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Abstract

We numerically investigate the sense in which an adaptive control law achieves internal model control of Hammerstein

plants with Prandtl–Ishlinskii hysteresis. We apply retrospective cost adaptive control to a command-following problem

for uncertain Hammerstein systems with hysteretic input nonlinearities. The only required modeling information of the
linear plant is a single Markov parameter. Describing functions are used to determine whether the adaptive controller

inverts the plant at the exogenous frequencies.
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Introduction

Considerable effort has been devoted to developing

methods that enhance the tracking performance of hys-

teretic systems. These algorithms include inverse-based

control methods, model-based control methods, and

linear model-free control methods. Inverse-based

fixed-gain, robust, and adaptive methods use the

inverse of the hysteresis nonlinearity in the feedforward

path to compensate for the hysteresis nonlinearity.1–7

Alternatively, model-based hysteresis techniques

employ the hysteresis models to construct controllers

that compensate for the actuator hysteresis without the

explicit goal of hysteresis inversion. These methods

include robust adaptive,8 energy-based,9 phase con-

trol,10 and hybrid control systems,11 which employ a

hysteresis model of the actuator for constructing the

controller. Finally, linear control methods have been

used to compensate for the hysteresis nonlinearity with-

out using a model of the hysteresis. These model-free

methods include proportional–integral–derivative

(PID) controllers.12,13

In this article, we follow the model-free approach by

numerically investigating the ability of an adaptive con-

trol law to achieve internal model control of

Hammerstein plants with unknown input hysteresis.

The internal model principle states that a stabilizing

control law that achieves asymptotically perfect

command-following or disturbance rejection must

‘‘possess’’ a model of the exogenous signal.14–17 This

principle is the basis of PID control, where the integra-

tor can be viewed as a model of a step command or

step disturbance.18 It is worth noting that, in a classical

servo loop, where the objective is command-following,

the requirement for an internal model in the loop trans-

fer function can be satisfied by the plant itself, but this

is not the case for disturbance rejection. For example,

asymptotic command-following for a step command

with a plant that has a pole at 0 is achieved by any sta-

bilizing controller, although rejection of a step com-

mand requires that the controller provide integral

action.

In this article, we revisit internal model control

within the context of adaptive control of Hammerstein

systems. Although we focus on retrospective cost adap-

tive control (RCAC),19–25 which requires minimal plant

modeling information as well as no knowledge of the

command or disturbance amplitude, frequency, or
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phase shift, the methodology that we use to assess the

controller action can be applied to any control law that

achieves internal stability along with either command-

following or disturbance rejection. Furthermore,

although we focus on discrete-time control of discrete-

time (possibly sampled-data) plants, the ideas are appli-

cable to continuous-time systems.

Of special interest is the operation of the control law

in terms of phase compensation. Since asymptotically

perfect command-following requires that the plant out-

put match the phase and amplitude of the command,

the plant input must also be a sinusoid whose amplitude

and phase are consistent with the magnitude and phase

shift of the plant at the command frequency. However,

the phase of the control input cannot be determined in

terms of the phase shift of the controller due to the fact

that an internal model controller has a phase disconti-

nuity at the command frequency. Instead, the frequency

response of the transfer function from the command to

the plant input is used to determine whether the control

law inverts the plant at the command frequency.

The numerical investigation in this article is intended

to motivate future theoretical studies of adaptive con-

trol of hysteretic Hammerstein systems with harmonic

commands and disturbances. In particular, we use the

classical technique of describing functions to determine

whether RCAC provides correct phase compensation

in the presence of an unknown hysteretic input nonli-

nearity. The Prandtl–Ishlinskii hysteresis model is used

to represent the input nonlinearity.

This article shows that the classical technique of

describing functions can shed light on the performance

of adaptive control laws. We stress that the diagnostics

that we use are not confined to RCAC, but can be used

to investigate the asymptotic properties of any control

law that is applicable to either harmonic command-

following (possibly model reference adaptive control

(MRAC)) or harmonic disturbance rejection. The

objective is to show that RCAC can achieve internal

model control of Hammerstein systems with an

unknown Prandtl–Ishlinskii input hysteresis. The

describing function was used to show that RCAC

inverts the Hammerstein system at the command fre-

quency of the harmonic command input.

Background

We begin with nonadaptive control for a servo loop

with harmonic commands. For a single-input single-

output (SISO) system linear time-invariant (LTI) plant,

we choose an internal model control law under the

assumption that the command frequency is known.

Consider the linear system

x(k+1)=Ax(k)+Bu(k) ð1Þ

y(k)=Cx(k) ð2Þ

e(k)= y(k)� r(k) ð3Þ

where x(k) 2 Rn is the state, y(k) 2 R is the measured

output available to the controller, e(k) 2 R is the

command-following error, u(k) 2 R1 is the control,

r(k) 2 R is the command, A is the state matrix, B is the

input matrix, and C is the output matrix.

The goal is to determine u that stabilizes the closed-

loop system and makes tracking error e small. The

closed-loop system presented in Figure 1 can be repre-

sented by the cascaded system in Figure 2, where

Gur(q)=
Gc(q)

1+Gc(q)G(q)
ð4Þ

where q is the forward shift operator.

Suppose that the command is the harmonic signal

r(k)=RefAre
( jOk)g, where Ar is a complex number and

O is the command frequency with units rad/sample. If

Gur is asymptotically stable and u is also harmonic, then

u(k)=Re Ar Gur(e
|O)

�

�

�

�e|(Ok+\Gur(e
|O))

n o

ð5Þ

where jGur(e
jO)j and :Gur(e

jO) are the magnitude and

phase of Gur at the frequency O, respectively. Then, the

harmonic steady-state response is given by

y(k)=Re Ar Gur(e
|O)jjG(e|O)

�

�

�

�e|(Ok+\Gur(e
|O)+\G(e|O))

n o

ð6Þ

The command-following error e is given by

e(k)=Re Are
(|Ok)

� �

�Re Ar Gur(e
|O)jjG(e|O)

�

�

�

�

�

e|(Ok+\Gur(e
|O)+\G(e|O))g ð7Þ

Therefore, e(k)=0 if and only if the magnitude and

phase of Gur(e
|O) satisfy

Figure 1. Command-following problem for the linear plant G

with the controller Gc.

Figure 2. Representation of the command-following problem

as a cascaded system.

2 Proc IMechE Part I: J Systems and Control Engineering
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Gur(e
|O)

�

�

�

�=
1

G(e|O)j j
ð8Þ

\Gur(e
|O)= � \G(e|O) ð9Þ

Example 2.1

Let r(k)= sin (p=5(k)) and consider the Lyapunov-sta-

ble plant G(z)=1=(z� 1) and the stabilizing internal

model controller Gc(z)=0:01846(z=z2 � 1:902z+1)

(z� 1:1=(z� 0:1)2). Figure 3 shows that the error

approaches 0 and that Gur inverts the plant G at the

command frequency O.

Figure 3 shows that Gur stabilizes the closed-loop

system and decreases the command-following error e

for the harmonic command r. Furthermore, the Gur

inverts the phase and magnitude of the Lyapunov-sta-

ble plant G(z)=1=(z� 1) at the command frequency

O=p/5 rad/sample.

Hammerstein system with input

hysteresis

We consider the Hammerstein system shown in Figure

4, where P is a Prandtl–Ishlinskii hysteresis model.

Prandtl–Ishlinskii hysteresis

The Prandtl–Ishlinskii hysteresis model is used to rep-

resent hysteresis in piezoceramic and magnetostrictive

actuators.2–4,15 This model is based on a linear combi-

nation of play operators. For an input u(k), the output

v(k) of the Prandtl–Ishlinskii model is represented by

v(k)=P½u�(k) ¼
D
X

n

i=1

kiFdi ½u�(k) ð10Þ

where k1, ..., kn are positive weights and the backlash

operator with threshold di is defined by

Fdi ½u�(k) ¼
D

u(k)� di, if u(k). di and u(k). u(k� 1)

u(k)+ di, if u(k)\ di and u(k)\ u(k� 1)

Fdi ½u�(k� 1), otherwise

8

<

:

ð11Þ

with the initial condition

Fdi ½u�(0)=
u(0)� di, if u(0). di
u(0)+ di, if u(0)\ di
0, otherwise

8

<

:

ð12Þ

The backlash operator is shown in Figure 5. Since

the backlash operator (11) is rate-independent, it fol-

lows that the Prandtl–Ishlinskii model is also rate-

independent.

Problem reformulation

In place of equation (1), consider the Hammerstein sys-

tem consisting of equations (2) and (3) and

Figure 3. Example 2.1 shows (a) the control input u(k), (b) the

command-following error e(k), and (c) the frequency response

of G (solid line) and 1/Gur (dashed line). Note that the magnitude

and phase of G and 1/Gur coincide at the command frequency

O=p/5 rad/sample.

Figure 4. Hammerstein system with Prandtl–Ishlinskii

hysteresis P.

Figure 5. The play operator with threshold d.

Al Janaideh and Bernstein 3
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x(k+1)=Ax(k)+Bv(k) ð13Þ

v(k)=P½u�(k) ð14Þ

y(k)=Cx(k) ð15Þ

where P is the Prandtl–Ishlinskii hysteresis model. The

goal is to determine u that makes e small.

A describing function for the Prandtl–Ishlinskii

hysteresis model

Let u(k)=RefAue
|Okg, where Au is a complex number.

For i=1, ..., n, let

vi(k)=Fdi ½u�(k) ð16Þ

For jAuj . di

vi(k) ffi Re AujjFi(jAuj)j je|(Ok+\Fi( Auj j))
� �

ð17Þ

where the amplitude jFi(jAuj)j and phase :Fi(jAuj) of
the describing function of the backlash operator are

given by26

jFi( Auj j)j=
1

Auj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2i + b2i

q

ð18Þ

\Fi( Auj j)= tan�1 ai

bi
ð19Þ

where

ai ¼
D 2di

p
hri � 1

� �

ð20Þ

bi ¼
D Auj j

p

p

2
� sin�1 hri � hri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
ri

q� �

ð21Þ

where

hri ¼
D 2di

Auj j
� 1

The describing function of the Prandtl–Ishlinskii

hysteresis model is given approximately by

H(O, Auj j) ¼
D
X

n

i=1

kiRe Fi( Auj j)j je|(\Fi( Auj j))
� �

ð22Þ

Then, the output of the Prandtl–Ishlinskii hysteresis

model is thus given approximately by

v(k) ¼
D
X

n

i=1

kiRe Au Fi( Auj j)j je|(Ok+\Fi( Auj j))
� �

ð23Þ

Consequently, ignoring transient effects, the output

of equations (1) and (2) is given approximately by

y(k) ffi
X

n

i=1

Re Ar G(e
|O)

�

�

�

�Fi( Arj j)e|(Ok+\Fi( Arj j)+\G(e|O))
n o

ð24Þ

Example 3.1. We consider the command u(k)= sin(Ok),

where O=p/5 rad/sample, the Prandtl–Ishlinskii

model P with n=3, d1=0.1, d2=0.2, d3=0.3,

k1=0.6, k2=0.5, k3=0.4. Figure 6(a) compares the

output of the Prandtl–Ishlinskii model and the describ-

ing function output (23). Figure 6(b) shows the magni-

tude of the discrete Fourier transform jU(O)j of the

command signal. As shown in Figure 6(b), the magni-

tude of the discrete Fourier transform jY(O)j of the

output of the Prandtl–Ishlinskii model indicates the

presence of harmonics at only odd multiplies of the

command frequency O. The presence of these harmo-

nics is consistent with the fact that the hysteresis map

of the Prandtl–Ishlinskii model is an odd set-valued

map.

Adaptive control of Hammerstein systems

with Prandtl–Ishlinskii hysteresis

Various techniques have been used to control systems

with uncertain input nonlinearities and linear

dynamics.1 In this article, we focus on RCAC. Note

that, unlike,1 RCAC does not attempt to estimate the

hysteresis nonlinearity.

Figure 6. (a) The output (23) of the describing function (solid

line) and the Prandtl–Ishlinskii model (10) (dashed line), (b) the

magnitude of the discrete Fourier transform jU(O)j of the
command signal, and (c) the magnitude of the discrete Fourier

transform jY(O)j of the output of the Prandtl–Ishlinskii model.

4 Proc IMechE Part I: J Systems and Control Engineering
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For the Hammerstein command-following problem,

we assume that G is unknown except for an estimate of

a single nonzero Markov parameter and nonminimum-

phase zeros, if any are present. The input hysteresis

nonlinearity P is also unknown.

Control law

In this section, we present the adaptive RCAC control-

ler used to formulate Gur. Consider the controller of

order nc given by

u(k)=
X

nc

i=1

Mi(k)u(k� i)+
X

nc

i=1

Ni(k)e(k� i) ð25Þ

where for all i=1,..., nc, Mi(k) 2 R and Ni(k) 2 R. The
control (25) can be expressed as

u(k)= u(k)f(k� 1)

where

u(k) ¼
D

M1(k) . . .Mnc (k) N1(k) . . .Nnc (k)½ � 2 R13 2nc

is the matrix of controller coefficients, and the regressor

vector f(k) is given by

f(k� 1) ¼
D

u(k� 1) . . . u(k� nc) e(k� 1) . . . e(k� nc)½ �T2 R2nc

The transfer function matrix Gc,k(q) from e to u at

time step k can be represented by

Gc, k(q)=

N1(k)q
nc�1 +N2(k)q

nc�2 + � � � +Nnc (k)

qnc � M1(k)qnc�1 + � � � +Mnc�1(k)q+Mnc (k)ð Þ

RCAC

For i 5 1, define the Markov parameter

Hi ¼
D
CAi�1B

For example

H1 =CB

and

H2 =CAB

Let ‘ be a positive integer. Then, for all k 5 ‘

x(k)=A‘x(k� ‘)+
X

‘

i=1

Ai�1BP u(k� i)ð Þ ð26Þ

and thus

e(k)=CA‘x(k� ‘)� r(k)+ �H �U(k� 1) ð27Þ

where

�H ¼
D

H1 . . . H‘½ � 2 R13 ‘

and

�U(k� 1) ¼
D

P u(k� 1)ð Þ

.

.

.

P u(k� ‘)ð Þ

2

6

4

3

7

5

Next, we rearrange the columns of �H and the com-

ponents of �U(k� 1) and partition the resulting matrix

and vector so that

�H �U(k� 1)=H0U0(k� 1)+HU(k� 1) ð28Þ

where H0 2 R13 (‘�1), H 2 R, U0(k� 1) 2 R‘�1, and

U(k� 1) 2 R. Then, we can rewrite equation (27) as

e(k)=S(k)+HU(k� 1) ð29Þ

where

S(k) ¼
D
CA‘x(k� ‘)� r(k)+H0U0(k� 1) ð30Þ

Next, we define the retrospective performance

ê(k)= e(k)�HU(k� 1)+HÛ(k� 1) ð31Þ

Finally, we define the retrospective cost function

J Û(k� 1), k
� 	

¼
D
ê2(k) ð32Þ

The goal is to determine refined controls Û(k� 1)

that would have provided better performance than the

controls U(k) that were applied to the system. The

refined control values Û(k� 1) are subsequently used

to update the controller. Next, to ensure that equation

(32) has a global minimizer, we consider the regularized

cost

�J Û(k� 1), k
� 	

¼
D
ê2(k)+h(k)ÛT(k� 1)Û(k� 1)

ð33Þ

where h(k) 5 0. Substituting equations (31) into (33)

yields

�J Û(k� 1), k
� 	

= Û(k� 1)TA(k)Û(k� 1)

+B(k)Û(k� 1)+ C(k)

where

A(k) ¼
D
HTH+h(k)IlU

B(k) ¼
D
2HT e(k)�HU(k� 1)½ �

C(k) ¼
D
e2(k)� 2e(k)HU(k� 1)+UT(k� 1)HTHU(k� 1)

If either H has full column rank or h(k) . 0, then

A(k) is positive definite. In this case, �J(Û(k� 1), k) has

the unique global minimizer

Û(k� 1)= �
1

2
A�1(k)B(k) ð34Þ

Al Janaideh and Bernstein 5
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Define the cumulative cost function

JR(u, k) ¼
D
X

k

i=2

lk�i fT(i� 2)uT(k)� ÛT(i� 1)












2

+ lk(u(k)� u0)P
�1
0 (u(k)� u0)

T,

ð35Þ

where jj�jj is the Euclidean norm, and l2 (0,1] is the for-

getting factor. Minimizing (1) yields

uT(k) = uT(k� 1)+P(k� 1)f(k� 2)

� fT(k� 1)P(k� 1)f(k� 2)+ l
� ��1

� fT(k� 2)uT(k� 1)� ÛT(k� 1)
� �

ð36Þ

The error covariance is updated by

P(k)= l�1P(k� 1)� l�1P(k� 1)f(k� 2)

� fT(k� 2)P(k� 1)f(k� 1)+ l
� ��1

�fT(k� 2)P(k� 1)

We initialize the error covariance matrix as

P(0)=aI2nc , where a . 0.

Numerical examples

In this section, we present simulation results for adap-

tive control of the Hammerstein system presented in

Figure 4. The objective is to determine whether RCAC

can achieve internal model control in the presence of

the unknown input hysteresis nonlinearity.

The Prandtl–Ishlinskii hysteresis model

In this section, we consider the Prandtl–Ishlinskii hys-

teresis nonlinearity. To investigate this question, we

examine the magnitude and phase of

~Gur(e
|O) ¼

D Gc, 2000(e
|O)

1+H(O, Auj j)G(e|O)Gc, 2000(e|O)
ð38Þ

The magnitude ~Gur(e
|O)

�

�

�

� reveals whether the controller

Gc,2000(e
|O) provides high magnitude at the command

frequencies and the harmonics introduced by the

Hammerstein system in Figure 4. The phase \ ~Gur(e
|O)

shows whether Gc,2000(e
|O) compensates the phase shift

provided by the Hammerstein system presented in

Figure 4 at the command frequencies and their

harmonics.

Example 5.1. Consider the command r(k)=

sin (p=5(k)), the Prandtl–Ishlinskii hysteresis model P
with n=4, d1=0, d2=0.1, d3=0.2, d4=0.3,

k1=0.8, k2=0.6, k3=0.4, k4=0.3, and

the asymptotically stable linear plant G(z)= (z� 0:5)=
((z� 0:8)(z� 0:6)). We use RCAC with nc=14, l=1,

and a=1 (Figure 7). Figure 9 shows the closed-loop

response. RCAC minimizes the command-following

error e when the input hysteresis nonlinearity shown in

Figure 8(b) is considered. Figure 8(e) shows that 1= ~Gur

and HG coincide at the frequencies p/5, 3p/5, and p

rad/sample.

Figure 7. Hammerstein command-following problem with the

RCAC adaptive controller. The Hammerstein system consists of

the input nonlinearity P cascaded with the linear plant G, where

u is the control signal. Measurements of y(k) are available for

feedback; however, measurements of v(k) =P(u(k)) are not
available.
RCAC: retrospective cost adaptive control.

Figure 8. Example 5.1 shows (a) the command-following error

e for the asymptotically stable linear plant

G(z) = (z� 0:5)=((z� 0:8)(z� 0:6)) with the Prandtl–Ishlinskii

model P whose input and output are shown in (b) for the

closed-loop system with RCAC, (c) the evolution of the

controller u and the command-following error e for the

asymptotically stable linear plant

G(z) = (z� 0:5)=((z� 0:8)(z� 0:6)), (d) the control input u(k),
(e) the frequency response of 1=~Gur (dashed line) and HG (solid

line). Note that 1=~Gur and HG coincide at the frequencies p/5,

3p/5, and p rad/sample.

6 Proc IMechE Part I: J Systems and Control Engineering
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Example 5.2. Consider the command r(k)= sin

(p=5(k)), the Prandtl–Ishlinskii model P with n=4,

d1=0, d2=0.1, d3=0.2, d4=0.3, k1=0.8, k2=0.6,

k3=0.4, k4=0.3, with the unstable plant

G(z)=1=(z� 1:1). We use RCAC with nc=14, l=1,

and a=1 (Figure 7). Figure 9 shows the closed-loop

response. Figure 9(e) shows that 1= ~Gur and HG coin-

cide at the frequencies p/5, 3p/5, and p rad/sample.

Consistent with Example 3.1, the output of the

Prandtl–Ishlinskii hysteresis model shows harmonics at

odd multiples of the command frequency O. Examples

5.1 and 5.2 show that ~Gur constructed with RCAC

inverts the magnitude and phase of the Hammerstein

system. That is, the magnitude and phase of ~Gur(e
|O)

approximately satisfy

~Gur(e
|O)

�

�

�

�=
1

P

n

i=0

Re Ar G(e|O)j jFi( Auj j)f g

ð39Þ

\ ~Gur(e
|O)= � \G(e|O)�

X

n

i=0

\Fi( Auj j) ð40Þ

The generalized Prandtl–Ishlinskii hysteresis model

In this section, we consider the generalized Prandtl–

Ishlinskii model which can characterize non-convex

hysteresis loops in smart actuators.7 The output of this

model is expressed as

Pg½u�(t) : =
X

n

i=0

kiFdi ½g(u)�(k) ð41Þ

where

g(u)=
X

m

i=0

giDri
½u�(k) ð42Þ

Dri
½u�(k)=

u(k)� ri, if u(k)5 ri
0, if �ri 4 u(k)4 ri
u(k)+ ri, if u(k)4 � ri

8

<

:

ð43Þ

where gi are positive weights and ri are positive con-

stants. In this example, we present the describing func-

tion for the memoryless function presented in equation

(43)

Figure 9. Example 5.2 shows (a) the command-following error

e for the unstable linear plant G(z) = 1=(z� 1:1) with the

Prandtl–Ishlinskii model P, whose input and output are shown

in (b) for the closed-loop system with RCAC; (c) the evolution

of the controller u and the command-following error e for the

unstable linear plant G(z) = 1=(z� 1:1); (d) the control input
u(k); and (e) the frequency response for 1=~Gur (dashed line) and

HG (solid line). Note that 1=~Gur and HG coincide at the

frequencies p/5, 3p/5, and p rad/sample.

Figure 10. Example 5.3 shows (a) the command-following

error e when the Lyapunov-stable plant G(z) = 1=(z� 1) and the

output of the generalized Prandtl–Ishlinskii model Pg shown in

(b) considered in the closed-loop system with RCAC and (c) the

frequency response for 1=Ĝur (dashed line) and HdG (solid line).
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Hg(O, Auj j)=
X

m

i=0

Re Auj jFDi( Auj j)e|(Ok)
� �

ð44Þ

where FDi(jAuj) represents the amplitude of the describ-

ing function of the deadzone operator26

FDi( Auj j)=
2gi

p

p

2
� sin�1 hsi � hsi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
si

q

 �

ð45Þ

where

hsi =
ri
Auj j

Let Hd(O, jAuj)=Hg(O, jAuj)H(O, jAuj), then

Ĝur(e
|O)=

Gc, 2000(e
|O)

1+Hd(O, Auj j)G(e|O)Gc, 2000(e|O)
ð46Þ

We examine both the magnitude Ĝur(e
|vk)

�

�

�

� and the

phase \Ĝur(e
|Ok) to show whether Gc,2000(e

|Ok) compen-

sates the phase shift provided by the Hammerstein sys-

tem with the generalized Prandtl–Ishlinskii model at the

command frequencies and their harmonics.

Example 5.3. We consider the command

r(k)= sin (p=5(k)), the generalized Prandtl–Ishlinskii

model Pg with n=4, d1=0, d2=0.1, d3=0.2,

d4=0.3, k0=0.8, k1=0.6, k2=0.4, k3=0.3, m=1,

g0= g1=0.5, r0=0.1, r1=0.2 with the Lyapunov-

stable plant G(z)=1=(z� 1). We use RCAC with

nc=18, l=1, and a=9. Figure 10 shows stimulation

results.

Example 5.4. In this example, we consider the piezo-

ceramic actuator described in Shan and Leang.27 The

Prandtl–Ishlinskii hysteresis model P and

G(s)=
3:3913 1010

s3 +3759s2 +2:0633 107s+7:5143 1010

ð47Þ

characterize the dynamic behavior of the actuator.27

For the closed-loop control system, we consider n=8,

d1=0.0769, d2=0.1538, d3=0.2307, d4=0.3076,

d5=0.3845, d6=0.4614, d7=0.5383, d8=0.6152,

k1=3.6590, k2=2.8098, k3=2.1577, k4=1.6569,

k5=1.2724, k6=0.9771, k7=0.7503, k8=0.5762,

and

g(v)=0:6081v+0:0039 ð48Þ

We consider the sampling time of h=0.00001 sec.

Then

G(z)=
0:256z2 +0:02439z+0:1349

z3 � 0:5746z2 +0:4949z� 9:1373 10�17

ð49Þ

We use RCAC with nc=10, l=1, and a=100.

Figure 10 shows the simulation results.

Conclusion

The numerical investigation in this article shows that

RCAC can achieve internal model control of

Hammerstein systems with an unknown Prandtl–Ishlinskii

input hysteresis. A describing function was used to show

that RCAC inverts the Hammerstein system at the com-

mand frequency of the harmonic command input.

Future work will include theoretical studies of adap-

tive control with harmonic commands for Hammerstein

systems and disturbances as well as extension to

Preisach model.
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