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Abstract: We develop a method for synthesis of a desired intensity profile 
at the output of a multimode fiber (MMF) with random mode coupling by 
controlling the input field distribution using a spatial light modulator (SLM) 
whose complex reflectance is piecewise constant over a set of disjoint 
blocks. Depending on the application, the desired intensity profile may be 
known or unknown a priori. We pose the problem as optimization of an 
objective function quantifying, and derive a theoretical lower bound on the 
achievable objective function. We present an adaptive sequential coordinate 
ascent (SCA) algorithm for controlling the SLM, which does not require 
characterizing the full transfer characteristic of the MMF, and which 
converges to near the lower bound after one pass over the SLM blocks. This 
algorithm is faster than optimizations based on genetic algorithms or 
random assignment of SLM phases. We present simulated and experimental 
results applying the algorithm to forming spots of light at a MMF output, 
and describe how the algorithm can be applied to imaging. 
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1. Introduction 

The ability to form a desired intensity profile at the output of a MMF has several promising 
applications, such as single-fiber scanning microscopy [1,2], optical coherence tomography 
[3], targeted light delivery [4], micromanipulation [5,6] and sensor multiplexing [7]. 
Assuming the desired intensity profile is known a priori, one approach is to use an SLM to 
control the electric field at the MMF input, use a camera to monitor the intensity profile at the 
MMF output, and use an adaptive algorithm for finding the optimal SLM pattern. Typically, 
the SLM reflectance is piecewise constant over a disjoint set of blocks, each of which may 
comprise one or more pixels. Recent work has pursued two classes of methods for adaptively 
setting the SLM. 

The first class is based on measuring the entire electric field transmission matrix of a fiber 
or other scattering medium between each block of the SLM and each pixel of the camera [8–
10]. Measuring this matrix requires approximately 4NSLM measurements, where NSLM is the 
number of SLM blocks. Once the transmission matrix has been measured, however, one can 
synthesize any number of desired field or intensity profiles at the MMF output. 

The second class is based on defining an objective function indicative of how close the 
output intensity distribution is to a desired intensity distribution, and using a randomized 
optimization algorithm to minimize (or maximize) the objective function and find the optimal 
SLM pattern [11, 12]. Such algorithms usually require multiple optimization passes over the 
SLM, and are not necessarily guaranteed to converge to the global optimum of the objective 
function. 

In this work, we address the problem of synthesizing a desired intensity profile at a MMF 
output. We identify an inherent convexity in the problem and develop adaptive sequential 
coordinate ascent algorithms that do not require a random search and converge to the global 
optimum of the objective function after only one optimization pass over the SLM. These 
algorithms require 3NSLM measurements for synthesis of each desired intensity profile. The 
number of measurements required in our algorithm for the synthesis of a single desired 
intensity profile is on the same order as the methods measuring the electric field transmission 
matrix of the system. Those methods could be preferable to our algorithm when a large 
number of known intensity profiles need to be synthesized. However, our algorithm has the 
advantage that it can be applied to problems where the desired intensity profile is not known a 

priori, such as targeted light delivery to fluorophores at unknown locations. It is not clear how 
algorithms based on measurement of the electric field transmission matrix could be used in 
such applications. We also show how control of the intensity profile at a MMF output can be 
used to realize a single-fiber scanning microscope, and evaluate the performance of this 
imaging scheme. 

Although our adaptive algorithm for control of the intensity profile has been developed 
considering a MMF supporting a definite number of propagating modes, it is also applicable 
to scattering media supporting an indefinite number of modes, such as human tissues [13–15]. 
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The organization of this paper is as follows. In Section 2, we describe how the synthesis of 
a known or unknown intensity profile at a MMF output can be posed as a convex optimization 
problem. In Section 3, we introduce our adaptive algorithms and find analytical lower bounds 
on the optimal values of our objective functions. In Section 4, we present simulation and 
experimental results of spot formation in known and unknown locations. In Section 5, we 
discuss how our method can be applied to imaging and evaluate the performance of our 
system as a single-fiber scanning microscope. We discuss the limitations of our method and 
topics for future work in Section 6, and provide concluding remarks in Section 7. Finally, we 
find bounds on the performance of our system in spot formation in Appendix A. 

2. Optimization problems 

2.1 Input-output relationship of the system 

Our goal is to synthesize a desired intensity distribution at the output of a MMF by using an 
SLM to shape the spatial phase (or amplitude-and-phase) distribution of the electric field at 
the input of the MMF. Assuming, for now, that the desired output intensity distribution is 
known a priori, the system shown in Fig. 1 is employed. Light from a laser is collimated, 
reflected from an SLM, and focused into the MMF input. At the MMF output, a microscope 
and camera are used to measure the intensity distribution. The measured intensity profile is 
fed back to a personal computer that controls the SLM pattern. The feedback data are used to 
determine an SLM pattern such that the measured intensity distribution optimally 
approximates the desired distribution. In this section, we show how this can be posed as an 
optimization problem, and in Section 3 we develop adaptive algorithms for finding the 
optimal SLM pattern. 
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SMF

Lens

Beam 

splitter SLM
ky

kx

SLM pattern

Lens

MMF
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x

Intensity pattern
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computer
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MMF core  

Fig. 1. System for synthesis of a known intensity pattern. Light from a laser illuminates an 
SLM, and light reflected from the SLM is focused into an MMF. At the MMF output, the 
intensity distribution is measured using a microscope and camera. The goal is to find an SLM 
pattern such that the output intensity distribution approximates a desired distribution. The inset 
shows the two regions R1 and R2 at the MMF output used in defining the objective function for 
synthesizing a known intensity profile. 

The SLM comprises a two-dimensional array of reflective pixels. In order to simplify 
optimization of the SLM reflectance, multiple pixels are grouped into larger blocks, which are 
disjoint. The complex reflectance of the SLM can be represented as 

 
1

( , ) ( , ) ,
N

k k

k

V x y s x yυ
=

=∑  (1) 

where N is the number of blocks, ( , )
k

s x y  is an indicator function for the k
th

 block: 

 
th1, if ( , ) in the interior of the block

( , ) ,
0, otherwise

k

x y k
s x y


= 


      

                                                  
 (2) 
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and 
k

υ  is the complex reflectance of the k
th

 block. For a phase-only SLM 1
k

υ = , while for 

an amplitude-and-phase SLM 1
k

υ ≤ . Let 
SLM,in ( , )x yE  and 

SLM,out ( , )x yE  be the electric 

fields incident on, and reflected from, the SLM. Then 

 
SLM,out SLM,in SLM,in

1

( , ) ( , ) ( , ) ( , ) ( , ).
N

k k

k

x y V x y x y s x y x yυ
=

= =∑E E E  (3) 

If a linear optical device, such as a lens, is used to focus the electric field reflected from 

the SLM to the MMF input, propagation can be modeled by a linear operator L (e.g., for a 
Fourier lens, L is a Fourier transform). Thus, the electric field at the MMF input plane is 

 
fiber,in SLM,out SLM,in

1 1

( , ) ( , ) ( , ) ( , ) ( , ),
N N

k k k k

k k

x y L x y L s x y x y x yυ υ
= =

  = = =    
∑ ∑E E E E  (4) 

where 
SLM,in( , ) ( , ) ( , )

k k
x y L s x y x y =  E E . It is seen that the electric field at the MMF input 

plane is a linear function of the SLM reflectances 
k

υ . Without loss of generality, we can 

assume that 
SLM,out ( , )x yE  and 

fiber,in ( , )x yE are transverse. Assuming the fiber supports 2Nm 

modes (including spatial and polarization degrees of freedom), we can expand the field at the 

MMF input in the basis of these propagating modes. Let 
M, ( , )

i
x yE and 

M, ( , )
i

x yH  be the 

electric and magnetic fields corresponding to the i
th

 propagating mode in the MMF. Then 

 
fiber,in M,( , ) ( , ) radiation modes,

i i

i

x y c x y= +∑E E   (5) 

where the summation is carried over the 2Nm modes supported by the fiber and the expansion 

coefficients 
i

c are given by the following inner product 

 

fiber,in M,

M,

1

M,

1

ˆ( , ) ( , )

ˆ( , ) ( , )

ˆ( , ) ( , )

,

i i

N

k k i

k

N

k k i

k

T

i

c x y x y z dxdy

x y x y z dxdy

x y x y z dxdy

υ

υ

∗

∗

=

∗

=

 = × ⋅ 

  
= × ⋅  

  

 = × ⋅ 

=

∫∫

∑∫∫

∑ ∫∫

E H

E H

E H

a υ

  (6) 

where 

 M,
ˆ( , ) ( , ) ,

ik k i
a x y x y z dxdy

∗ = × ⋅ ∫∫ E H  (7) 

and υ is the vector of the SLM reflectances 
k

υ . In the case of a weakly guiding fiber, where 

the 
M, ( , )

i
x yE can be assumed to be transverse, Eq. (7) reduces to 

 
M,( , ) ( , ) .

ik k i
a x y x y dxdy

∗= ⋅∫∫E E  (8) 

Note that the electric and magnetic fields corresponding to the propagating modes of the 
fiber are normalized in the following way 

 
M, M,

ˆ( , ) ( , ) ,
k i ki

x y x y z dxdy δ∗ × ⋅ = ∫∫ E H  (9) 

which in the case of a weakly guiding fiber reduces to 

 
M, M,( , ) ( , ) .

k i ki
x y x y dxdy δ∗⋅ =∫∫E E  (10) 
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The portion of the input field that couples to the propagating modes of the MMF is 

denoted by ( )coupled,in ,x yE , which is given by the first term in Eq. (5). In the space spanned by 

the propagating modes, this can be represented by a state vector 
coupled,inE , which is a column 

vector of the expansion coefficients 
i

c . Then 

 
coupled,in ,= =E c Aυ  (11) 

where 

 

1

2 .

T

T

 
 

=  
 
 

a

A a


 (12) 

Neglecting mode-dependent loss, propagation in the MMF can be represented in the basis 
of propagating modes by a unitary propagation operator U, which describes phase shifts and 
mode coupling [16]. Mode-independent loss, while not considered here, can be described by 
scaling U by a constant. The field at the MMF output can be represented by a state vector 

 
coupled,out coupled,in .= =E UE UAυ  (13) 

Given the state vector 
coupled,outE , the field distribution at the MMF output is described by 

 
fiber,out coupled,out, M, coupled,out( , ) ( , ) ( , ) ,T

i i

i

x y E x y x y= =∑E E M E  (14) 

where ( , )x yM is a matrix whose rows are given by samples of the propagating modes at 

suitably chosen values of ( , )x y : 

 

M,1

M,2

( , )

( , ) ( , ) .

T

T

x y

x y x y

 
 

=  
 
 

E

M E


 (15) 

Thus, the output field distribution is 

 
fiber,out coupled,out( , ) ( , ) ( , ) ( , ) .T T H

x y x y x y x y= = =E M E M UAυ w υ  (16) 

For simplicity of notation, we have defined ( , ) ( , )H T
x y x y=w M UA .We observe that the 

output field distribution is a linear function of the SLM reflectances 
i

υ . 

From this point on, unless noted otherwise, we will assume the fiber is weakly guiding, so 
the propagating modes are transverse. Under this assumption, the intensity distribution at the 
MMF output is proportional to the magnitude squared of the field distribution. Up to a 
normalization constant, we have 

 
2

fiber,out fiber,out( , ) ( , ) ( , ) ( , ) .H H
I x y x y x y x y= =E υ w w υ  (17) 

We observe that the output intensity distribution has a quadratic dependence on the SLM 
reflectances. 

2.2 Synthesis of a known intensity profile as an optimization problem 

In applications such as single-fiber scanning microscopy, multiplexing of optically 
interrogated sensors or targeted delivery of light to known locations (e.g., for stimulating 
neurons), the desired MMF output intensity profile may be known a priori. In order to pose 

this as an optimization problem, we define an objective function ( )F υ  such that when it is 
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minimized, the result is an intensity distribution 
fiber,out ( , )I x y  that is as close as possible to the 

known desired intensity distribution 
des ( , )I x y . We define the objective function as 

 

2 1

fiber,out fiber,out des

R R

( ) ( , ) ( , ) ( , ) ,F I x y dxdy I x y I x y dxdyκ= + −∫∫ ∫∫υ  (18) 

where κ is a constant, R1 is the region over the MMF core over which 
des ( , )I x y is larger than 

some specified fraction of its peak value (chosen to be 5% in the examples below) and R2 is 
the rest of the fiber core area (See inset of Fig. 1). We found that among various possible 
objective functions, Eq. (18) performs best in terms of convergence speed and closeness of 
the final output intensity profile to the desired intensity profile. 

Assuming a phase-only SLM, the optimization for the SLM reflectances is 

 
minimize ( )

subject to 1

F

=

υ
υ

 (19) 

If an amplitude-and-phase SLM is used, the constraint in Eq. (19) becomes 1≤υ . Note 

that the objective function defined by Eq. (18) is not convex in υ , and hence, standard 

convex optimization techniques cannot be used to solve Eq. (19) and find the globally optimal 

value of υ  [17]. In practice, this optimization problem can be solved by an adaptive 

algorithm. 

2.3 Synthesis of an unknown intensity profile as an optimization problem 

In applications such as targeted light delivery to fluorophores at unknown locations [18], the 
desired intensity profile may not be known a priori. In the setup of Fig. 1, a test object 
containing fluorophores may be placed at the MMF output, and the fluorescence power back-
scattered from one or more fluorophore(s) may be measured by a power meter. In order to 
pose this as an optimization problem, we define an objective function that is the negative of 
the total measured fluorescence intensity. When this objective function is minimized, the 
intensity profile at the MMF output is expected to closely match the unknown distribution of 
the fluorophores. We define the objective function as 

 
fiber,out( ) ( , ) ( , ) ,n

F I x y P x y dxdyκ= − ∫∫υ  (20) 

where κ  is a positive constant describing the fluorescence efficiency. ( , )P x y is the unknown 

density distribution of the fluorophore(s), and varies from 0 to 1. The parameter n is set to 1 
for single-photon fluorescence and 2 for two-photon fluorescence. The integral is carried over 
the whole core area of the MMF. The optimization problem for SLM reflectances is identical 
to Eq. (19). Like the problem described in Section 2.2, the present optimization problem is 
non-convex, but can be solved using adaptive algorithms in practice. In the next section, we 
describe adaptive optimization algorithms that find the optimal SLM settings based on 
measurements of the objective function. 

3. Adaptive optimization algorithms 

3.1 Adaptive sequential coordinate ascent 

An experimental system requires an adaptive algorithm to find the optimal SLM reflectances. 
In such an algorithm, at each step, one or a few SLM reflectances are updated based on some 
measurements of the objective function. If a phase-only SLM is used then the reflectances to 

be optimized are of the form j i

i
e

φυ = , where the 
i

ϕ  are the phases of the SLM blocks. In this 

case, the optimization algorithm is a continuous-phase sequential coordinate ascent (CPSCA) 
algorithm [19] that finds the optimal phase of one SLM block at each step based on three 
measurements of the objective function. Because the light intensity at the MMF output has a 
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quadratic dependence on the SLM reflectances Eq. (17), the objective functions Eq. (18) and 
Eq. (20) have the following dependence on the phase of the ith SLM block: 

 ( ) sin cos ,
i i i i i i

F a b cϕ ϕ ϕ= + +  (21) 

where 
i

a , 
i

b  and 
i

c  are three constants that can be uniquely determined from three 

measurements of the objective function at 
i

ϕ  equal to 0, 2 / 3π  and 4 / 3π . Defining 

 

,1

,2

,3

( 0)

( 2 / 3)

( 4 / 3),

i i

i i

i i

F F

F F

F F

ϕ

ϕ π

ϕ π

= =

= =

= =

 (22) 

then we have 

 

1

,1

,2

,3

0 1 1

3 / 2 1/ 2 1 .

3 / 2 1/ 2 1

i i

i i

i i

a F

b F

c F

−
    
     = −    
     − −    

 (23) 

Defining ( )1tan /
i i i

a bφ∗ −= , then the optimal phase of the i
th

 block is 

 
,opt

if sin cos 0
.

otherwise

i i i i i

i

i

a bϕ ϕ ϕ
ϕ

ϕ π

∗ ∗ ∗

∗

 + <= 
+

 
 (24) 

We can then set 
,opti i

φ φ= and move to next block. As we will show later, the CPSCA usually 

converges to the global minimum of the objective function after one pass over the SLM. 

If an amplitude-and-phase SLM is used, we need to optimize both the amplitude 
i

r  and 

phase 
i
φ  of each SLM block with the constraint 0 1

i
r≤ ≤ . The reflectivity of the i

th
 block is 

ij

i i
re

φυ = . The optimization algorithm in this case is an amplitude-and-phase sequential 

coordinate ascent (APSCA), which optimizes the amplitude and phase of one SLM block at 
each step based on four measurements of the objective function. In this case, the objective 
functions Eq. (18) and Eq. (20) have the following dependence on the amplitude and phase of 
the i

th
 SLM block 

 2( , ) sin cos ,
i i i i i i i i i i i

F r d r a r b r cϕ ϕ ϕ= + + +  (25) 

where 
i

a , 
i

b , 
i

c  
i

d  are four constants that can be uniquely determined from four 

measurements of the objective function at 
i

υ  equal to 0, 1, 2 /3j
e

π  and 4 /3j
e

π . Letting 

 

,1

,2

2 /3

,3

4 /3

,4

( 0)

( 1)

( )

( ),

i i

i i

j

i i

j

i i

F F

F F

F F e

F F e

π

π

υ

υ

υ

υ

= =

= =

= =

= =

 (26) 

then we have 

 

,1

1

,2 ,1

,3 ,1

,4 ,1

1 0 1

1 3 / 2 1/ 2 .

1 3 / 2 1/ 2

i i

i i i

i i i

i i i

c F

d F F

a F F

b F F

−

=

   − 
     = − −    
     −− −    

 (27) 
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Defining ( )1tan /
i i i

a bφ∗ −= , two cases must be considered. The first case is when 0
i

d ≥ , 

where the optimal phase of the i
th

 block is given by Eq. (24), and the optimal amplitude is 
given by 

 
,opt ,opt

,opt

sin cos
.

2

i i i i

i

i

a b
r

d

ϕ ϕ− −
=  (28) 

The second case is when 0
i

d < , where we find 

 

,opt ,opt

,opt ,opt

,opt ,opt

1, if sin cos 0

1, if sin cos 0

0, 0 otherwise.

i i i i i i i i

i i i i i i i i

i i

r d a b

r d a b

r

ϕ ϕ ϕ ϕ

ϕ ϕ π ϕ ϕ

ϕ

∗ ∗ ∗

∗ ∗ ∗

= = + + <

= = + − − <

= =

 

  (29) 

We can then set ,opt

,opt

ij

i i
r e

φυ =  and move to next block. To ensure the constraint 0 1
i

r≤ ≤  

is satisfied, we normalize the amplitudes of all SLM blocks at the end of each step: 

 
,opt

1
.

max(1, )
i

r
=υ υ  (30) 

Like the CPSCA, APSCA usually converges to the global minimum of the objective 
function after one pass over the SLM. Before applying our adaptive optimization algorithms 
to Eq. (19) we find analytical lower bounds on the optimal values of our objective functions 
that will be used in evaluating the performance of our algorithms. 

3.2 Lower bound on the optimal value of the objective function 

As mentioned above, the optimization problem of Eq. (19) is not convex and cannot be solved 
analytically. However, it can be directly relaxed into a convex problem that when solved, 
yields a lower bound on the optimal value of the objective function. For simplicity of notation 
we define 

 ( , ) ( , ) ( , ).H
x y x y x y=W w w  (31) 

We also define V, which is a matrix that depends on the SLM reflectance vector υ  as 

follows 

 .H=V υυ  (32) 

We can now express the MMF output intensity profile of Eq. (17) in terms of ( , )x yW and 

V as 

 ( )fiber,out ( , ) ( , ) ( , ) tr ( , ) ,H H
I x y x y x y x y= =υ w w υ W V  (33) 

where tr( )⋅ denotes the trace of a matrix. Note that 
fiber,out ( , )I x y  is a linear function of the new 

variable V. Rewriting the objective function Eq. (18) as a function of V we obtain 

 ( ) ( )
2 1

des

R R

( ) tr ( , ) tr ( , ) ( , ) ,F x y dxdy x y I x y dxdyκ= + −∫∫ ∫∫V W V W V  (34) 

and rewriting the objective function Eq. (20) for n = 1 as a function of V we obtain 

 ( )( ) tr ( , ) ( , ) .F x y P x y dxdyκ= − ∫∫V W V  (35) 

We observe that in both cases ( )F V  is a convex function of V, and the optimization 

problem of Eq. (19) can be rewritten as 
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minimize ( )

subject to

diag( )

H

F

=
=

V

V υυ
V 1

 (36) 

The first constraint in the optimization problem of Eq. (36) is not convex, but we can relax 

it by replacing it with a positive semidefiniteness constraint 0H−V υυ  , which can itself be 

formulated as a Schur complement [17]. The relaxed optimization problem then becomes 

 

minimize ( )

subject to 0
1

diag( )

H

F

 
 
 

=

V

V υ
υ

V 1

  (37) 

This is the semidefinite program (SDP) relaxation of the original non-convex problem of 
Eq. (19). If we are considering an amplitude-and-phase SLM, the second constraint should be 

replaced by diag( ) ≤V 1 . The SDP-relaxed optimization problem can be solved analytically, 

and its optimal value forms a lower bound on the optimal value of the objective function in 
the original non-convex problem [20]. In the next section, we show the results of applying our 
adaptive optimization algorithm to forming spots at known and unknown locations at the 
output of a MMF and we will use this lower bound to evaluate the performance of our 
algorithm. 

4. Results 

4.1 Simulation results for spot formation in known locations 

We have simulated the performance of our adaptive algorithms in forming spots at known 
locations. We assume the setup of Fig. 1 using a MMF with parabolic index profile, numerical 
aperture NA = 0.19 and 50-µm core diameter. The fiber supports 45 modes in each 
polarization at 1550 nm. We model propagation of the electric field in the MMF by a random 
unitary propagation matrix U, which is a worst-case model for a real fiber, assuming 
negligible mode-dependent loss. We assume that a Fourier transform lens is used to focus the 
SLM output field to the MMF input plane, with only the zeroth diffraction order incident on 
the MMF core. 

We are interested in modeling a weakly guiding fiber whose length is much shorter than 
the birefringence beat length. These conditions are well-satisfied by the experimental setup 
described in Section 4.2, where the two lengths are 1 m and at least 10 m, respectively. 
Hence, spatial mode-dependent polarization coupling and polarization-dependent spatial-
mode coupling are negligible. Furthermore, at the MMF output, we are only performing 
polarization-insensitive intensity measurements. Although the MMF generally supports 2Nm 
modes in two polarizations, we can ignore polarization, and all the summations from Section 
2 can be performed over the Nm modes in one polarization. 

To determine the matrices ( , )x yM  and A, we have numerically solved for the exact 

modes of the MMF under the weak-guidance assumption [21]. We have further assumed that 

SLM,in ( , )x yE has a Gaussian profile with zero phase everywhere (although a uniform profile 

leads to identical results). We used the objective function Eq. (18) with a super-Gaussian 
desired intensity profile given by 

 ( )2 2

des, SG 0 0 0( , ) exp ( ) ( ) ,
m

I x y I a x x y y = − − + −    (38) 

where 
0I is a normalization constant, m is the order of the super-Gaussian (m = 1 corresponds 

to an ordinary Gaussian distribution), 
0 0( , )x y is the known centroid of the intensity 
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distribution (relative to the center of the MMF core) and a is a parameter determining the full-
width at half-maximum (FWHM) of the distribution by 

 

1/2
ln 2

FWHM 2 .

m

a

 =  
 

 (39) 

We have set 410κ =  in Eq. (18). After trying super-Gaussians of different orders, we 

concluded that for spot formation at known locations, a first-order Gaussian profile performs 
almost the same as the higher-order super-Gaussians. We set the FWHM spot size of the 
desired Gaussian profile to 4 µm (setting it to smaller values led to identical results). 

We evaluate the quality of a spot of light that is formed at the MMF output in terms of five 
parameters: the longitudinal and transverse sizes of the spot, the location of its centroid, the 
ratio of its peak intensity to its largest sidelobe intensity (peak sidelobe ratio) and the ratio of 
its integrated mainlobe intensity to its integrated sidelobes intensity (integrated sidelobe 
ratio). In imaging applications, performance is optimized when the spot sizes are minimized, 
the sidelobe ratios are maximized, and the actual spots are formed close to the desired 
locations. 

We have simulated phase-only, and amplitude-and-phase SLMs with 8 × 8 and 16 × 16 
blocks. For each SLM, we have set the centroid of the desired Gaussian distribution to 

0,des( ,0)x  and varied 
0,desx  from 0 to 21 µm. We optimized the parameters of each SLM using 

our algorithm in one pass and then measured the five characteristics of the spots that are 
formed at different locations with different SLMs. The results are given in Figs. 2(a)-2(e). For 
comparison, Figs. 2(a)-2(e) also include the characteristics of a backpropagated delta function 
distribution sampled by a 16 × 16 amplitude-and-phase SLM (See Appendix A for the 
definition of a backpropagated delta function). 

In Figs. 2(a)-2(e), it is observed that for both phase-only and amplitude-and-phase SLMs, 
and for both numbers of blocks, the longitudinal and transverse spot sizes and the actual spot 
locations are close to those of the backpropagated delta function sampled by a 16 × 16 
amplitude-and-phase SLM. As expected, increasing the SLM resolution increases the peak  
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B/P, 16x16, amp + phase
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Fig. 2. Characteristics of the spots formed using CPSCA and APSCA in known locations at 
different distances from the center of the fiber, in simulation and experiment: (a) longitudinal 
spot size, (b) transverse spot size, (c) centroid location, (d) peak sidelobe ratio and (e) 
integrated sidelobe ratio. Note that CPSCA and APSCA yield higher peak and integrated 
sidelobe ratios than a backpropagated delta function sampled at the same resolution. 
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and integrated sidelobe ratios. At a given number of SLM blocks, an amplitude-and-phase 
SLM yields higher peak and integrated sidelobe ratios than a phase-only SLM. Interestingly, 
the CPSCA and APSCA algorithms with a16 × 16-block SLM yield higher peak and 
integrated sidelobe ratios than the backpropagated delta function sampled by the same number 
of SLM blocks. This suggests that if we increased the SLM resolution further, the 
characteristics the spots formed by these algorithms should converge to those of a 
backpropagated and continuously sampled delta function (See Appendix A). 

To illustrate the convergence rate of our adaptive algorithms, Fig. 3 shows the normalized 
objective function versus optimization step for a spot formed 5 µm away from the center of 
the MMF using CPSCA on a 16 × 16-block SLM. Also shown is the lower bound on the 
objective function found as described in Section 3.2. In Fig. 3, after one pass over the SLM, 
the objective function is observed to reach a value is close to the lower bound. Given that this 
lower bound is not necessarily tight, this suggests that the algorithm has closely approached 
the global minimum. Note that only 224 of the nominally 256 SLM blocks are adapted in each 
pass, because negligible light energy falls on the remaining 32 blocks. 
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Fig. 3. Normalized objective function convergence curve for a spot in a known location 5 µm 
from the center of the fiber, for simulated (solid) and experimental (dashed) CPSCA. In both 
cases, after one pass over the SLM, the objective function converges to a value close to the 
theoretical lower bound. 

4.2 Experimental results for spot formation in known locations 

Our adaptive algorithms were tested using the experimental setup shown in Fig. 4. A 1550-nm 
laser is coupled through a polarization-maintaining single-mode fiber (NA = 0.11), collimated 
using an f = 10.4 mm lens, and directed through a linear polarizer onto a 256 × 256-pixel 
phase-only SLM. Each pixel is 18 × 18 µm

2, with a phase controllable from 0 to 2π with 8-bit 
resolution, and with a switching speed of 50 ms. The SLM output passes through a first 45%-
45% polarization-independent beam splitter and is coupled by an f = 5.5 mm lens into a 
parabolic-index MMF having 50-μm core diameter and an NA of 0.19. The MMF output facet 
is AR-coated, with a reflectivity <1%. The MMF output is magnified 65 × using an f = 4.5 
mm aspherical lens and imaged onto a phosphor-coated CCD array. The camera image is 
monitored by a personal computer (PC) that controls the SLM. The SLM is adapted to form a 
desired intensity profile using CPSCA, and the resulting SLM pattern can be stored for later 
use. When a nominally 16 × 16-block SLM is used, the SLM pixels are grouped into blocks, 
each comprising 16 × 16 pixels. A set of 224 blocks covers a circle enclosing more than 95% 
of the energy incident on the SLM (See the upper-right corner of Fig. 1), so only these 224 
blocks are adapted. When a nominally 8 × 8-block SLM is used, pixels are grouped into 
blocks of 32 × 32 pixels, and 60 blocks are adapted. Adaptation of a single SLM block 
requires about 1.2 s, of which about 0.2 s is allocated for the four phase changes, and about  
1 s is allocated for the three objective function measurements. Adaptation of 224 blocks 
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requires a total of about 270 s. Some elements of Fig. 4, including a second beam splitter, a 
power meter, and a test object (shown in the inset), are used for imaging, as described in 
Section 5 below. 

Measured characteristics of the spots formed using the setup of Fig. 4 are shown in Figs. 
2(a)-2(e) as red triangles. For both 16 × 16-block and 8 × 8-block SLMs, experimental results 
are generally in good agreement with simulations. In both experiments and simulations, 
longitudinal and transverse spot sizes increase and sidelobe ratios decrease as the spot 
centroid approaches the core-cladding boundary at x = 25 μm, and it is difficult to form high-
quality spots beyond x0,des = 20 µm. Two minor discrepancies are observable as the spot 
centroid approaches this value. In Fig. 2(b), the experimental transverse spot sizes are smaller 
than the simulated values, and in Fig. 2(c), the experimental spot centroids lie closer to the 
desired values than the simulated spot centroids. We comment on these discrepancies in 
Section 6. 
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Fig. 4. Experimental setup for forming spots in known locations and for imaging. Light from a 
1550-nm laser is directed onto the SLM. Light reflected from the SLM is focused into the 
MMF. A camera measures the intensity profile at the MMF output and sends the data to a PC 
that controls the SLM phases. The inset shows an imaging mode of operation, where a test 
object is placed in front of the fiber. Previously saved patterns are loaded on the SLM to 
generate spots of light at different locations on the fiber output. The spots sample the test 
object and the reflected intensity is measured by the power meter and used to reconstruct the 
image. 

Figures 5(a)-5(d) show simulated and experimental intensity distributions for spots formed 
at the center of the MMF core and 20 µm away from the center using a 16 × 16-block phase-
only SLM. Good agreement between simulated and experimental intensity distributions is 
observed. Close comparison of Fig. 5(c) and (d) reveals the minor discrepancies mentioned in 
the previous paragraph. In particular, the simulated spot in Fig. 5(c) appears more elliptical 
than the experimental spot in Fig. 5(d). 
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Fig. 5. Intensity distributions formed in known locations at the output of a 50-μm parabolic-
index MMF. A phase-only SLM with 16 × 16 blocks is adapted using CPSCA. White circles 
show the fiber core boundary. Spot focused at center of core: (a) simulated, (b) experimental. 
Spot focused 20 µm away from center of core: (c) simulated, (d) experimental. 
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4.3 Simulation results for spot formation in unknown locations 

We have simulated the performance of our adaptive algorithms in forming spots at unknown 
locations. We assume the setup of Fig. 1 with a MMF the same as that described in Section 
4.1. We use the objective function Eq. (20) with n = 1 and 1κ = . We assume a Gaussian 

fluorophore distribution ( , )P x y  with 4-µm FWHM. The centroid of this distribution is 

placed at the core center, 10 μm away from the core center, and 20 μm away from the core 
center. The SLM is phase-only with 16 × 16 blocks. Figures 6(a)-6(c) show simulated 
intensity distributions. It is seen that our algorithm can efficiently concentrate light at 
locations not known a priori, based only on measurement of the total fluorescence intensity. 
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Fig. 6. Simulated intensity distributions formed in unknown locations at the output of a 50-μm 
parabolic-index MMF. Fluorophore distributions having 4-μm FWHM are centered: (a) at 
center of core, (b) 10 µm away from center of core and (c) 20 µm away from center of core. No 
a priori knowledge of the fluorophore location is assumed. Adaptive CPSCA is used on a 
phase-only SLM with 16 × 16 blocks to maximize the total back-reflected fluorescent light 
intensity. White circles show the fiber core boundary. 

Figure 7 shows the normalized objective function versus optimization step for targeted 
light delivery to a fluorophore centered 10 µm away from the core center, using CPSCA on a 
16 × 16-block phase-only SLM. Also shown is the lower bound on the objective function 
found as described in Section 3.2. In Fig. 7, it is observed that after one pass over the SLM, 
the objective function reaches a value close to the lower bound. Given that the lower bound is 
not necessarily tight, this suggests that the algorithm has come very close to the global 
minimum. 
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Fig. 7. Normalized objective function convergence curve for targeted light delivery to a 
fluorophore distribution having 4-μm FWHM and centered 10 µm away from center of core, 
for adaptation by CPSCA. After one pass over the SLM, the objective function converges to a 
value close to the theoretical lower bound. 

Thus far, we have described how our algorithm can be applied to spot formation at known 
and unknown locations. In the next section, we describe how the setup of Fig. 4 and spot 
formation at known locations can be used to realize a single-fiber scanning microscope. 
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5. Application to imaging 

The setup of Fig. 4 can, in principle, be used as a single-fiber scanning microscope [22]. A 
sampling grid is defined over the MMF core region. In a calibration sequence, the SLM is 
adapted to form a spot centered at a grid point, the optimized SLM pattern is stored, and the 
adaptation process is repeated for each point in the sampling grid. After calibration, a test 
object is placed near the MMF output, as shown in the inset of Fig. 4. The sequence of stored 
SLM patterns is displayed, sampling the test object at a sequence of grid points. When a 
sampling spot illuminates the test object, a fraction of the power reflected from the object is 
captured by the MMF, and is directed by a second polarization-independent beam splitter to a 
power meter. For normalization, a reference object of uniform reflectivity (e.g., a mirror) is 
sampled. Samples of the test object, normalized by those of the reference object, are used to 
reconstruct an image. Successful imaging requires that the MMF not move significantly 
between calibration and image recording, so that the propagation operator U does not change 
significantly. 

We have simulated imaging of infinite checkerboards having different square sizes to 
illustrate the imaging performance of the system shown in Fig. 4. All cases employed a 
sampling grid of 40 × 40 spots with 1-μm spacing. To generate the sampling spots, we used 
CPSCA with a 16 × 16-block phase-only SLM, comparing the results to those obtained using 
backpropagated delta function distributions sampled by an infinite-resolution amplitude-and-
phase SLM (See Appendix A). All the other properties of the system are the same as those 
described in Section 4.2. Simulation results are shown in Figs. 8(a)-8(f). The images in Figs. 
8(a)-(c), obtained using backpropagated delta functions sampled with infinite resolution, 
represent a theoretical bound on the imaging performance of the system. Since the MMF 
supports only 45 orthogonal spatial modes at 1550 nm, we would expect to be able to 
distinguish at most 45 spatially orthogonal features in an image. Interestingly, the number of 
distinguishable squares reaches a maximum value of about 52 in Fig. 8(b). In Figs. 8(a)-8(c), 
the sharpness and contrast of the squares decreases as the core-cladding boundary is 
approached, for two reasons. First, the longitudinal and transverse spot sizes increase from 
about 4 µm to about 6 µm and 7 µm, respectively, as shown by the solid black lines in Figs. 
9(a) and 9(b), respectively. Second, the peak sidelobe ratio decreases from about 26 to 12, as 
shown by the solid black line in Fig. 9(d). The images in Figs. 8(d)-8(f), obtained using 
CPSCA with a 16 × 16-block phase-only SLM, are lower in contrast and noisier than the 
corresponding images in Figs. 8(a)-8(c), for two reasons. First, the peak sidelobe ratios of the 
CPSCA-adapted spots are slightly lower, ranging from about 21 to 10 from the center to the  
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Fig. 8. Simulated imaging of an infinite checkerboard using spots formed by (a-c) 
backpropagated delta functions sampled by an infinite-resolution amplitude-and-phase SLM 
(a-c) and (d-f) by adaptive CPSCA using a 16 × 16-block SLM. The square size is (a),(d) 3.5 
µm, (b),(e) 4.5 µm, and (c),(f) 5.5 µm. The fiber core boundary is indicated by the white 
circles. 
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edge of the core, as shown by the blue circles in Fig. 2(d). Second, the mainlobe and sidelobe 
intensities of the CPSCA-adapted spots exhibit random fluctuations from spot to spot, 
resulting from applying the CPSCA algorithm with different desired intensity profiles to a 
system described by a single realization of the random propagation operator U. 

With proper choice of the desired intensity profile, the objective function Eq. (18) and 
adaptive algorithm presented can be used in applications beyond the scanning microscopy 
described here. Such applications include spatial multiplexing of optically interrogated 
sensors, and targeted light delivery for stimulation of neurons. 

6. Discussion 

As mentioned in Section 4.2, minor discrepancies between experiment and simulation are 
observed when forming spots near the core-cladding boundary of the MMF. Our simulations 
are performed using modes obtained by exact numerical solution of the wave equation under 
the assumption of weak guidance, such that the modal fields can be assumed to be purely 
transverse. It is likely that the discrepancies originate from the inaccuracy of the weak-
guidance assumption. 

As mentioned in Section 4.2 and confirmed by experimental results in Section 4.3, 
increasing the number of blocks on the SLM enables us to form spots with better peak and 
integrated sidelobe ratios. However, it should be noted that increasing the number of blocks 
will decrease the amplitude of oscillations in the objective function given by Eq. (21) and Eq. 
(25). In practice, once the amplitude of these oscillations becomes comparable to the noise 
variance of the camera, one would not be able to effectively optimize the SLM pattern any 
more. In our experimental setup we had no problem increasing the number of SLM blocks up 
to 64 × 64. 

Operation of our system as a scanning microscope requires that the fiber propagation 
matrix U undergoes a sufficiently small change between the SLM adaptation phase and the 
image recording phase. This would be facilitated by using a short fiber (or other multimode 
waveguide) and by enclosing it in a rigid, slender tube to prevent bending. Methods to 
enhance the stability of the system are a subject of ongoing research. 

Operation of our system as a scanning microscope requires adaptation of the SLM to form 
spots at each point in the sampling grid, which requires a prohibitive amount of time at 
present. If possible, it would be desirable to adapt the SLM to form spots at a smaller number 
of points, and to compute the SLM patterns required to form spots at the remaining points in 
the sampling grid. Solving this problem might require partial or full knowledge of the fiber 
propagation matrix U, and is a subject of ongoing research. 

7. Conclusion 

We demonstrated optimal control of the field input to an MMF, using an SLM, in order to 
achieve a desired intensity profile at the MMF output. We described how to define an 
objective function when the desired intensity profile is known or unknown a priori, and 
developed adaptation algorithms for both phase-only and amplitude-and-phase SLMs. The 
proposed algorithm brings the objective function close to the global minimum after a single 
pass over the SLM. We also described how this method can be used to realize a scanning 
microscope, and simulated its imaging capabilities. 

Appendix A 

We are interested in finding bounds on the performance of the system in Fig. 1 for spot 
formation in known locations. Different intensity distributions may be appropriate for 
different applications. We were interested in using the setup of Fig. 1 to make a single-fiber 
scanning microscope. For this application, the desired output intensity distribution is a 
sampling function that is spatially localized and smooth and has low sidelobes and hence, the 
super-Gaussian family of functions Eq. (38) are a suitable for this application. 

The desired output intensity distribution Eq. (38) is non-negative, so it corresponds to a 
desired output field distribution given by 
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1/2

des,SG des,SG des,SG( , ) ( , ) ( , ) ,x y E x y I x y = =  E e e  (A.1) 

where ˆ ˆ
x y

e x e y= +e  is a constant unit Jones vector (
22

1
x y

e e+ = ) describing the 

polarization of the electric field. Because we are assuming the fiber is weakly guiding, the 
electric field is transverse and its polarization is uniform over the fiber core. In order to 
optimize imaging resolution, the super-Gaussian sampling function should be as narrow as 

possible. In the limit a →∞ , the desired output field distribution approaches a delta function: 

 
des, 0 0( , ) ( , ) .x y x x y yδ δ= − −E e  (A.2) 

In order to best approximate 
des, ( , )x yδE , the MMF output field 

fiber,out ( , )x yE  is chosen to be 

the projection of 
des, ( , )x yδE  onto the space spanned by the propagating modes of the MMF. 

This 
fiber,out ( , )x yE  is the same as that obtained by minimizing an objective function that is the 

mean squared error (MSE) between 
fiber,out ( , )x yE and 

0 0( , )x x y yδ − − . The i
th

 element of the 

output field state vector 
coupled,out

δ
E  is given by the overlap integral between the desired delta 

function field and the electric field of the i
th

 propagating mode of the fiber 

 
coupled,out,i 0 0 M, M, 0 0( , ) ( , ) ( , ).

i i
E x x y y x y dxdy E x y

δ δ ∗ ∗= − − ⋅ =∫∫ e E  (A.3) 

Therefore 

 

M,1 0 0

coupled,out M,2 0 0

( , )

( , ) ,

E x y

E x y
δ

∗

∗

 
 

=  
 
 

E


 (A.4) 

where the δ  superscript indicates that the desired field distribution is a delta 

function.
coupled,in

δ
E  is found by backpropagating 

coupled,out

δ
E to the MMF input plane: 

 
coupled,in coupled,out ,

Hδ δ=E U E  (A.5) 

where H
U is the Hermitian adjoint of the propagation operator U . The backpropagated field 

distribution at the MMF input plane is given by 

fiber,in coupled,in, M, coupled,in coupled,out( , ) ( , ) ( , ) ( , ) .T T H

i i

i

x y E x y x y x y
δ δ δ δ= = =∑E E M E M U E  (A.6) 

Once we have
fiber,in ( , )x y
δ

E , we can further backpropagate it to the SLM plane 

 1 1

SLM,out fiber,in coupled,out( , ) ( , ) ( , ) .T H
x y L x y L x y

δ δ δ− −   = =   E E M U E  (A.7) 

We can now choose an SLM block size and sample the electric field on the SLM plane to 

find the reflectances of the SLM blocks. For a phase-only SLM, we take 
k

υ  to be the average 

phase of 
SLM,out ( , )x y
δ

E over the k
th

 SLM block. For an amplitude-and-phase SLM, we take 
k

υ  

to be the average complex amplitude of 
SLM,out ( , )x y
δ

E  over the k
th

 SLM block, and we 

normalize all the SLM reflectances to ensure that 1≤υ . Having determined the SLM block 

reflectances, we can now forward-propagate the field at the SLM plane to find the actual 
intensity distribution at the output end of the MMF. 

To characterize the spots formed at different positions on the MMF core using 
backpropagation, we have simulated the system of Fig. 1. All the parameters of the system 
and simulation methods are the same as those described in 4.1. We have simulated phase-
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only, and amplitude-and-phase SLMs with 16 × 16, 32 × 32 and 64 × 64 blocks. For each 

SLM, we have placed the delta function source at a location 
0,des( ,0)x  over the MMF output 

plane and varied 
0,desx  from 0 to 21 µm. We have backpropagated each of the electric fields 

using the described method, sampled it at the SLM plane and forward propagated the sampled 
field to find the actual intensity distribution at the MMF output. We have then measured the 
five characteristics of the spots that are formed at different locations with different SLMs. The 
results are given in Figs. 9(a)-9(e). 

In each part of Figs. 9(a)-9(e), the solid black curve shows the characteristics of a spot 
formed by backpropagating a delta function field distribution and continuously sampling its 
amplitude and phase on the SLM plane and forward propagating it again. This spot has 
minimum MSE from the desired delta function, and can only be formed using an amplitude-
and-phase SLM with infinite resolution. It should be noted that by manipulating the elements 

of 
coupled,out

δ
E , certain properties of the spots can be made to exceed the black curves. For 

example, by applying a Gaussian window to the elements of 
coupled,out

δ
E , the integrated sidelobe 

ratio can be increased, but at the expense of increased spot sizes. 
It is evident in Figs. 9(a)-9(e) that the spot sizes and positions formed are almost 

independent of the SLM resolution and type. For a given SLM resolution, however, an 
amplitude-and-phase SLM yields higher peak and integrated sidelobe ratios than a phase-only 
SLM. Also, for each SLM type, increasing the resolution increases the peak and integrated 
sidelobe ratios. The curves in Figs. 9(a)-9(e) are a basis for evaluating the performance of our 
adaptive optimization algorithm, which is described in Section 3.1. 

0 5 10 15 20

4

5

6

7

8

Desired spot location x
0, des

   (µm)

F
W

H
M

x  
 (
µ m

)

 

 

0 5 10 15 20

4

5

6

7

8

Desired spot location x
0, des

   (µm)

F
W

H
M

y  
 (
µ m

)

 

 

0 5 10 15 20
0

5

10

15

20

25

30

Desired spot location x
0, des

   (µm)

P
e
a
k
 s

id
e
lo

b
e
 r

a
ti
o
 (

u
n
it
le

s
s
)

 

 

0 5 10 15 20
0

1

2

3

4

5

6

Desired spot location x
0, des

   (µm)

In
te

g
ra

te
d
 s

id
e
lo

b
e
 r

a
ti
o
 (

u
n
it
le

s
s
)

 

 

0 5 10 15 20
0

5

10

15

20

Desired spot location x
0, des

   (µm)

A
c
tu

a
l 
s
p
o
t 

lo
c
a
ti
o
n
 x

0
, 
a

c
t  

 (
µ m

)

 

 

(a) (b) (c)

(d) (e)

B/P, continuous, amp + phase

B/P, 16x16, phase only

B/P, 16x16, amp + phase

B/P, 32x32, phase only

B/P, 32x32, amp + phase

B/P, 64x64, phase only

B/P, 64x64, amp + phase

 

Fig. 9. Characteristics of spots formed by backpropagation of delta functions at different 
distances from the center of the core, for different sampling resolutions and using phase-only 
or amplitude-and-phase sampling: (a) longitudinal spot size, (b) transverse spot size, (c) 
centroid location, (d) peak sidelobe ratio and (e) integrated sidelobe ratio. 
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