11]. Instead of choosing a search-algorithm, a high-order tuner is proposed to achieve stability.

Despite this high-gain feature, we show in this section that the same fixes as in standard adaptive

control such as σ-modification and dead-zone can result in a robust behavior.

The problem is to establish boundedness when an external disturbance d is present in the plant

so that

y(t) = Wp(s)[u(t) + d(t)].

The underlying error model can be derived as

ė = Ase + bs(k − k∗)Tω′ + bsd, e1 = hT
s e (29)

where

hT
s (sI − As)

−1bs = Wm(s)

and Wm(s) is SPR. The adaptive law is chosen as

k̇′ = −e1ω
′ − σ0k

′ σ0 > 0 (30)

with xi, ki, and α(s) defined as in (22), (23), and (24).

Choose

V = eT Pse + (k′ − k∗)T (k′ − k∗) + δ
m∑

i=1

zT
i Pzi

where zi is defined as in (25). The time-derivative of V is of the form

V̇ = −eT Qe + 2e1

m∑
i=1

(
cT zi

)
ω′

i − δ
∑
i=1

‖zi‖2 f(ω′
i) − 2δ

∑
i=1

zT
i PA−1be1ω

′
i

+ 2e1d − σ0k
′T (k′ − k∗) − 2δσ0

∑
i=1

zT
i PA−1bk′.

If we choose δ as

δ =
‖c‖

‖PA−1b‖
we obtain that

V̇ ≤ −
[
eT Qe + σ0 ‖k′‖2

+ δ
m∑

i=1

∥∥∥z2
i

∥∥∥ + δµ
m∑

i=1

∥∥∥z2
i

∥∥∥ω′2
i

]

+

[
2 ‖e‖ ‖hs‖ ‖dν‖ + 4 ‖c‖ ‖e1‖

m∑
i=1

‖zi‖ |ω′
i| + 2σ0 ‖k′‖ ‖k∗‖ + 2σ0 ‖c‖

m∑
i=1

‖zi‖ |k′
i|
]
.
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Completing squares, defining ε to be the smallest eigenvalue of Q and ε′ ∈ (0, 1), and choosing µ

as

µ =
4||hs||2m‖c‖2

εε′δ
(31)

we can show that

V̇ ≤ −ε(1 − ε′)
m

(
‖e‖ − ‖hs‖ ‖dν‖

(1 − ε′)ε

)2

−
(

1

m
− σ0

δ
‖c‖2

)‖k′‖ − ‖k∗‖
2m

(
1
m
− σ0

δ
‖c‖2

)
2

−
m∑

i=1

√εε′

m
‖e‖ −

√
δµ‖zi‖|ω′

i|
2

−
m∑

i=1

√ δ

σ0

‖zi‖ − ‖c‖
√

σ0

δ
‖k′‖

2

+
1

ε(1 − ε′)
‖hs‖2 d2 +

‖k∗‖2 σ0

4
(
1 − mσ0

δ
‖c‖2

) .

Hence, if σ0 is chosen such that
1

m
− σ0

δ
‖c‖2 > 0

then V̇ ≤ 0 in Dc where D is a compact set in the space (eT , (k − k∗)T , zT )T . This implies that e,

k′ and zi are bounded. Therefore xi and k are bounded, which establishes robustness.

3.4 Application to Combustion Control

Continuous combustion systems occur in several propulsion and power generation problems where

a continuous heat source is present in a confined chamber. The unsteady heat release often cou-

ples in feedback with the acoustic modes of the chamber thereby causing the modes to be driven

into resonance. This dynamic instability often occurs at operating points of interest where low

emissions, high volumetric heat-release, and high efficiency are achievable. To help realize these

desired objectives, active control technology has been shown to be an effective tool [12]. Recent

results have shown that a systematic methodology that uses a model-based control strategy opti-

mizes the performance of the combustion system [13]. We discuss one such model and its control

below.

The plant to be controlled is of the form [7]

Pref = W (s)Vc where W (s) = W0(s)e
−sτ , (32)
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Vc is the voltage supplied to a fuel injector that modulates a secondary fuel source thereby affecting

the unsteady heat release, and Pref is an acoustic measurement from a reference location in the

combustor. The transfer function W0(s) is given by

W0(s) =
F (s)G(s)Wac(s)

1 − G(s)H(s)
(33)

where (see figure 1 for a schematic) G(s) describes the acoustic response of the duct and is of the

H(s)
flame dynamics

G(s)
acoustic waves

CONTROLLER

F(s) e-sΤdet

acoustic waves

Wac(s) e-sΤac
from control output
til fuel combustion

Vc

Pref

SENSOR

ACTUATOR

u1

Q

Qn

Qc

COMBUSTION SYSTEM

+

+

Figure 1: The control of a combustion system

form

G(s) =
(RdY12e

−sτd − X12)(Rue
−sτu − 1)

Aρ̄1c̄2
1 det(S)

(34)

where

S =

(
X11 − RuY11e

−sτu X12 − RdY12e
−sτd

X21 − RuY21e
−sτu X22 − RdY22e

−sτd

)
(35)

Rd, Ru are pressure reflection coefficients at the upstream and downstream ends, respectively. Xij

and Yij are constants determined by the conservation equations, ρ̄1 is the density, and c̄1 is the

speed of sound. τ represents the time-delay due to actuation and detection time-delay due to the

location of the pressure measurement, τu and τd are time-delays associated with the acoustic wave

propagation upstream and downstream of the combustion zone. H(s) represents the combustion

response whose precise structure varies with the nature of the flame stabilization mechanism in a
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given combustor. F (s) represents the coupling relation between the pressure and the velocity and

is of the form

F (s) = ρ̄1c̄1
1 + Rue

−2s(xu+xref )

c̄1(1−M̄2
1
)

Rue−sτu − 1
e

sxref
c̄1−ū1 (36)

where xu and xref are the upstream end and sensor location, respectively, and M1 and u1 are the

Mach number and mean flow velocity in the cold section, respectively. Wac(s) is the transfer

function of the fuel-injector.

As can be seen, W0(s) is an infinite-dimensional system. Using a Pade approximation, W0(s)

can be approximated by a rational transfer function of order n. Using the underlying physics, for

any n, one can derive the following properties of W (s) [7]: (i) Since the flame is stable, W0(s) has

stable zeros; (ii) The relative degree of W0(s) is equal to the relative degree of the actuator transfer

function Wac(s) for simple flame models and can be larger for more complex flame models; (iii)

The high frequency gain of W0(s) is positive. Since the order n in general depends on the level of

approximation that is needed in a given problem, it cannot be assumed to be known. As a result,

the controller proposed in this paper is necessary because its design depends on the plant relative

degree and not on the plant order.

The above model was simulated using a Pade approximation of W0(s) where all poles and

zeros less than 1100 rad/s were included in the control design, which yielded a relative degree

of four. Of the poles, two pairs corresponded to unstable locations. Both the fixed version of the

controller described in Eqs. (5) and (6) and the adaptive controllers described in (18), (21)-(23) was

simulated in closed-loop. The resulting performances of the input u and the output y are shown in

figure 2 for the controller parameters k1 = 9, k21 = 66100, k22 = 19000, k23 = −6085, zc = 1000.

Both controllers yielded a satisfactory performance. It was also observed that the same system was

not stabilizable using a controller with a lower order.

4 The Adaptive Controller in the Presence of a Delay

We now consider a plant with a time-delay as in Eq. (1). In [7], a low-order adaptive controller

has been derived for plants with a time-delay for the case when the relative degree of the finite-

dimensional part of the plant has a relative degree two. The stability proof consists, as in [6,
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Figure 2: The performance of a relative degree four controller during the control of a combustion
system in Eq. (32)

20], of the construction of a Lyapunov-Krasovskii functional. The results of the previous section

demonstrate that it is possible to derive a low-order controller for plants with an arbitrary relative

degree in a stable manner. The question is if these two approaches can be combined somehow to

guarantee any plants of the form of (1) where the only requirements regarding the plant are that

the relative degree of Wp(s) is known, it is minimum phase with a known high frequency gain, and

that its delay is known. In this section, we present a controller structure, its adaptive version, and

show that it can be stabilized for all initial conditions within a compact set and for all τ ≤ τ ∗, for

a given τ ∗.

4.1 The controller structure

Since the controller structure to be used for a plant with an arbitrary relative degree and a delay is

quite similar to that for a plant with relative degree two, we present both of the cases below.

4.1.1 Case (i) m = 2

When the plant relative degree is equal to two, it was shown in [7] that the following controller

suffices:

u(t) =

[
k2

s + zc

]
u(t) + u1(t) + k1y(t)

u1(t) =

0∫
−τ

n∑
i=1

αie
−βiσu(t + σ) dσ (37)
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We note that this is possible since

u1(t) =

(
n1(s)

Rp(s)
− n2(s)

Rp(s)
e−sτ

)
[u(t)],

where

n1(s)

Rp(s)
=

n∑
i=1

αi

s − βi

,
n2(s)

Rp(s)
=

n∑
i=1

αi

s − βi

eβiτ (38)

For a small τ , as shown in [7], the controller stabilizes the plant. For implementation purposes, the

control input in (37) is discretized as

u1(t) =
N∑

i=1

λ∗
i u(t − i∆) (39)

for a sampling interval of ∆.

4.1.2 Case (ii) m ≥ 2

The controller structures in sections 3 and 4.1.1 imply that the following stabilizes a system with

delay and arbitrary relative degree:

u = −kT
2 ω1 − k1y + u1 + r (40)

where k2, k1, and ω1 are defined as in (9)-(11), and u1 is given by (39). Using a combination of the

proofs in appendices A and B, it can be shown that the above controller stabilizes the plant for a

small τ , k1 = k∗
1 , k2 = k∗

2 , and λ∗, and leads to a closed-loop transfer function of the form

Wcl(s) = Wcl0(s)e
−τs (41)

where Wcl0(s) has stable zeros, and has a relative degree equal to that of the plant. This sets the

stage for the adaptive controller design, described in the section below.

4.2 The adaptive controller

We introduce the controller parameter vector and the error parameter vector k̃ = k − k∗. We also

denote

d(t)T = [y(t), V1(t), V2(t), ...Vm−1(t), u(t− N∆), ..., u(t − ∆)]
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where

Vi(t) =
si−1

(s + zc)m−1
[u(t)] , 1 ≤ i ≤ m − 1.

Similar to the delay free case, the closed-loop transfer function Wcl(s) is made to effectively

have a relative degree unity by modifying the control signal u as

u(t) = (s + a)m−1
[
kT (t).da(t)

]
(42)

where

da(t) =
1

(s + a)m−1
[d(t)] . (43)

Equation (42) can be rewritten as

u(t) =
m−1∑
i=0

Ci
m−1k

(i)T

(t)di(t). (44)

where Cj
i denotes the number of j-combinations of i elements,

k(i)T

(t) =
di(k)

dti
(t)

di(t) =
1

(s + a)i
[d(t)] (45)

As in the delay-free case, we express the control parameters as k(t) = k∗ + k̃(t), to obtain the

closed-loop system equations

y = Wcl(s)(k̃
T ω) + r (46)

where Wcl(s) is given by (41). Defining e1 = yp − ym, we obtain that

e1(t) = Wm(s)e−sτ
[
k̃T (t).da(t)

]
(47)

where Wm(s) = (s + a)m−1Wcl0(s) has relative degree unity and is SPR.

The overall problem can be summarized thus: given the error model (47) where da is given by

Eq. (43), determine an adaptive law for adjusting k so that it is differentiable m − 1 times and all

signals in the loop are bounded. A time domain representation of Eq. (47) follows:

ė(t) = Ase + bs (k(t − τ) − k∗)T .da(t − τ)

e1(t) = hT
s .e(t) (48)
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where (hs, As, bs) is a state space representation of Wm(s), that is, we have

hT
s (sI − As)

−1bs = Wm(s). (49)

Since Wm(s) is SPR, for any matrix Qs symmetric strictly positive, there exists a matrix Ps sym-

metric strictly positive, such that

AT
s Ps + P T

s As = −Qs

Psbs = hs (50)

We note that da is differentiable m− 1 times. In what follows, dai
and ki denote the ith element of

the vectors da and k, respectively.

The following adaptive law is suggested for adjusting k:

k̇′(t) = −e1(t)da(t − τ) (51)

ẋi(t) = (Axi + bk′
i)f(dai

(t − τ)) (52)

ki = cT .xi (53)

for i = 1, ..., m + N , where f(·) is defined as in (22) and (c, A, b) are chosen so that

cT (sI − A)−1b =
α(0)

α(s)
(54)

and α(s) is a stable polynomial of degree m − 1. The choice of k as in Eqs. (51)-(53) guarantees

that k is differentiable m − 1 times.

4.3 Proof of Stability

As in [6, 20], we shall introduce first a model transformation of (48) using an integration over one

delay interval [−τ, 0], that is:

ė(t) = Ase + bs (k(t) − k∗)T .da(t − τ)

− bs

∫ 0

−τ
k̇(t + θ)T da(t − τ)dθ. (55)

The next step is to introduce the following Lyapunov function candidate:

V =
4∑

i=1

Vi

15



V1 = eT Pse, V2 = (k′ − k∗)T (k′ − k∗)

V3 = δ
m∑

i=1

zT
i Pzi,

V4 =
m∑

i=1

0∫
−τ

t∫
t+ν

‖cT Azi(ξ)‖2f(dai
(ξ − τ))2dξdν (56)

zi = xi + A−1bk′
i, AT P + P TA = −I (57)

δ =
‖c‖

‖PA−1b‖
Note that Eq. (56) is similar to the delay free case, except that the Lyapunov-Krasovskii functional

V4 in Eq. (56)) has been added, as suggested by Burton [14] (for a second order example), and

Niculescu [15] for dealing with time delays.

Using (57) and (52) in (55), it follows:

ė(t) = Ase + bs (k(t) − k∗)T .da(t − τ)

−bs

m∑
i=1

(∫ 0

−τ
cT Azi(t + θ)dai

(t − τ)f(dai
(t + θ − τ))dθ

)
.

In equations (52) and (56), µ is a positive parameter that will be chosen so that V̇ ≤ 0. Denoting

cT Azi(t + θ)f(dai
(t + θ − τ) = a, e1(t)dai

(t − τ) = b

it can be shown that

V̇ ≤ −eT Qse − δ
m∑

i=1

‖zi‖2f(dai
(t − τ)) −

m∑
i=1

∫ 0

−τ

(
a2 − 2|a||b| + b2

)
dθ

+4
m∑

i=1

‖c‖‖zi(t)‖|e1(t)||dai
(t − τ)| +

m∑
i=1

∫ 0

−τ

[
‖cT Azi(t)‖2f(dai

(t − τ))2 + b2
]
dθ.

Expressing Qs = Q1 + Q2, where both Q1 and Q2 are positive-definite matrices, denoting ε as

the minimum eigenvalue of Q2, and choosing µ as

µ =
4‖hs‖2m‖c‖2

εδ

we obtain that

V̇ (t) ≤ −eT
(
Q1 − τdT

a (t − τ)da(t − τ)hT
s hs

)
e −

m∑
i=1

(√
ε

m
‖e‖ −

√
δµ‖zi‖|dai

(t − τ)|
)2

−
m∑

i=1

(
δ − τ‖cT A‖2(1 + µ | dai

(t − τ) |2)2
)
‖zi‖2. (58)
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Thus, V̇ is negative-definite if τ satisfies both of the inequalities

Q1 − τda(t − τ)T da(t − τ)hsh
T
s > αI (59)

δ − τ‖cT A‖2
(
1 + µd2

ai
(t − τ)

)2
> 0 (60)

for some α > 0. We show below that the conditions in Eqs. (59) and (60) can be replaced by

bounds on states at time t0 and over the interval [t0 − τ, t0] so that the domain of attraction over

which V̇ ≤ 0 can be delineated more precisely.

Suppose the values of da over [t0 − τ, t0) are such that

sup
θ∈[t0−τ,t0)

‖da(θ)‖2 ≤ γ (61)

for some real positive γ, and a delay value τ̄1 is such that{
Q − τ̄1γhsh

T
s > αI

δ − τ̄1‖cT A‖(1 + µγ)2 > 0.
(62)

Then using the step-by-step type argument for the construction of the solution of the associated

FDE with persistent perturbation [16], it follows that combining both (61) and (62) on the interval

[t0, t0 + τ), the following inequalities{
Q − τda(ξ − τ)T da(ξ − τ)hsh

T
s > εI

δ − τm‖cT A‖γ(1 + µ | dai
(ξ − τ) |2)2 > 0.

(63)

are satisfied for all τ ∈ [0, τ̄1(γ)), and for all ξ ∈ [t0, t0 + τ). From the structure of the inequality

in (58), it also follows that the Lyapunov-Krasovskii functional V is non-increasing on the interval

[t0, t0 + τ), if the bound on the delay τ is given by τ̄1. In addition, since V is a positive-definite

function of e, we have that

λmin(Ps)‖e(ζ)‖2 ≤ V (ζ) ≤ V (t0), ∀ζ ∈ [t0, t0 + τ).

We note that X = e + Xm, where X and Xm are the overall states of the closed-loop system and

the reference model, respectively, Xm is bounded, and that d is a sub-vector of X . Therefore, da(t)

is bounded on the (first) delay interval [t0, t0 + τ), and the corresponding bound is given by:

sup
θ∈[t0,t0+τ)

‖da(θ)‖2 ≤ V (t0)

λmin(Ps)
+ Xmo = γ2(t0)

(64)
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where Xmo depends on the model initial conditions. Note that the bound γ2(t0) includes informa-

tion only with respect to the initial data of the system.

Let us consider now the derivative of V on the (second) delay interval [t0 + τ, t0 + 2τ). Using

the form of (62) and (64) on [t0, t0 + τ), it follows that the derivative of V is negative if the delay

τ is bounded by τ < τ̄2, where τ̄2 satisfies the inequalities:{
Q − τ̄2γ2hsh

T
s > αI

δ − τ̄2‖cT A‖(1 + µγ2)
2 > 0.

(65)

By repeating the above process, it can be shown that the constructions above also hold on the next

delay intervals [t0 + (k − 1)τ, t0 + kτ) for (any) positive integer k ≥ 2. It therefore follows that if

τ̄ = min {τ̄1(γ), τ̄2(γ2)} . (66)

where τ̄1 and τ̄2 satisfy Eqs. (62) and (65) respectively, then the inequalities in (58) are satisfied

for all t ≥ t0. Hence, all the signals are bounded, and using the same arguments as in [17], it can

be shown that lim
t→+∞ ‖e(t)‖ = 0. This leads to our main result of this section:

Theorem 1 Consider the plant in (1), the model in (2), the control input as in (44), and the adap-

tive law specified by Eqs. (51)-(53). Then for any da satisfying the inequality (61) on [t0 − τ, t0)

where γ > 0, and for any delay τ < τ̄ given by (66), it can be shown that

(i) the closed-loop system has globally bounded solutions, and

(ii) limt→+∞ ‖e(t)‖ = 0,

Remarks:

1. The controller in (44) is of the order of m − 1 and is therefore independent of the order of

the plant. Therefore, in all problems where m << n, the proposed solution results in a low-

order controller leading to a stable performance. We also note that in problems where the

goal is one of stabilization rather than tracking, no knowledge of the reference model Wm(s)

is required. The stability arguments presented also indicate that stabilization is enabled

through a “high-gain” in the controller parameters. It is interesting to note that despite such

a high-gain characteristic, the controller structure is still capable of accommodating large
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time-delays in the plant. Recent numerical and experimental studies have reported that these

controllers can be implemented successfully in practical applications. The same robustness

properties as in Section 3.3.1 can be derived here as well by adding a term −σ0k
′ to the

adaptive law in Eq. (51).

2. The proof of stability is demonstrated in a straightforward manner through the use of Lya-

punov functions. As a result, estimates of transient performance of the adaptive system can

be derived quite easily. In this regard, the controller represents an improvement over those

based on augmented errors [5] or recursive Lyapunov functions [18].

3. A combination of various tools has been incorporated in the proposed adaptive controller.

The first is the introduction of a controller that is based on the relative degree of the plant,

which exploits its high-gain properties for stabilization and the presence of stable plant zeros.

The second is a variation of the pole-placement controller proposed in [4] and is modified

in [9] so as to produce a reduced-order controller. The third is the utilization of high-order

tuners proposed in [10]. While the details of the control laws differ from those in [10], the

general idea behind the control laws was inspired by the results in [10]. The final component

is the construction of the Lyapunov-Krasvoskii functional to demonstrate stability. All of the

four components were used to demonstrate closed-loop stability.

4. Further improvements of the delay bounds can be obtained if V4 in the Lyapunov candidate

V is replaced by:

V4(t) =
m∑

i=1

0∫
−τ

t∫
t+ν

‖cTAzi(ξ)‖2
[
1 + µ2dai

(ξ − τ)4
]
dξdν.

Using the same computational scheme, the inequality in (60) will become:

δ − τ‖cT A‖2
(
1 + µ2dai

(t − τ)4
)

> 0 (67)

which is less conservative than (60).

5. The adaptive controllers proposed in this paper for the case when m = 2 have been imple-

mented experimentally both on a bench-top [7], and on a medium-scale combustion rig [19],

and resulted in about 20 db reduction in pressure in the combustion system.
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5 Summary

In this paper, the problem of adaptive control in the presence of large time-delays is considered.

The control architecture proposed consists of a reduced order controller that depends on the relative

degree of the plant rather than its order which is combined with a posicast control structure. This

architecture is shown to be amenable to adaptation and to lead to stability within a bounded domain

for a small time-delay. Stable adaptive laws that are implementable were generated by using high-

order tuners and a Lyapunov-Krasvoskii functional and are in turn used to guarantee closed-loop

stability.
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Appendix A

The characteristic polynomial of the closed-loop system in (8) can be rewritten as

Rcl(s) = Rp(s)pc(s) + k1(s + zc)
m−1Zp(s)

where

pc(s) = sm−1 +
m−2∑
i=0

si
(
Ci

m−1z
m−1−i
c + k2(i+1)

)

for suitable constants C i
m−1, i = 0, . . . , m − 2. For k1 > 0 and large, n − 1 roots of Rcl(s) are

close to the zeros of (s + zc)
m−1Zp(s), and hence are stable. The remaining m zeros of Rcl(s) are

found at large s, and can be shown to be the roots of the polynomial

R(s) = sm + cm−1s
m−1 + · · ·+ c1s + c0

where

cm−1 = Cm−2
m−1zc + k2,m−1 + bn−1

cm−2 = Cm−3
m−1z

2
c + k2,m−2 + bn−2

+bn−1

(
Cm−2

m−1zc + k2,m−1

)
... = ...
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ci = Ci−1
m−1z

m−i
c + k2,i + bn−m+i

+
m−i−1∑

j=1

bn−j

(
Ci−1+j

m−1 zm−j−i
c + k2,i+j

)
... = ...

c0 = bn−m +
m−1∑
j=1

bn−j

(
Cj−1

m−1z
m−j
c + k2,j

)
+k0k1

The above relations imply that for a suitable choice of k21, k22, . . ., k2(m−1), coefficients c0, . . . , cm−1

can be found such that R(s) is a Hurwitz polynomial. Therefore it follows that Rcl(s) is a Hurwitz

polynomial as well. •
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