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Abstract— This paper proposes an adaptive controller for a
hypersonic cruise vehicle subject to aerodynamic uncertainties,
center-of-gravity movements, actuator saturation, failures, and
time-delays. The adaptive control architecture is based on a
linearized model of the underlying rigid body dynamics and
explicitly accommodates for all uncertainties. It also includes a
baseline proportional integral filter commonly used in optimal
control designs. The control design is validated using a high-
fidelity HSV model that incorporates various effects including
coupling between structural modes and aerodynamics, and
thrust pitch coupling. An elaborate comparative analysis of the
proposed Adaptive Robust Controller for Hypersonic Vehicles
(ARCH) is carried out using a control verification methodology.
In particular, we study the resilience of the controller to
the uncertainties mentioned above for a set of closed-loop
requirements that prevent excessive structural loading, poor
tracking performance and engine stalls. This analysis enables
the quantification of the improvements that result from using
and adaptive controller for a typical maneuver in the V − h
space under cruise conditions.

I. INTRODUCTION

Over the past decade a significant amount of work has

been performed on Hypersonic Vehicle (HSV) modeling.

These models are of varying levels of fidelity and incorporate

some or all of the following: thrust-pitch coupling [1],

elastic-rigid body coupling [2], [3], and viscous and unsteady

effects [4]. More recently, non-adaptive and adaptive control

designs have been proposed for the control of hypersonic

vehicles, in [5], [6], [7], [8] and [9], [10], [11], [12], [13],

respectively. The uncertainties that have been considered

include geometric and inertial [6], [12], aerodynamic [7],

[11], and inertial-elastic [8]. In [10], [7] and [8], the control

inputs used include the canard which increases the available

bandwidth for the controller. In [8], [11] and [13] the canard

is not used as a control input.

In this paper, we propose an adaptive controller using only

the equivalence ratio and the elevator deflection as control

inputs. Uncertainties in the pitching moment, lift force, mass,

and Center-of-Gravity position are introduced. Actuators are

subjected to magnitude saturation. The adaptive controller is

designed by neglecting the flexible effects and their coupling

with the vehicle dynamics, but is evaluated with the latter

as well as time-delays present. The stability and robust-

ness of the underlying adaptive system has been studied

elsewhere.[14][15]
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The control verification methodology proposed in [16] is

used herein to quantify the improvements in robust perfor-

mance that result from augmenting the baseline controller

with an adaptive component. The rationale behind this anal-

ysis is the determination of the largest hyper-rectangular

set in the uncertain parameter space for which the closed-

loop specifications are satisfied. This framework ignores

the assumptions made during control design to provide a

control assessment that only depends on the performance

and robustness observed during simulation.

II. HYPERSONIC VEHICLE MODELING

Two hypersonic vehicle models will be used throughout

this paper, one as a Design Model (DM) to carry out the

control design, and one as an Evaluation Model (EM) to

validate the proposed design by including more effects that

are typically present in real aircraft. Both models pertain to

the longitudinal dynamics of a hypersonic vehicle. The DM

includes the rigid body dynamics of the vehicle, with the

following five states: height h, velocity V , angle of attack

α, euler angle θ, and pitch rate, q. The governing equations

for the DM are shown below,

V̇ = (T cos α − D)/m − g sin γ

α̇ = (−T sin α − L)/mV + q + g cos (γ/V )

q̇ = M/Iyy ḣ = V sin γ θ̇ = q,

(1)

where T , D, M , m, Iyy , g and γ are the thrust, drag, pitching

moment, mass, moment of inertia, gravitational constant and

flight path angle respectively. The flight path angle is defined

as γ = θ − α.
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Fig. 1. Axes of the HSV

The control inputs for the model are the equivalence ratio

into the scramjet combustor, φ, and the elevator deflection

angle, δe. The control inputs indirectly affect the dynamics

of the aircraft by appearing in the forcing terms, T , D, and

M . A side view of the HSV with the control inputs and axes

can be seen in Figure 1.
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The evaluation model encompasses rigid-elastic state cou-

pling, and is described by the following:

V̇ = (T cos α − D)/m − g sin γ

α̇ = −(T sin α + L)/mV + q + g cos (γ/V )

q̇ = (M + ψ̃f η̈f + ψ̃aη̈a)/Iyy

ḣ = V sin γ θ̇ = q

kf η̈f = −2ζfωf η̇f − ω2
fηf + Nf − ψ̃fM

Iyy
− ψ̃f ψ̃aη̈f

Iyy

kaη̈a = −2ζaωaη̇a − ω2
aηa + Na − ψ̃aM

Iyy
− ψ̃f ψ̃aη̈a

Iyy
,

(2)

where ηa and ηf are the elastic states, Na and Nf are the

elastic forcing terms, ζa and ζf the damping terms, ωa and

ωf the natural frequencies and ψ̃a, ψ̃f , ka, and kf are the

modal weighting terms. The subscripts f and a in the elastic

terms denote forward and aft respectively. For more details

pertaining to the elastic terms refer to [7], with support from

Reference [2].

Actuator dynamics will also be incorporated into the

design and evaluation models. These can be described as

follows:

φ̈ = −2ζφωφφ̇ − ω2
φφ + ωφφcmd

δ̈e = −2ζδωδ δ̇e − ω2
δδe + ωδδe,cmd

(3)

with ζφ = 1, ζδe = 1, ωφ = 10 and ωδ = 20.

The control design methodology proposed in the paper

is based on a linearized model of the DM. The EM is

subsequently used to validate the control design. It should

be noted that the linearized model of the DM and the EM

coincide when the elastic effects are neglected. However,

both the DM and EM are included above for ease of

exposition.

III. LINEARIZED MODEL

The underlying design model, described by the DM in (1)

and the actuator dynamics in (3) can be expressed compactly

as a nonlinear model

Ẋ = f(X, U), (4)

where X is the state vector and U contains the exogenous

inputs φcmd and δe,cmd. In order to facilitate the control

design, we linearize these equations at the trim state X0 and

trim input U0 satisfying f(X0, U0) = 0 in order to obtain

the following:

ẋp = Apxp + Bpu + ε(t), (5)

where ε is the linearization error, which is assumed to be

small,

Ap =
∂f(X, U)

∂X

∣∣∣∣X=X0
U=U0

, Bp =
∂f(X, U)

∂U

∣∣∣∣X=X0
U=U0

,

xp = X − X0, and u = U − U0.

(6)

The linear state xp contains the perturbation states,

[ΔV Δα Δq Δh Δθ Δφ̇ Δφ Δδ̇e Δδe]T and u is the

command input perturbation vector, [Δφcmd Δδe,cmd]T .
Integral error states will be augmented to the linear model

of the HSV. The reference command , r, will be given in

h − V space and is constructed as

r = [ΔVref Δhref]T (7)

Denoting an output y = [ΔV Δh]T an integral error state

eI is constructed as

eI = ∫(y − r)dτ = ∫(Hxp − r)dτ, (8)

where H is a selection matrix. In addition to error augmen-

tation, the actuator inputs will be explicitly incorporated into

the linear model as states, and a new input v is introduced

as

v = u̇. (9)

By augmenting both the command following error in (8) and

actuator inputs in (9) to the linear system in (5), the overall

linear system becomes,⎡
⎣ẋp

ėI

u̇

⎤
⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎣Ap 0 Bp

H 0 0
0 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣xp

eI

u

⎤
⎦

︸ ︷︷ ︸
x

+

⎡
⎣0

0
I

⎤
⎦

︸︷︷︸
B

v +

⎡
⎣ 0
−I
0

⎤
⎦

︸ ︷︷ ︸
Bcmd

r, (10)

which can be compactly expressed as,

ẋ = Ax + Bv + Bcmdr. (11)

IV. CONTROL DESIGN AND UNCERTAINTY

The control structure proposed in this paper has a combi-

nation of feedforward input, nominal feedback, and adaptive

feedback terms. Two parameter vectors p and d are intro-

duced, where p denotes a vector of uncertain parameters

while d denotes a vector of free design parameters in the

baseline and adaptive controllers. The roles of d and p will

be covered in more detail in the subsequent section.

A. Baseline Controller
The baseline controller is chosen as an LQ regulator, so

that a cost function of the form

J =
∫

(x̃T Qxx̃ + vT Rvv)dτ (12)

is minimized, where x̃ = x − x∗, and x∗ is the steady-state

value that x will converge to for a constant reference input.1

The weighting matrices Qx and Rv are suitably chosen

positive definite diagonal matrices.
After minimization of the cost function in (12), the control

input is of the form

v = vbaseline = Kffr + KT x (13)

Noting that the components of x include the integral eI , and

u, it follows that the baseline controller has Proportional,
Integral, and Filter components, thus, leading to a PIF-LQ

regulator as first introduced in [18] with more details given

in [17]. The PIF control structure is shown in Figure 2.

1The construction of x̃ is covered in great detail in Reference [17] page
523 and PIF control structure on pages 528-531.
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Fig. 2. PIF control structure. [11], [18], [17]

B. Uncertainties and Actuator Saturation

The uncertainties to be considered are lumped into the

vector

p = [λ, τ ]T = [λm λL λM ΛCG τ ]T , (14)

whose components are as follows

1) Multiplicative uncertainty in the inertial properties:

m = λmm0, and Iyy = λmIyy0 where λm ∈ (0, 2].
2) Multiplicative uncertainty in lift: Cα

L = λLCα
L,0, where

λL ∈ (0, 2].
3) Multiplicative uncertainty in pitching moment: Cα

M =
λMCα

M,0, where λM ∈ (0, 2].
4) Longitudinal distance between the neutral point and

the center of gravity divided by the mean aerodynamic

chord is denoted as λCG ∈ [−0.1, 0.1]. Negative values

of λCG denote that the CG has been moved toward the

aft of the HSV.

5) Uncertain time-delay in all plant inputs where τ ∈
(0, 0.04s].

The nominal value of the uncertain parameter vector is given

by.

p̄ = [1 1 1 0 0]T . (15)

The components of λ are considered parametric uncer-

tainties and the flexible effects and time delay are considered

non–parametric uncertainties. While τ is a parameter as well,

it is not introduced as a component of λ since the underlying

design model is finite–dimensional, and is treated as a non–

parametric uncertainty. The state jacobian of the uncertain

design model is defined as Ap,uncertain = Ap(λ) and in

combination with the DM plant dynamics in (5) results in

the following uncertain plant dynamics,

ẋp = Ap(λ)xp + Bpu. (16)

The adaptive control design that follows will explicitly ac-

count for the parametric uncertainty λ while remaining robust

with respect to τ and the other non–parametric uncertainties

associated with the elastic effects.

In addition to the above uncertainties, our studies also in-

clude magnitude saturation in the actuators. This is accounted

for with the inclusion of a rectangular saturation function

Rs(u) where the i-th component is defined as,

Rsi =

⎧⎪⎨
⎪⎩

ui if umini
≤ ui ≤ umaxi

,

umaxi
if ui > umaxi

,

umini
if ui < umini

(17)

for i = 1, 2.

C. Adaptive Controller

In order to compensate for the modeling uncertainties, an

adaptive controller is now added to the baseline controller.

The structure of the adaptive controller is chosen as

v =

baseline︷ ︸︸ ︷
Kffr + KT x︸ ︷︷ ︸

nominal

+ θ(t)T x︸ ︷︷ ︸
adaptive

(18)

The adaptive component of the controller is denoted θ and

is the same dimension as the nominal feedback gain K.

The adaptive component naturally augments the nominal

controller and a visual interpretation of this can be seen in

Figure 3.
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Fig. 3. Baseline with adaptive augmentation and uncertainty

Combining the uncertain plant model in (16) with the

integral state eI in (8), the input-state in (9), the the saturation

function in (17), and the overall baseline and adaptive control

input from (18), the closed loop equations are given by,⎡
⎣ẋp

ė
u̇

⎤
⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎣ Ap(λ) 0 Bp

H 0 0
K1 + θ1(t) K2 + θ2(t) K3 + θ3(t)

⎤
⎦

︸ ︷︷ ︸
A(λ)+B(KT +θ(t)T )

⎡
⎣xp

e
u

⎤
⎦

︸ ︷︷ ︸
x

+

⎡
⎣ 0
−I
Kff

⎤
⎦

︸ ︷︷ ︸
Bm

r −

⎡
⎣Bp

0
0

⎤
⎦

︸ ︷︷ ︸
B1

uΔ,

(19)

where uΔ = u − Rs(u), and in compact form reduces to,

ẋ = (A(λ) + B(KT + θ(t)T ))x + Bmr − B1uΔ. (20)

A reference model is chosen as

ẋm = Amxm + Bmr. (21)

where Am and Bm are such that Am is a Hurwitz matrix,

Bm = BcmdKff , θ∗ is an ideal value of θ such that Ām =
A(λ)+B(KT +θ∗T ) and AΔ = Ām−Am. We note that due

to the addition of the integral action in the filter, it may not
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be possible to choose AΔ to be zero for general parametric

uncertainties. Defining the reference model error e as,

e = x − xm, (22)

we choose adaptive laws for adjusting the adaptive parameter

in (18) as

θ̇ = −ΓθxeT
a PB

˙̂
AΔ = ΓAPeaxT

(23)

where AT
mP + PAT

m = −Q and Q = QT > 0.[19] Also

ea = e − eΔ where the auxiliary error eΔ is defined as,

ėΔ = AmeΔ + ÂΔx − B1uΔ. (24)

The auxiliary error represents the error that occurs do to

saturation and reference model mismatch, and subtracting it

from e we obtain the augmented error ea which is the error

due to parameter mismatch. In the above adaptive laws Γθ,

ΓA and Q are free design parameters.2

Theorem 1: For all initial conditions of the state vector x
and adaptive gain θ inside a bounded set, the system in (16)

with the controller in (18) and the adaptive law in (23) has

bounded trajectories for all time.

Remark 1: The proof of stability is an extension of Kara-

son and Annaswamy’s work in [21] with some similarities

to [14]. With the addition of the filter however, the control

input is not implemented through u, but rather through u̇.

This in turn leads to u becoming a part of the state vector

x.

With the complete control design given, all of the free

design parameters of the overall controller can be combined

into a single vector d such that,

d = [qx rv γθ γA q]. (25)

where the elements in d are the diagonal elements of Qx,

Rv , Γθ, ΓA and Q respectively. Each simulation result is

completely defined by the control design vector d and the

uncertain parameter vector p. These two vectors are utilized

extensively in the control verification section.

V. CONTROL VERIFICATION

In this section we evaluate the improvements resulting

from augmenting the baseline controller with an adaptive

component. This is attained by determining the largest hyper-

rectangular set in the uncertain parameter space p for which

a set of closed-loop requirements are satisfied by all the set

members. The section that follows presents a brief introduc-

tion to the mathematical framework required to perform this

study. References [16] and [22] cover this material in detail.

A. Mathematical Framework

The parameters which specify the closed-loop system are

grouped into two categories: uncertain parameters, which are

denoted by the vector p, and the control design parameters,

which are denoted by the vector d. While the plant model

2The choice of Γ was driven by an optimal selection function defined in
[20].

depends on p, the controller depends on d. The Nominal
Parameter value, denoted as p̄, is a deterministic estimate of

the true value of p.

Stability and performance requirements for the closed-loop

system will be prescribed by the set of inequality constraints,

g(p, d) < 0. Throughout this paper, it is assumed that vector

inequalities hold component wise. For a fixed d, the larger

the region in p-space where g < 0, the more robust the

controller.

The Failure Domain corresponding to the controller with

parameters d is given by3

Fj(d) = {p : gj(p, d) ≥ 0}, (26)

F(d) =
dim(g)⋃

j=1

Fj(d). (27)

While Equation (26) describes the failure domain corre-

sponding to the jth requirement, Equation (27) describes

the failure domain for all requirements. The Non-Failure
Domain is the complement set of the failure domain and

will be denoted4 as C(F). The names “failure domain” and

“non-failure domain” are used because in the failure domain

at least one constraint is violated while, in the non-failure

domain, all constraints are satisfied.

Let Ω be a set in p-space, called the Reference Set, whose

geometric center is the nominal parameter p̄. The geometry

of Ω will be prescribed according to the relative levels of

uncertainty in p. One possible choice for the reference set is

the hyper-rectangle

R(p̄, n) = {p : p̄ − n ≤ p ≤ p̄ + n} . (28)

where n > 0 is the semi-diagonal of the rectangle. In what

follows we assume that g(p̄, d) < 0. The tasks of interest

is to assign a measure of robustness to a controller based

on measuring how much the reference set can be deformed

before intersecting the failure domain. A homothet of Ω is

given by the set {p̄+α(p− p̄) : p ∈ Ω}, where p̄ is the center

of the rectangle and α >, is the Similitude Ratio. While

expansions of Ω are accomplished when α > 1, contractions

result when 0 ≤ α < 1.

Intuitively, one imagines that a homothet of the reference

set is being deformed until its boundary touches the failure

domain. Any point where the deforming set touches the

failure domain is a Critical Parameter Value (CPV). The

CPV, which will be denoted as p̃, might not be unique. The

deformed set is called the Maximal Set (MS) and will be

denoted as M. The Critical Similitude Ratio, denoted as α̃,

is the similitude ratio of that deformation. While the critical

similitude ratio is a non-dimensional number, the Parametric
Safety Margin (PSM), denoted as ρ and defined later, is its

dimensional equivalent. Both the critical similitude ratio and

the PSM quantify the size of the MS. Details on how to

3Throughout this section, super-indices are used to denote a particular
vector or set while numerical sub-indices refer to vector components, e.g.,

pj
i is the ith component of the vector pj .

4The complement set operator will be denoted as C(·).
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calculate the CPV p̃ and α̃ are available in [16].

Once the CPV has been found, the MS is uniquely

determined by

M(d) = R(p̄, α̃n). (29)

The size of this set is proportional to the PSM which is

defined as

ρ = α̃‖n‖, (30)

Because the critical similitude ratio and the PSM measure

the size of the MS, their values are proportional to the

degree of robustness of the controller associated with d
to uncertainty in p. The critical similitude ratio is non-

dimensional, but depends on both the shape and the size

of the reference set. The PSM has the same units as the

uncertain parameters, and depends on the shape, but not the

size, of the reference set. If the PSM is zero, the controller’s

robustness is practically nil since there are infinitely small

perturbations of p̄ leading to the violation of at least one of

the requirements. If the PSM is positive, the requirements

are satisfied for parameter points in the vicinity of the the

nominal parameter point. The larger the PSM, the larger the

hyper-rectangular-shaped vicinity.

B. Hypersonic Vehicle

The reference set Ω for p = [λm, λL, λP , λCG, τ ]
to be used is a hyper-rectangle with aspect vector

n = [1, 1, 1, 0.1, 0.04] and nominal parameter point p̄ =
[1, 1, 1, 0, 0]. Note that n determines the relative levels of

uncertainty among parameters, e.g., there is 0.04/0.1 more

uncertainty in the CG location than in the time delay.

A set of closed-loop requirements is introduced subse-

quently. Lets define the vector of signals

h(p, d, t) =[V̇ (p, d, t) − 10g, |α(p, d, t)| − 0.2, (31)

‖eI,1(p, d, t)‖2 − β‖eI,1(p̄, dbase, tf )‖2, (32)

‖eI,2(p, d, t)‖2 − β‖eI,2(p̄, dbase, tf )‖2], (33)

where eI,1 is the velocity error, eI,2 is the altitude error,

beta > 1 is a real number, dbase refers to the baseline

controller, and tf is a sufficiently large integration time.

This vector enables the formulation of the following set of

requirements:

1) Structural: the acceleration at the CG must not exceed

10gs, i.e., g1 = maxt{h1}.

2) Stability and engine stall: the angle of attack must stay

in the ±0.2 rad range, i.e., g2 = maxt{h2}.

3) Tracking performance in velocity: the tracking error

must not exceed a prescribed upper bound, i.e., g3 =
h3(t = tf ).

4) Tracking performance in altitude: the tracking error

must not exceed a prescribed upper bound, i.e., g4 =
h4(t = tf ).

In the studies that follow the HSV was trimmed at 85,000

ft at a speed of Mach 8. Smooth reference commands

were given for a change in velocity of 1,0000 ft/s and a

change in altitude of 10,000 ft.5 We evaluate the robustness

characteristics of both controllers for several subsets of

[λm, λL, λP , λCG, τ ]. Parametric studies indicate that the

trim-ability condition max{[umax − U0, U0 − umin]} > 0,

where f(X0, U0, p) = 0 for the saturation limits umin ≤
u ≤ umax, is satisfied for all the values of p in the range of

interest.

C. Baseline Controller

Table I provides the CPVs corresponding to each indi-

vidual uncertain parameter for the baseline controller. The

critical requirement (i.e., the one whose CPV is the closest

to p̄) corresponding to λm, λL, λM , λCG, and τ are g4, g4,

g4, g4, and g1 respectively. Note that λCG is the critical

parameter and g4 is most critical requirement. The PSM

TABLE I

1-DIMENSIONAL CPVS FOR dbase .

p̃1 p̃2 p̃3 p̃4

p = [λm] 1.1847 1.1847 1.1845 1.1843

p = [λL] 0.5187 0.5184 0.6540 0.7036

p = [λM ] 0.3670 0.3670 0.3897 0.4015

p = [λCG] −0.0246 −0.0246 −0.0242 −0.0240

p = [τ ] 0.0310 0.0325 0.0362 0.0362

and the CPV corresponding to p = [λCG, τ ] are equal

to ρ = 0.02564 and p̃ = [−0.02381, 0.0095]. As with

the 1-dimensional case, the critical requirement is g4. In

the case where p = [λm, λL, λM , λCG, τ ], the PSM, the

CPV, and the critical requirement are ρ = 0.150, p̃ =
[1.086, 0.913, 0.962,−0.0086, 8.4 × 10−11] and g4 respec-

tively.

D. Adaptive Controller

Table II shows the 1-dimensional CPVs associated with

the adaptive controller. The critical requirements correspond-

ing to λm, λL, λP , τ , and λCG, are now g1, g4, g4,

g4, and g1. This set of critical requirements differs from

that of the baseline. As before the critical parameter is

λCG and the most critical requirement is g4. The PSM

TABLE II

1-DIMENSIONAL CPVS FOR dadaptive .

p̃1 p̃2 p̃3 p̃4

p = [λm] 0.7674 1.2347 0.7643 0.7610

p = [λL] 0.4606 0.4606 0.6005 0.6866

p = [λM ] 0.2271 0.2271 0.2865 0.3629

p = [λCG] −0.0293 −0.0293 −0.0286 −0.0267

p = [τ ] 0.0300 0.0316 0.0312 0.0312

5The reference command given is the same as that in [11].
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and the CPV corresponding to p = [λCG, τ ] are equal

to ρ = 0.02845 and p̃ = [−0.0264, 0.0090]. As with

the 1-dimensional case, the critical requirement is g4. In

the case where p = [λm, λL, λP , λCG, τ ], the PSM, the

CPV and the critical requirement are ρ = 0.145, p̃ =
[1.083, 0.916, 0.963,−0.009, 8.1 × 10−11] and g4 respec-

tively.

E. Comparative Analysis
The improvements in robustness resulting from augment-

ing the baseline controller are shown in Table III. The data

in Tables I and II fully determine Table III. Note that there

are directions in the uncertain parameter space where either

controller outperforms the other one. This situation illustrates

the tight dependence that exists between any robust control

assessment method and the uncertainty model assumed. The

adaptive controller attains better margins in the λm, λL, λM ,

and λCG directions. While the λm direction leads to the

largest improvement, τ produces the only drop. Overall the

TABLE III

RELATIVE PSM IMPROVEMENT.(
ρadaptive

ρbaseline
− 1

)
100%

p = [λm] 26.2%

p = [λL] 5.7%

p = [λM ] 6.5%

p = [τ ] −3.2%

p = [λCG] 11.2%

p = [τ, λCG] 7.7%

p = [λm, λL, λP , τ, λCG] 8.2%

augmented control architecture attains sizable improvements

in all but one of the cases. Since multi-dimensional uncer-

tainties are more realistic, cases where sizable improvements

are attained, the usage of the adaptive controller is well

justified. A Monte Carlo analysis of both controllers is

available in [15].

VI. SUMMARY

An adaptive controller for a hypersonic cruise vehicle

subject to aerodynamic uncertainties, center-of-gravity move-

ments, actuator saturation and failures, and time-delays is

proposed. The control design is evaluated using a high-

fidelity HSV model that considers structural flexibility and

thrust-pitch coupling. An elaborate analysis of the proposed

Adaptive Robust Controller for Hypersonic Vehicles (ARCH)

is carried out using a stand-alone control verification method-

ology. This analysis indicates sizable improvements in robust

performance resulting from adding an adaptive component to

the baseline controller. With the exception of the time-delay

margin, where a slight drop in robustness takes place, the

region of safe performance was enlarged in all other one-

dimensional and multi-dimensional directions of the uncer-

tain space considered. This is particularly remarkable since

the parameters and architecture of the adaptive controller

were not tailored according to the system requirements.
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