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Adaptive Control of a Simple Nonlinear 
System without a priori Information 

on the Plant Parameters 
Rogelio Lozano and 

Absfract-This paper presents an adaptive control scheme for 
nonlinear systems of the form x = c * ~ ~ ( x )  + b*u, where f ( x )  
is Lipschitz, c* is a constant vector, and b* is a constant scalar. 
The control scheme achieves asymptotical model matching with- 
out a priori knowledge of the sign of the b* gain. The adaptive 
scheme is free from singularities in the sense that the estimate of 
b*, entering in the denominator of the control law, is bounded 
away from zero. The singularity has been overcome through a 
suitable modification of the parameters estimates which is based 
on standard least squares covariance matrix properties. 

I. INTRODUCTION 

DAPTIVE control of linear continuous-time systems A has been successfully developed in the last decade 
[ 11 - [3]. Nevertheless it is only recently that adaptive systems 
techniques have been considered to control nonlinear systems 
[4] - [6]. These results represent contributions to the field and 
open the way to the application of adaptive control to nonlin- 
ear plants. However, there still exist some problems that 
have not been clearly solved in the linear case and are even 
more complex in the nonlinear case. In particular, the prob- 
lem associated to the a priori knowledge of the high- 
frequency gain raised in [7], has not received a satisfactory 
answer and deserves special attention in the nonlinear case. It 
is clear that there exist particular cases for which the sign of 
the frequency gain can be known a priori. Furthermore, 
if the plant is stable and, provided we can introduce 
high-frequency probing signals into the system, then the 
high-frequency gain can be identified off-line before the 
adaptive control is applied to the system. However, the 
assumption on the knowledge of the sign of the high-frequency 
gain does not appear to be realistic in the general case. 

One of the first adaptive control algorithms for nonlinear 
systems was presented in [ 5 ] .  Nevertheless this control 
scheme is not free from eventual singularities. Indeed the 
control law’s denominator is a function of the parameters 
estimates and has not been ensured to be bounded away from 
zero. 

The first adaptive control scheme for linear systems not 
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using the a priori knowledge of the sign of the high-frequency 
gain was presented in [8]. This technique was generalized in 
[9] for linear systems, and was used in [6] to develop a 
control scheme for first-order nonlinear systems. However, 
the main drawback of schemes based on the Nussbaum’s gain 
in [8] is that the transient behavior is quite violent. 

An alternative way to solve the problem was presented in 
[lo] based on a particular modification of the parameters 
estimates to avoid division by zero. The technique follows 
the work in [ 111 for discrete-time systems, however, the 
problem of existence of solutions that arises naturally in 
continuous-time adaptive control has not been addressed. 

In [12] it is shown that if one uses an adequate discontinu- 
ous control, similar to the one proposed in [lo] and 1111, 
then existence of the solutions is ensured and all the signals 
remain bounded. The proof of boundedness was carried out 
assuming that the time derivative of the output was available 
to the parameter estimator and current research is under way 
to extend the result. 

In this paper, we present an adaptive control for nonlinear 
systems of the form x = c*Tf(x) + b*u, where f ( x )  is 
Lipschitz, c* is a constant vector, and b* is a constant 
scalar. The control scheme is shown to achieve asymptotical 
model matching and keep all the signals bounded without 
requiring knowledge of the sign of the b* gain. Loss of 
stabilizability of the estimated model is avoided by appropri- 
ately modifying the parameters estimates. The proposed mod- 
ification is based on the least squares covariance matrix and 
is done in such a way that the modified estimates preserve the 
essential properties of the original estimates. Furthermore, 
the analysis establishes existence of solutions of the various 
ordinary differential equations involved in the closed-loop 
control scheme following the ideas in [13] and [14]. A short 
preliminary version of the present paper was presented in 
[ 151 but unfortunately the problem of existence of solutions 
was not considered at that time. 

The outline of the paper is as follows. Section I1 presents 
the problem formulation and the developments to obtain the 
error equation. The parameters estimation algorithm and the 
estimates modification procedure are described in Section 111. 
Section IV presents the full set of ordinary differential equa- 
tions involved in the closed-loop adaptive control system. 
Section V is devoted to show the existence of the solutions 
and some properties of the proposed estimation algorithm. 
The rest of the convergence analysis is found in Section VI. 
The conclusions are finally given in Section VII. 
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11. PROBLEM FORMULATION 
Consider the class of nonlinear systems 

k = c*?( X )  + b*u (1) 

where x ,  U E R, b* is a constant scalar, and c* is a constant 
vector. We make the following assumptions on the system. 

Assumptions 
AI:  b* i+ 0. 
A2: f ( x )  is a known Lipschitz vector function satisfying 

I ( f ( x ) I ( s k l x l  + k  f o r s o m e k > O .  (2) 

the sector condition 

The desired state trajectory is given by the model 

x, = -ax, + r ( 3 )  
where a > 0 and r is a bounded reference input. 

Define the tracking error as 

e = x - x ,  
therefore 

(4) 

( 5 )  

(6) 

p = -ae - e*'$ + ax - r 

where 

e*T = [b* ,  c*'] 

4' = [ - U ,  - f ( x ) ' ] .  (7) 

Equation ( 5 )  can also be written as 

e = h * ( - e*'$ + ax - r > (8) 
where h * w denotes the convolution between h and w, and 
h is the inverse Laplace transform of H ( s )  given by 

1 

s + a  H ( s )  = -. (9) 

Since H(s )  is an asymptotically stable transfer function, it 
is clear from (8) that if the control input is such that 

-e*'+ + ax - r = o (10) 
or equivalently 

-c*'f(x)  - ax + r 
b* U =  (10)' 

then the tracking error e will converge to zero. When the 
parameters vector 8* is unknown, it is standard to replace it 
by its estimate 8 to obtain an adaptive control scheme. The 
parameters estimates vector 6 is decomposed as e* in (6) ,  
i.e., 

eT = [ b ,  c'] .  (11) 

Nevertheless, b in f3 may approach zero and consequently 
such an adaptive control law would not be implementable. 
Therefore, instead of using directly the current parameters 
estimates 8 we propose to appropriately modify them before 
using them in the adaptive control law to avoid any singulari- 
ties. The modified estimates vector will be denoted by e and 

is also decomposed as 

e = [ b ,  c']. (12) 

Th6 adaptive control law using the modified parameter esti- 
mates is given by 

-c ' f (x)  - ax + r 
b 

U =  - (13) 

(13)' 

or equivalently 

-P'4 + ax - r = 0. 

The modified parameters are given by 

& = O + P ( Y  (14) 

where 6 is the estimates vector, P is the covariance matrix, 
and (Y is the correction vector in Fig. 1 that will be defined in 
the next section. 

Augmented Error Equation 

error (8)  we obtain 
Introducing the adaptive control law (13)' into the equation 

e = h* ( (e  - 6*)'4). 

e = h * (8'4 + a ' ~ 4 )  

(15) 

(16) 

(17) 

e , = e - h * ( a ' ~ $ )  + e T h * ( + )  - h * ( ~ ' $ ) .  (18) 

Introducing (14) into (15) we obtain 

where 
8 = e - e * .  

Let us now define the following augmented error 

Since the constant 8" commutes with convolution 

e , = e - h * ( a ' P $ )  +d 'h*(+)  - h * ( d T 4 ) .  (19) 

Introducing (16) into the above equation, we finally obtain 

e ,  = d't (20) 

E = h* (4) .  (21) 

where 

111. PARAMETERS ESTIMATION AND CORRECTION 
PROCEDURE 

In order to complete the adaptive control design, we define 
next the parameters estimates vector 0 ,  the covariance matrix 
P ,  and the correction vector (Y that were mentioned in the 
previous section. 

As parameter adjustment law we will use the following 
normalized least squares (LS) algorithm 

m = max(1 + 1 x 1 ) .  
t 
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Equation (18) can also be rewritten as (see also (4), (9), and 
(21)) 

a =L llpll 
e ,  = x - x ,  - z ,  + e% - z2  (28) 

where z ,  and z2 are defined below and 4 in (21) can also be 
written as follows 

i, = - a z ,  + a T p d  

g =  - a4 + 4 

(29) 

- &llPll e/bl i2 = -az2  + er# t 30) 

(31) 

llpil - 2 llbll 

n=o L& . 
Fig. 1. Parameters estimates modification procedure. 

where 4 is given in (7) or, introducing (13) 
Parameters Estimates Mod@cation 

In order to avoid any possible singularities in the adaptive 
control we propose to modify the estimates as in (14) with CY 

zT f (  x) + ax - r 

- -  
as in Fig. 1 .  Aswill appear clear later, the hysteresis in CY i s  
introduced to ensure that the modified parameters vector 8 
converge and to prevent the discontinuities in 01 from occur- 

Therefore the full set of ordinary differential equations 
involved in the closed-loop system are (see (3), (22), (23), 

ring an infinite number of times or infinitely often. The (27), (29)- (3 1)) 
correction vector CY in Fig. 1 was first used in [16]. In Fig. 1 ,  
p T  denotes the first row of P ,  b the first element of 8 ,  and E 

is an arbitrary constant such that 0 < E @ 1 [ -~'f(x\- ax + r 
x = c*'f(  x )  + b* 

p T = [ l  0 - * *  O ] P  
O < E @ l .  

The Reasoning Behind the Estimates Modification 
The parameters estimates modification described in (14) 

and Fig. 1 is based on the following two properties of least 
squares estimation algorithms. First, that under certain condi- 
tions, adding a vector on the image of the covariance matrix 
P to the current estimates, as in (14), does not change the 
basic convergence properties of the original estimates. This 
will be shown in Section VI. Second, that the estimate b and 
its corresponding row in P ,  i.e., p ,  never vanish simultane- 
ously. This is shown in Lemma 2.  Therefore, CY in Fig. 1 is 
chosen equal to 0 when b is larger than a certain fraction 
of ( 1  P I ( ,  otherwise is chosen equal to p /  I( P I ( .  This choice 
of CY guarantees a lower bound for I b I as is established in 
Lemma 2. The hysteresis in Fig. 1 is introduced to avoid that 
the discontinuities occur infinitely often and also to guarantee 
that the modified estimates converge. 

IV. CLOSED-LOOP SYSTEM STATE-SPACE 
REPRESENTATION 

The adaptive control scheme presented in the previous 
sections is unconventional in adaptive systems because it 
involves nonlinearities and discontinuities. Therefore the 
question of existence and uniqueness of the solutions of the 
overall nonlinear system has to be examined. For that pur- 
pose this section presents the complete closed-loop system 
state-space representation. 

Introducing the adaptive control law (13) into the system 
(1) we obtain 

[ -Ff(x\-- ax + r 
x = c*Tf( x )  + b* 

X ,  = - a x ,  + r 

z ,  = - a z ,  + aTP# 

z 2  = -az2  + e %  } (33) 

i =  - a t  + d I 

nith e'= [b, C T ]  in (14), 4 in (32), e,  in (28), m in (24) 
and CY in Fig. 1. 

V. EXISTENCE AND UNIQUENESS OF SOLUTIONS 
In this section, we present the convergence properties of 

the parameters estimation algorithm and those of the esti- 
mates modification procedure proposed in the previous sec- 
tions. These properties allow us to establish the existence and 
uniqueness of solutions of the ordinary differential equations 
(33) involved in the closed-loop control system. These results 
are a prerequisite to the convergence analysis given in the 
next section. 

Let us denote by xCI the state of entire closed-loop control 
system (33). Thus xCI is formed by the augmentation of the 
states x, x , ,  z , ,  z 2 ,  4 ,  0 and the rows of P .  

Definition: Let us define D, = EO, t , )  x B as the bounded 
domain for { t ,  x , , }  where 0 5 t < t ,  and x,, E B ,  for some 
open connected set B E 9 n. The time t ,  is defined in such a 
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way that CY presents no discontinuities in the interval [0, t , )  
(i.e., CY remains either equal to 0 or equal to p /  ( 1  p ( l )  and 
also such that 5 is bounded away from zero in [0, t , ) .  

Lemma I :  The closed-loop control system differential 
equations (33) have a solution on the bounded domain D,. 

Proof: Examination of the differential equations (t3) 
reveals that the main source of discontinuities is CY (or e ) .  
Since m in (24) is nonsingular, it does not introduce any 
undesirable effects on (33). In view of the definition of the 
bounded domain D, it follows that the RHS of (33) is 
Lipschitz in D, (see [13], [14], and [17]). Therefore, for any 
initial condition in D,, a unique solution exists for 0 I 

The following lemma establishes that the estimates modi- 
fication procedure defined in Fig. 1 is such that, along th_e 
solutions in the domain D,, the hysteresis width in CY and b 
remain bounded away from zero. 

Lemma 2: The parameters estimation algorithm and the 
estimates correction procedure defined in Section 111 are such 
that the following results hold along the solutions in D, = 
[0, t , )  X B .  Furthermore, the results hold independently of 
the size of B .  

t < t , .  + 

1) P - ' e  = p- ' (0 )8 (0 )  

2) l b l  + IIPII 2 b' 

(34) 

(35) 

with 

b' = I b*)/max(l,)IP-'(0)8(0)/() (36) 
- I - €  

3) ( b (  2- 6'.  
3 + E  

Proof: 
1) Derivating the expression PP- ' = I one obtains 

(37) 

(38) 
- p -  'Pp-  I 

dP- _ -  
dt 

Introducing (23) we get 

(39) 

Using (17), (22), and the above, it follows that 

d ( P - l 8 )  [ F T -  4 
-- - ---e - -e m2 m z  a'  dt 

Introducing (20) in the above we finally obtain 

d( P-  '8) 
dt = o  (40) 

from which (34) follows. 
2) Equation (34) can also be rewritten as 

e = PP-yo)iT(o). 

Premultiplying the above by [lo0 . . 001 we obtain (see also 
(6), (111, (171, and (25)) 

b - b* = pTP- '(0)6(o). (41) 

We then have 

I b* I = / b - p r p -  I(O)J(O) I 
I I b I + I1 P I1 ( 1  p -  I ( 0 ) m  I( 
5 ( I b I + I1 P 11) max (1 11 P-  '(o)e(o> 11) 

from which (35) follows. 
3) We will study separately the only two possible cases. 
Case CY = 0: From (14) we have 

- 
b = b .  (42) 

From Fig. 1 

IIPII - 2 1 6 1  S E I b l  

IlPIl 5 @ + E ) l b l .  (43) 

b' 5 1 b (  + ( ( p ( (  9 (3  + E )  16)  = (3 + E )  151. (44) 

or 

Introducing (42) and (43) into (35) 

Therefore (37) is verified in this case. 
Case CY = p /  11 pII : From Fig. 1 

IIPII - 2 l b l  2 -EllPll. (45) 

From (14) we have (see also ( l l ) ,  (12), and (25)) 
- 
b = b +P=P/llPll. 

Therefore 

P I  = I b +  IIPIII 

5 IIPII - I b l  
1 I 

= -1lPIl 2 + 5[IIPII - 2 l l ~ l I l  

1 1 
=T 5 II PI1 - :-E I1 PI1 (using (45)) 

1 - - E  

2 
- - --IIPIl' 

Combining (35) and (45) 

b' 5 I b l  + IIPII 
1 + E  3 + E  

5 --llPIl 2 + IIPII = T I I P I I .  (47) 

Introducing (47) into (46) we obtain 

- 1--E 1 - E  
l b l  2 2 l l P l l 2  - b' 

3 + E  
which concludes the proof. + 

In view of Lemma 2, the result in Lemma 1 can be 
extended to hold in a larger domain which is established next, 

Definition: Let us now define D = [0, T )  x B as the 
bounded domain for { T ,  x,,}  where T E  JT and x,, E B ,  
for some open connected set B E 3' ". 

Lemma 3: The closed-loop control system differential 
equations (33) have a solution on the bounded domain D = 
[0, T )  x B .  

Proof: Lemma 1 establishes the existence of the solu- 
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tions of (33) in D,. That means that the solution exists as 
long as x,, E B ,  b is bounded away from zero and CY prese? 
no discontinuities. On the other hand, Lemma 2 shows that b 
remains bounded away from zero (see (37)) along the solu- 
tions in D, . We conclude then that the solution exists as long 
as x,, E B and CY present no discontinuities. Lemma 2 also 
shows that the hysteresis width of CY in Fig. 1 is bounded 
away from zero (see (35)). Thus, as long as x,, E B ,  the time 
between two consecutive discontinuities in CY will be clearly 
different from zero. This allows us to define a set of solutions 
in D,: the first solution starts at the initial condition and ends 
when the first discontinuity in CY occur, the second solution 
starts at the final value of the first solution and ends when the 
second discontinuity occur, and so on. The RHS of (33) is 
piecewise continuous in D and we can define a solution in 
the bounded domain D as the concatenation of the solutions 
in D, defined in between those time instants where disconti- 
nuities in CY occur. The solution can be extended to the 
boundary of B ,  i.e., the existence of solutions of (33) is + 

The following lemma establishes boundedness of the pa- 
rameters estimates 0 and the covariance matrix P in the 
domain D = [0, T )  x B independently of the size of B .  
This will allow us later to extend the solutions to a larger 
domain. 

Lemma 4: The parameters estimates 0 and the covariance 
matrix P remain bounded along the solutions of the differ- 
ential equations (33) in the domain D = [0, T )  x B inde- 
pendently of the size of B,  i.e., 

(48) 

(49) 

guaranteed as long as x,, is in B .  

1) 0 < P I P(0)  

2 )  Ilell 1 1 1  P(0)II 11 P-'(O)e(O)ll 

1) Integrating (39) 

0 < t I T 

0 < t I T .  

Proof: 

equations (33) have a solution over the interval [0, T )  with 
T E @. Furthermore, the state x,, of the closed-loop system 
(33) does not grow faster than exponentially. 

Proof: Lemma 3 shows that the differential equations 
(33) have a solution on the bounded domain D = [0, T )  x B .  
On the other hand, Lemma 4 establishes that 0 and P in (33) 
remain bounded independently of the size of the open con- 
nected set B .  Since 8 and P are bounded, let us now 
consider only the reduced state w r  = [ x ,  x,, z ,  , z 2 ,  E in 
(33). Since by assumption A2, f ( x )  is Lipschitz, it follows 
that the dynamic equations corresponding to w have a 
RHS that is Lipschitz (see (33)) along the solutions in D. 
Therefore, w does not grow faster than exponentially in D. 
Furthermore, since the bounds on 0 and P are independent 
of the size of B ,  the set B can be chosen arbitrarily large and 
it follows then that w does not grow faster than exponentially 
in a domain D = [0, T )  x B with B arbitrarily large. 
Therefore the solutions of (33) exists for 0 I t < 00 and w 
does not grow faster than exponentially in 0 I t < 00. + 

VI. CONVERGENCE ANALYSIS 

Once the existence of the solutions of the differential 
equations (33) has been established, we can complete the 
convergence analysis of the adaptive control presented in 
the previous sections. Some of the properties of the parame- 
ter estimation algorithm were presented in the previous sec- 
tion and the rest of the properties required to proceed with 
the analysis are given in the following Lemma. 

Lemma 6: The adaptive control scheme presented in Sec- 
tions I1 and I11 is such that the following properties hold: 

el7 
1) --EL2 

m 
PE 

2 )  --EL2 
m (53) 

Since P-'(O) > 0, it follows that P-'  > 0 and thus P > 0 
for 0 < t 5 T .  Integrating now (23) we obtain 

Lt Y d7 = P(0)  - P 2 0; 0 < t I T .  (51) 

From the above it then follows that P I P(0). 
2 )  From (34) 

e = PP-yO)e(o) .  
Then 

IIell I IIPIJ IIP-'(O)6(O)II 0 < t 5 T 

It is shown in the Appendix that P I P(0) (48) implies that 
I( PI( s (1  P(O)(( where ( 1  PI( denotes the euclidean norm of + 

The results in Lemma 4 will finally enable us to establish 
the existence of solutions for any time in J?+ as stated in the 
next Lemma. 

Lemma 5: The closed-loon control svstem differential 

P .  Therefore, (49) follows from the above equation. 

3) P and 0 converge 

4) e converge and the discontinuities in CY occur only a 
finite number of times. 

Proof: 
1) Consider the following positive definite function 

Derivating 

1 - d ( P - ' e )  p-18 + - O T -  . 1 d(BT)  
T / =  -- 

2 dt 2 dt 

- - -- 1 d(8') P - ' 6  (using (40)) 2 dt 

(54) 

Integrating the above equation gives the desired result 

[ 5 d7 = 2 (  V ( 0 )  - V )  I 2V(O).  ( 5 5 )  



LOZANO AND BROGLIATO: ADAPTIVE CONTROL OF A SIMPLE NONLINEAR SYSTEM 

~ 

35 

2) The result is obtained by rewriting (51) as follows: 

Jn' y d r  = P(0)  - P I P ( 0 ) .  (56) 

3) The integral in the above equation is bounded and 
the integrand is positive semidefinite, therefore the integral 
converges and so does P. Convergence of 8 follows by 
rewriting (34) as 

e = e* + PP- I(o)e"(o). (57) 

4) Since P and 0 converge then ( 1  p (1  - 2 I( b(l in Fig. 1 
converges which implies that CY converges too. Convergence 
of then follows from (14). Finally, since the hysteresis 
width in Fig. 1 is bounded away from zero (see (35)), it also 
follows that the total number of switches in CY is finite. 

We can finally state the final result. 
Theorem: Consider the adaptive control presented in Sec- 

tions I1 and 111. Then the following properties are verified. 

4 E  
and - are bounded. ' 1 ;  m 

e 

m 
2 )  --EL2. 

(58) 

(59) 

3) The tracking error e converges to zero and all the 
variables remain bounded. 

Proof: 
1) Consider the control law (13). Since f ( x )  satisfies (2), 

r is bounded, e' = [ b ,  ET] in (12) and (14) is bounded and 
b is bounded away from zero (see Lemmas 2 and 4), it 
follows that 

- 

J u t  s k l x l  + k  

where k denotes generically a positive real constant. From 
(2), (7), and the above we have 

II4II I k l  X I  + k .  (60) 
From the above and (24) it readily follows that 4 / m  is 
bounded. On the other hand, from (21) and the fact that 
H(s )  in (9) is asymptotically stable, we have 

I IEI l  5 kmyl14Il  + k 

I kmax I x 1 + k (using (60)) .  
t 

From (24) and the above we conclude that 11 4 11 / m  is also 
bounded. 

2) Equation (16) can also be rewritten as 

e = h * (gTP-'P4 + C Y ' P ~ )  

= h* (e"(0)TP(O)p'P$ + aTP4) (using (34)) 

or 

e = h * (uTP4) 

U = CY + P(o)- le"(o) .  

(61) 

(62) 

with 

The swapping lemma for the stable filter H ( s )  in (9) and 

h * ( w T z )  - h * ( W T ) z  = - h * { h * ( W T ) i } .  (63) 

Introducing (63) into (61) with w = 4 and z = Pu and using 
(21) we obtain 

e t T P u  h * ( E T k u )  h* (ETP&)  
m m m m 

any vectors w and z can be written as (see [18]) 

. (64) - _ -  - -  - 

Note that in view of (53) and since U in (62) is bounded it 
follows that 

=PU 
m EL2 

Let us now study the second term in the RHS of (64) which, 
using (23), can also be written as 

h * ( E T k u )  1 

m m 
= -h*(mD) 

with 

U. 
p =  E T  PE ETP 

m m  m 

In view of (53) and (58) and since P and U are bounded it 
follows that 0 E L ,  n L,. On the other hand, from (66) we 
have 

(68) 

where E represents an exponentially decaying term due to 
initial conditions and therefore 6 1 m E L2 n L,. Since /3 E 

L ,  n L,, the RHS of (68) is L, fl L ,  (see [19, p. 591). 
Let us finally study the last term in the RHS of (64). Recall 

that the discontinuities in CY occur only a finite number of 
times (see Lemma 6). Recall also that the signals do not grow 
faster than exponentially with time (see Lemma 5). There- 
fore, since H ( s )  in (9) is Hunvitz, in this part of the analysis 
we only need to consider the two different values for CY in the 
limit, i.e., CY = 0 or CY = p /  IIpII. For CY = 0 we have 
& = 0 and thus the last term in (64) is L2 n L,. For 
CY = P/ II P I ] ,  is 

(69) 
Pll all2 - PPTP 

II P II 
& =  

From (23) and the above and since p is bounded 
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and thus the last term in (64) can also be expressed as 

h*(,$'Pci) 1 
= - h * ( m p ' )  

m rn 
with 

ai 
4 'p 6' = - 
m 

In view of (70), 15 E L ,  n L,  and thus 0' E L ,  n L,. Using 
a procedure similar to the one used for the second term in 
(64) we conclude that the last term in (64) is also L ,  fl L,. 
Finally, it follows that e l m  in (64) is also L ,  n L,. 

3) In order to prove that e l m  converges to zero we will 
first show that e l m  is Lipschitz with respect to time. There- 

, 

fore, for any two time instants t ,  I t,, we have 

- +- e ( t 2 )  - e ( t J  - 44) 4) 
m ( t 2 )  4 4 )  m ( t 2 )  m ( t 2 )  

m ( t d  m ( t , >  m ( t 2 )  

Ae e ( t , )  Am 
- 

where 

A e  = e ( t , )  - e ( t l )  

Am = m( t , )  - m ( t l ) .  

Denoting 

At = t ,  - t ,  

we have from (4), (3, and (60) 

Ae 
(GI I /,'=,a=,:lel 

I max ( k l x l  + k ) .  
t , < t < / *  

From the above and (24) it follows that the first term in the 
RHS of (71) satisfies 

In view of the definition of m in (24) we also have (see also 
(I), (7), and (60)) 

A m  
I max (kl 

5 max ( k l x (  + k ) .  (77) 
I , < / < / ,  

Using the above and (24) we obtain 

since e ( t , ) / m ( t , )  is bounded, introducing (76) and (78) into 
(71) we obtain 

Since e l m  is L ,  and Lipschitz with respect to time it 
follows (see [19, p. 2321) that e l m  converges to zero. 
Boundedness of the state x can then be shown by contradic- 
tion. Suppose that x diverges, then, since x ,  is bounded, 
x l m  should converge to zero which is a contradiction (see 
(24) ) .  In view of (58), all the signals remain bounded which 
concludes the proof. + 

VII. CONCLUSIONS 

This paper has presented an adaptive control for a class of 
first-order nonlinear systems having the form i = c*?(x) 
+ b*u. The proposed control scheme does not require nei- 
ther a priori knowledge of the sign of b* nor a priori 
knowledge on a lower bound on 1 b* 1 .  The control scheme 
is free from singularities, i.e., divisions by an estimate whose 
value can be close to zero. This has been possible by 
appropriately modifying the plant parameters estimates be- 
fore using them in the control input law. On the other hand, 
since resulting control law presents discontinuities, existence 
of the solutions of the differential equations involved in the 
closed-loop control system has been established. The conver- 
gence analysis has finally shown that all the signals remain 
bounded and that the tracking error converge to zero. 

APPENDIX 

We show here that P 5 P(0) implies that ( 1  PI( 5 1) P(0)II 

The proof will be based on the following facts (see for 
where ( 1  PI/ denotes the euclidean norm of P. 

instance [20]) 

3 ~ ( n  x n): P = LL' ( ' 4 . 1 )  

( ( P I ( *  = t r (P 'P )  = t r ( P 2 )  ( A 4  

tr ( A B )  = tr ( B A )  ( A . 3 )  

A - B > O * t r A  - t r B > O  ( A . 4 )  

for any matrices A ( n  x m )  and B ( m  x n). 
Since P I P(0) 

11 = tr (L'LL~L)  I tr ( L ~ L ( o ) L ( o ) ' L )  

= tr ( L(o) 'LL~L(o) )  

I tr ( L(O)  ' ~ ( 0 )  L (0 )  ' ~ ( 0 ) )  

= tr ( L ( O )  L ( O )  ' ~ ( 0 )  L(O)  '1 

+ 
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