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Adaptive control of Burgers' equation with unknown viscosity
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SUMMARY

In this paper, we propose a forti"ed boundary control law and an adaptation law for Burgers' equation with
unknown viscosity, where no a priori knowledge of a lower bound on viscosity is needed. This control law is
decentralized, i.e., implementable without the need for central computer and wiring. Using the Lyapunov
method, we prove that the closed-loop system, including the parameter estimator as a dynamic component,
is globally H� stable and well posed. Furthermore, we show that the state of the system is regulated to zero
by developing an alternative to Barbalat's Lemma which cannot be used in the present situation. Copyright
� 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper, we are concerned with the problem of boundary control of Burgers' equation:
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where the viscosity parameter �'0 is unknown. In this problem, �
�
and �

�
are control inputs

and u�(x) is an initial state in an appropriate function space.
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Our objective is to "nd feedback functions �
�
(u �

���
) and �

�
(u �

���
) such that the equilibrium

u(x),0 is globally stable and u (x, t)P0 as tPR for all x3[0, 1]. Since � is unknown and takes
an arbitrary positive value, this objective cannot be achieved by static feedback; hence, we need to
design an adaptive controller which incorporates a parameter estimator as a dynamic component
of the control law.

The problem of control of Burgers' equation has received extensive attention recently [1}8]. In
the present paper, we build upon the design
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in Reference [7] where global boundary feedback stabilization was achieved for known �.
Although an adaptive controller was proposed in Reference [7], which achieves ¸� stability, this
controller su!ered from several de"ciencies: (i) it requires the knowledge of a lower bound on �,
a condition under which a static robust controller can be designed, (ii) it did not guarantee
H�-stability, and (iii) it did not guarantee well-posedness. In this paper, we propose a forti"ed
control law and a new adaptation law that remove all of these de"ciencies. Our approach follows
the basic idea in Reference [9, Section 4.5.1]. However, many new issues arise due to the in"nite
dimensional character of the present problem. A particularly interesting among them (for
adaptive control specialists) is the need to develop an alternative (Lemma 3.1 below) to Barbalat's
Lemma for proving regulation of the state of the system to zero.

In this design, we make sure that it is decentralized, i.e., the control at each end of the
domain would use measurements only from that end. To achieve this, we use two di!erent
estimates, denoted �

�
and �

�
at respective ends of the domain. The decentralization is

motivated by technological considerations. If Burgers' equation is viewed as a miniature
version of a #uid #ow control problem with microelectromechanical sensors and actuators,
the decentralization would allow control implementation without a central computer and wiring,
but using only localized processing which can be embedded in the sensing/actuation micro-
hardware.

The rest of the paper is organized as follows. We design an adaptive boundary control and
present our main results in Section 2. By establishing a Barbalat-like lemma and using the
Lyapunov method, we prove our main results in Section 3.

Notation.

We now introduce notation used throughout the paper. H� (0, 1) denotes the usual Sobolev
space (see References [10,11]) for any s3�. For s*0, H�

�
(0, 1) denotes the completion of

C�
�
(0, 1) in H�(0, 1), where C�

�
(0, 1) denotes the space of all in"nitely di!erentiable functions on

(0, 1) with compact support in (0, 1). We use the following H� norm of H� (0, 1):

�u�
��"�u (0)�#�

�
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, u3H� (0, 1)
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which is equivalent to the usual one. The norm on ¸�(0, 1) is denoted by �)�. It is easy to see that

�u��)2�u��
�� . (3)

The H� norm is de"ned in the usual way, �u��
��"�u��#�u

�
��#�u

��
��. Let X be a Banach

space and ¹'0. We denote by C� ([0, ¹]; X) the space of n times continuously di!erentiable
functions de"ned on [0, ¹] with values in X, and write C ([0, ¹]; X) for C�([0, ¹];X). In what
follows, for simplicity, we omit the indication of the varying range of x and t in equations and we
understand that x varies from 0 to 1 and t from 0 to R.

2. MAIN RESULT

For notational convenience, in what follows, we denote
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where �
�

and �
�

shall be used as estimates of 1/6�. Estimating 1/� rather than � is the key for
eliminating the need for the knowledge of a lower bound on �.

We follow the Lyapunov approach. To this end, we introduce the energy function

E"�
�

�

u� dx (6)

and the Lyapunov function
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where � is a positive constant. Note that the Lyapunov function < is the energy function
E augmented by the estimation error �J �

�
#�J �

�
. Let us calculate the time derivative of <. Using

Equation (1) and integrating by parts, we obtain
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This leads us to select the adaptive feedback control
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where k is any positive constant, and the reasons for including w

�
and w


�
will become apparent in

the H� analysis. With this control, we obtain
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which implies the ¸� stability. The ¸� stability is not su$cient because it does not guarantee
boundedness of solutions (the ¸� energy can be bounded even though the solution u (x) can take
in"nite values on a measure zero subset of [0, 1]). For this reason we also pursue H� stability,

748 W.-J. LIU AND M. KRSTICD

Int. J. Adapt. Control Signal Process. 2001; 15:745}766Copyright � 2001 John Wiley & Sons, Ltd.



which implies boundedness. The closed-loop system
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satis"es the following theorem.

¹heorem 2.1

Suppose that k'0 and �'0 and the initial conditions u�3H�(0, 1) and ��
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problem (14) has a global classical solution (u, �
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for all t*0, and u is regulated to zero in ¸� sense:
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for all t*0, where C"C(k, �, �) is a positive constant, and u is regulated to zero for all
x3[0, 1]:
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for any s(2.

Remark 2.1

Both Parts 1 and 2 of the theorem claim global stability for entire closed-loop system (u, �J
�
, �J

�
)

but claim regulation only for u. This is standard in adaptive control where the parameter estimate
convergence to the true value is not a prerequisite for regulation (additional &persistence of
excitation' conditions are needed to make �J

�
and �J

�
go to zero).
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Remark 2.2

(1) If ��
�
(0 and ��

�
(0, Part 1 of Theorem 2.1 remains valid but the problem of existence of

solutions of (14) is open. We stress here that (16) holds even though for ��
�
, ��

�
(0 we cannot

establish the stronger result (18). To prove (16), using the arguments standard in "nite
dimensional adaptive controls (based on Barbalat's Lemma), we would need to show that
�u� is uniformly continuous, which is not possible for ��

�
, ��

�
(0. For this reason, we

develop Lemma 3.1, an alternative to Barbalat's Lemma, which requires that �u� has an
upper-bounded time derivative. Neither of the lemmas is implied by the other one.

(2) If �*0, ��
�
'1/6�, ��

�
'1/6� and k*0, the whole Theorem 2.1 is still valid. Moreover, for

�"0, the system (14) is globally exponentially stable. For details, we refer to References
[1,7].
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It therefore follows that

�u (t)��)�u���e���#
2

9�k�
(1!e���), ∀t*0 (22)

which proves (19).

Remark 2.3

Noting that for each non-negative value of �
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invertible functions, the feedback law can be written as

w
�
"h (u

�
�
���

, �
�
) (23)

w
�
"h (!u

�
�
���

, �
�
) (24)

where h is smooth in its "rst argument for each non-negative value of the second argument.
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implemented by measuring u
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and actuating u at the boundary. By substituting (23) and (24) into

(9) and (10), one can also view the update laws as dependent upon u
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.

Remark 2.4

Since there is only one parameter � in the Burgers equation, it is plausible to introduce only one
parameter update law �. Indeed, we can design such an update law as it was already done in
Krstic [7], where a lower bound on � was also required. To this end, we introduce the Lyapunov
function

<"E#

�
� ��!

1

6��
�

(25)

where � is a positive constant. By a straightforward calculation, we obtain

<Q "2 �
�

�

u (�u
��

!uu
�
) dx#

2�
� ��!

1

6�� �R

"2�w
�
�
�
!2�w

�
�

�
!2� �

�

�

u�
�
dx!

2

3
(w�

�
!w�

�
)#

2�
� ��!

1

6�� �R

)2�w
�
�
�
!2�w

�
�

�
!2� �

�

�

u�
�
dx

#

1

3
(w	

�
#w�

�
#w	

�
#w�

�
)#

2�
� ��!

1

6�� �R

ADAPTIVE CONTROL OF BURGERS' EQUATION 751

Int. J. Adapt. Control Signal Process. 2001; 15:745}766Copyright � 2001 John Wiley & Sons, Ltd.



"2�w
�
�
�
!2�w

�
�

�
!2� �

�

�

u�
�
dx

#2��
1

6�
!�#�� (w	

�
#w�

�
#w	

�
#w�

�
)#

2�
� ��!

1

6�� �R

"!2� �
�

�

u�
�
dx#2�w

�
[�

�
#� (w�

�
#w

�
)]!2�w

�
[�

�
!� (w�

�
#w

�
)]

#2��
1

6�
!���w	

�
#w�

�
#w	

�
#w�

�
!

�R
�� (26)

Taking

�R "�(w	
�
#w�

�
#w	

�
#w�

�
) (27)

�
�
"� (w�

�
#w

�
)#(1#�R ) (2w�

�
#w

�
) (28)

�
�
"!� (w�

�
#w

�
)!(1#�R ) (2w�

�
#w

�
) (29)

we obtain

<Q )!2� (1#�R ) (2w	
�
#w�

�
#2w	

�
#w�

�
)!2� �

�

�

u�
�
dx (30)

which implies the ¸� stability. The term �R in (28) and (29) plays a role in establishingH� stability
and the full result as in Theorem 2.1. However, the control law (27)} (29) is less desirable than
(9)}(12) since it requires exchange of information between the two ends, i.e. it is not decentralized.

Remark 2.5
The problem of existence and uniqueness of a classical solution of problem (14) remains open.

However, in Section 4, we shall show that it has a unique weak solution in the sense de"ned there.

3. PROOF OF STABILITY

In this section, we prove our main result by using the Lyapunov method. To prove the regulation
result (16) independent of (18) as we explain in Remark 2.2 (Part 1), we establish the following
alternative to Barbalat's lemma (see, e.g. Reference [9, Lemma A.6, p. 491]).

Lemma 3.1

Suppose that the function f (t) de"ned on [0,R) satis"es the following conditions:

(i) f (t)*0 for all t3[0,R),
(ii) f (t) is di!erentiable on [0,R) and there exists a constant M such that

f 	 (t))M, ∀t*0 (31)
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(iii) 
�
�
f (t) dt(R.

Then we have
lim
���

f (t)"0 (32)

Remark 3.1

It is important to see that this lemma and the standard Barbalat's lemma do not imply each
other. While Barbalat's lemma assumes that f (t) is uniformly continuous, Lemma 3.1 assumes
that f 	 (t) is bounded, but only from above.

We are now in the position to prove our main result.

Proof of Theorem 2.1. Step 1: Stability Estimate (15). By (13), we obtain
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Step 2: Regulation (16). To prove (16), it su$ces to verify conditions (ii) and (iii) of Lemma 3.1.
By (3) and (34), we obtain
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which may vary from line to line. Thus condition (iii) of Lemma 3.1 is ful"lled. On the other hand,
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it follows from Young's inequality that
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�

�

u
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�
) dx)

1

� �
�
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u�u�
�
dx

)
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�
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�
dx� �

�

�
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�
dx (39)

Moreover, we have

�R
� �
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2
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��#�R
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2
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2
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�
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�
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)2� (w	
�
#w�

�
#w	

�
#w�

�
)

(note that a	)a�#a� )

)4� (w�
�
#w�

�
#w�

�
#w�

�
) (40)

It therefore follows from (37) that

d

dt �
�

�

u�
�
dx)!k

d

dt �w�
�
#

1

4
w�
�
#w�

�
#

1

4
w�
��

!

d

dt ��� �
1

2
w	
�
#w�

��#�
� �

1

2
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�
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�
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�
)

#

2

� �w�
�
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�

�

u�
�
dx� �

�

�

u�
�
dx (41)

Denote

="k (w�
�
#�

	
w�
�
#w�

�
#�

	
w�
�
)

Integrating with respect to t, we deduce from (34) that

�u
�
(t)��#=(t)#�

� �
1

2
w
�
(t)	#w

�
(t)��#�

� �
1

2
w
�
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�
(t)��
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)=(0)#�
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�
(0) �
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�
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�
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#
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�

�

(w
�
(s)�#�u

�
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�
(s)��ds
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�
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�
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1

6��
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(s)��ds (42)

Since we have assumed that ��
�
, ��

�
*0, we have �

�
, �

�
*0 and then

�u
�
(t)��#=(t))C(k, �, �)(�u���

��#�u���
��#�J

�
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�
(0)�)

#

2

� �
�

�

(w
�
(s)�#�u

�
(s)��) (�u

�
(s)��#= (s)) ds (43)

By (34) and Gronwall's inequality (see e.g. Reference [12, p. 63]), we deduce that for t*0

�u
�
(t)��#=(t))C(k, �, �)(�u���

��#�u���
��#�J

�
(0)�#�J

�
(0)�)

�exp(C (k, �, �) (�u���#�J
�
(0)�#�J

�
(0)�)) (44)

This shows that (17) holds.
Step 4: Regulation (18). To prove (18), we "rst estimate �u�

�� . Integrating by parts, we obtain
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Since
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it therefore follows from (45) that
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Furthermore, since
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and by (38), we have
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it follows from (46) that
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We then deduce using (34) that

�u
�
(t)��)C (k, �, �) (�u���#�J

�
(0)�)#�J

�
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�

(w
�
(s)�#�u

�
(s)��)�u

�
(s)��ds (50)

which, by (34) and Gronwall's inequality (see e.g. Reference [12, p. 63]), implies that for t*0

�u
�
(t)��)C(k, �, �) (�J

�
(0)�#�J

�
(0)�#�u���

��#�u��	
�� )

�exp(C(k, �, �) (�u���#�J
�
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�
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Further, since

�u
��

��)C(�) (�u
�
��#�u

�
�	 ) (52)

it follows from (33), (44) and (51) that

�u (t)��
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�
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�
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�
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�
(0)	#�u���

��#�u����
�� )

�exp(C(�J
�
(0)�#�J

�
(0)�#�u���)), ∀t*0 (53)

In order to prove (18), we argue by contradiction. Suppose that (18) is not true. Then there
exists a positive constant 

�
'0 and �t

�
� with lim

���
t
�
"R such that

�u (t
�
)�

��*
�
, n"1, 2,2 (54)

On the other hand, it follows from (53) and the compact imbedding theorem (see, e.g. Reference
[11, vol. 1, p. 99]) that there exists a subsequence �u (x, t

��
)� such that u (x, t

��
) converges

to a function w (x) in H� (0, 1) and, of course, also in ¸� (0, 1) as iPR. Since we have proved
that u (x, t

��
) converges to 0 in ¸� (0, 1) (recall (16)), we have w,0, which is in contradiction

with (54). �

4. ANALYSIS OF EXISTENCE AND UNIQUENESS

In this section we analyse the existence and uniqueness of a solution of problem (14). By (14), we
"rst have

�
�
"��

�
#� �
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�

[w
�
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�
(s)�] ds (55)

�
�
"��

�
#� �

�

�

[w
�
(s)	#w

�
(s)�] ds (56)
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Substituting �
�
, �

�
into the boundary condition of (14), the problem (14) becomes a standard

Neumann boundary value problem

u
�
!�u
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�
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u
�
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�
) (t)

u
�
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(57)

u (x, 0)"u� (x)

where g(w, r)(t) is de"ned by

g (w, r)(t)"k[w(t)#w (t)
]#�r#� �
�

�

[w (s)	#w(s)�] ds� [w(t)�#w (t)] (58)

for any function w"w(t) and r3�. Once we solve problem (57), we obtain �
�
, �

�
through (55)

and (56). Therefore, it su$ces to prove that problem (57) has a unique solution. It is well-known
(see, e.g. Reference [13, Theorem 19.3.5, p. 339]) that the problem (57) is equivalent to the
following integral equation

u(x, t)"G(u (x, t))
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where the theta function � is de"ned by (see, e.g. References [14, p. 86; 13, p. 59])

� (x, t)"
1

�4��t

�
�

����

exp�!
(x#2n)�

4�t � , t'0 (60)

By Theorem 4.1 of Reference [14, p. 90], the function � can be expressed as

� (x, t)"
1

2
#

�
�
���

cos(n�x)e�������

By de"nition, we call the solution of integral equation (59) as a weak solution of problem (14).
We now show that if ¹ is su$ciently small then (59) has a unique solution in the following

function space:

C"C([0, ¹]; C[0, 1])

with the norm

�u�C" max
�)�)�
�)�)	

�u(x, t) �

To prove this, it su$ces to prove that the mappingG de"ned by (59) has a unique "xed point in C.
We employ the Banach "xed point theorem to prove this. In what follows, we denote by
C"C(�, �, k, ¹ ) a generic positive constant depending on �, �, k, ¹, which is a non-decreasing
function of ¹ and may vary from line to line. Using (A2) and (A3) from Lemma A.1 below, we
obtain (note that the following x!� and x#� vary from!1 to 1 and 0 to 2, respectively)

� �
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�
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�� (61)
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Using (A4) and (A5) from Lemma A.1 below, we obtain

� �
�

�
�

�

�

[�
�
(x#�, t!�)!�

�
(x!�, t!�)]u (�, �)�d� d� �

)C �u ��C �
�

�
�

�

�

1

t!� �exp �!
(x!�)�

8� (t!�)�
#exp �!

(x#�)�

8� (t!�)�#exp �!
(x#�!2)�

8� (t!�) ��d�d�

)C�u��C �
�

�

1

�t!�
d� �

�

��

e��� d�

)C�¹�u��C (62)

To estimate the last two terms of (59), we "rst note that
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It therefore follows from (A2) that
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By (61)}(64), we conclude that
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It therefore follows from (65) that G maps B(0, 2R) into itself if ¹ small enough. On the other
hand, as in (62)}(64), we have
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and
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where

w
�

"u



�
���

, i"0, 1; j"1, 2

It therefore follows from (66)}(68) that

�G(u
�
)!G(u

�
)�C)C(1#R�)�¹�u

�
!u

�
�C (69)

Thus G is contractive if ¹ is small enough. By Banach contraction "xed point theorem, G has
a unique "xed point u and then the problem (59) has a unique solution u3C([0, ¹]; C[0, 1]) if
¹ is small enough.

To claim that u is a classical solution of (14), we have to analyse every improper integral on the
right-hand side of (59). This time we are not able to do so and hopefully "nish it in future.

5. CONCLUSIONS

We have solved the problem of stabilization of the Burgers equation with unknown viscosity.
Adaptation of a gain related to the reciprocal of viscosity achieves stability without a lower
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bound on viscosity. The control law is strengthened to ensure not only energy boundedness but
also boundedness pointwise, including boundedness in the absence of adaptation.

APPENDIX A: TECHNICAL LEMMAS

First we present the proof of Lemma 3.1.

Proof. If M)0, then f (t) is non-increasing. Hence conditions (i) and (iii) immediately imply
(32).

We now suppose that M'0. We argue by contradication. If (32) is not true, then there exist
a positive constant  and a sequence �t

�
� (n"1, 2,2) with t

�
PR as nPR such that

f (t
�
)*, n"1, 2,2

Let

F (t)"f (t)!M (t!t
�
)!f (t

�
)

By condition (ii), we have

F	(t)"f 	(t)!M)0
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F (t)*F (t
�
)"0, ∀0)t)t

�

that is,

f (t)*M(t!t
�
)#f (t

�
), ∀0)t)t
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Thus we have
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��

������
f (t) dt*�
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������
[M(t!t

�
)#f (t

�
)] dt

"

 f (t
�
)

M
!

�

2M

*

�

2M
, n"1, 2,2 (A1)

which is in contradiction with condition (iii). �

Although it seems that the following properties of the theta function de"ned by (60) should
have been well-known in the literature, we could not "nd them in some standard reference books
such as References [13,14]. Therefore, for completeness, we append them here with complete
proofs.

ADAPTIVE CONTROL OF BURGERS' EQUATION 763

Int. J. Adapt. Control Signal Process. 2001; 15:745}766Copyright � 2001 John Wiley & Sons, Ltd.



Since, in the above, the variable x of the theta function �(x, t) is required to vary from!1 to 2,
we present the estimates for � on the interval [!1, 3].

Lemma A.1

Consider the theta function � de"ned by (60). Then for any given ¹'0, there exists a constant
C"C(�, ¹ )'0 such that

� (x, t ))
C

�t
e����	��, !1)x)1, 0(t)¹ (A2)

�(x, t))
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�
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e�����������, 1)x)3, 0(t)¹ (A5)

Proof. Since for !1)x)1 and 0(t)¹
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we deduce (A2) with
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Then (A3) follows from the periodicity of �.
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For (A4), we "rst have
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�t �
#

1

�4��t
e�������

�
�
���

x!2n

2�t
e������� exp �!

n (n!x)

�t � (A8)

Since

d

dt �
x#2n

�t
exp �!

n (x#n)

�t ��"
x#2n

�t�
exp �!

n(x#n)

�t � �
n (x#n)

�t
!1�

there exists N'0 such that for!1)x)1 and 0(t)¹

d

dt �
x#2n

�t
exp �!

n (x#n)

�t ��'0, n*N

Hence we have for !1)x)1 and 0(t)¹

x#2n

�t
exp �!

n (x#n)

�t �)
x#2n

�¹
exp �!

n (x#n)

�¹ � , n*N

This shows that there exists a positive constant C (�,¹ ) such that for!1)x)1 and 0(t)¹

�
�
���

x#2n

2�t
e������� exp �!

n(x#n)

�t �)C(�, ¹ ) (A9)

Similarly, we have for !1)x)1 and 0(t)¹

�
�
���

2n!x

2�t
e������� exp �!

n(n!x)

�t �)C(�, ¹ ) (A10)
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In addition, since

d

dt �
x

��t
exp �!

x�

8�t��"
x

2��t���
exp �!

x�

8�t��
x�

4�t
!1�

the function x/��t exp(!x�/8�t) attains the maximum 2e���� at t"x�/4�. Therefore, we have
for!1)x)1 and t'0

x

��t
e�������)2e���� (A11)

Hence (A4) follows from (A9), (A10) and (A11) while (A5) follows from the periodicity of �. �

Remark A.1

It can be seen from (A7) that the constant C(�, ¹ ) tends to in"nity as ¹PR.
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