Adaptive Control of Parabolic PDEs

Andrey Smyshlyaev and Miroslav Krstic

PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD

Contents

Preface		ix
Chapter	1. Introduction	1
1.1	Parabolic and Hyperbolic PDE Systems	1
1.2	The Roles of PDE Plant Instability, Actuator Location,	
	Uncertainty Structure, Relative Degree, and Functional Parameters	2
1.3	Class of Parabolic PDE Systems	3
1.4	Backstepping	4
1.5	Explicitly Parametrized Controllers	5
1.6	Adaptive Control	5
1.7	Overview of the Literature on Adaptive Control for Parabolic PDEs	6
1.8	Inverse Optimality	7
1.9	Organization of the Book	7
1.10	Notation	9
Part I	NONADAPTIVE CONTROLLERS	11
Chapter	2. State Feedback	13
2.1	Problem Formulation	13
2.2	Backstepping Transformation and PDE for Its Kernel	14
2.3	Converting the PDE into an Integral Equation	17
2.4	Analysis of the Integral Equation by Successive Approximation	
	Series	19
2.5	Stability of the Closed-Loop System	22
2.6	Dirichlet Uncontrolled End	24
2.7	Neumann Actuation	26
2.8	Simulation	27
2.9	Discussion	27
2.10	Notes and References	33
Chapter	3. Closed-Form Controllers	35
3.1	The Reaction-Diffusion Equation	35
3.2	A Family of Plants with Spatially Varying Reactivity	38
3.3	Solid Propellant Rocket Model	40
3.4	Plants with Spatially Varying Diffusivity	42

3.5	The Time-Varying Reaction Equation	45
3.6	More Complex Systems	50
3.7	2D and 3D Systems	52
3.8	Notes and References	54
Chapter 4	4. Observers	55
4.1	Observer Design for the Anti-Collocated Setup	55
4.2	Plants with Dirichlet Uncontrolled End and Neumann	
	Measurements	58
4.3	Observer Design for the Collocated Setup	59
4.4	Notes and References	61
Chapter !	5. Output Feedback	63
5.1	Anti-Collocated Setup	63
5.2	Collocated Setup	65
5.3	Closed-Form Compensators	67
5.4	Frequency Domain Compensator	71
5.5	Notes and References	72
Chapter (5. Control of Complex-Valued PDEs	73
6.1	State-Feedback Design for the Schrödinger Equation	73
6.2	Observer Design for the Schrödinger Equation	76
6.3	Output-Feedback Compensator for the Schrödinger Equation	79
6.4	The Ginzburg-Landau Equation	81
6.5	State Feedback for the Ginzburg-Landau Equation	83
6.6	Observer Design for the Ginzburg-Landau Equation	98
6.7	Output Feedback for the Ginzburg-Landau Equation	101
6.8	Simulations with the Nonlinear Ginzburg-Landau Equation	104
6.9	Notes and References	107
PART II	ADAPTIVE SCHEMES	109
Chapter -	7 Sustamatization of Approaches to Adaptive Boundary Stabilization	
Chapter	 Systematization of Approaches to Adaptive Boundary Stabilization of PDEs 	111
7.1	Categorization of Adaptive Controllers and Identifiers	111
7.2	Benchmark Systems	113
7.3	Controllers	114
7.4	Lyapunov Design	115
7.5	Certainty Equivalence Designs	117
7.6	Trade-offs between the Designs	121
7.7	Stability	122
7.8	Notes and References	124
Chapter	8. Lyapunov-Based Designs	125
8.1	Plant with Unknown Reaction Coefficient	125
8.2	Proof of Theorem 8.1	128

8.3	Well-Posedness of the Closed-Loop System	132
8.4	Parametric Robustness	134
8.5	An Alternative Approach	135
8.6	Other Benchmark Problems	136
8.7	Systems with Unknown Diffusion and Advection Coefficients	142
8.8	Simulation Results	147
8.9	Notes and References	149
Chapter S	 Certainty Equivalence Design with Passive Identifiers 	150
9.1	Benchmark Plant	150
9.2	3D Reaction-Advection-Diffusion Plant	154
9.3	Proof of Theorem 9.2	157
9.4	Simulations	163
9.5	Notes and References	164
Chapter ⁻	10. Certainty Equivalence Design with Swapping Identifiers	166
10.1	Reaction-Advection-Diffusion Plant	166
10.2	Proof of Theorem 10.1	169
10.3	Simulations	175
10.4	Notes and References	175
Chapter	11. State Feedback for PDEs with Spatially Varying Coefficients	176
11.1	Problem Statement	176
11.2	Nominal Control Design	177
11.3	Robustness to Error in Gain Kernel	179
11.4	Lyapunov Design	185
11.5	Lyapunov Design for Plants with Unknown Advection and	
	Diffusion Parameters	190
11.6	Passivity-Based Design	191
11.7	Simulations	195
11.8	Notes and References	197
Chapter	12. Closed-Form Adaptive Output-Feedback Contollers	198
12.1	Lyapunov Design—Plant with Unknown Parameter in the Domain	199
12.2	Lyapunov Design-Plant with Unknown Parameter in the	205
	Boundary Condition	
12.3	Swapping Design-Plant with Unknown Parameter in the Domain	210
12.4	Swapping Design-Plant with Unknown Parameter in the	
	Boundary Condition	216
12.5	Simulations	223
12.6	Notes and References	225
Chapter	13. Output Feedback for PDEs with Spatially Varying Coefficients	226
13.1	Reaction-Advection-Diffusion Plant	226
13.2	Transformation to Observer Canonical Form	227

13,3	Nominal Controller	228
13.4	Filters	230
13.5	Frequency Domain Compensator with Frozen Parameters	232
13.6	Update Laws	233
13.7	Stability	235
13.8	Trajectory Tracking	242
13.9	The Ginzburg-Landau Equation	244
13.10	Identifier for the Ginzburg-Landau Equation	246
13.11	Stability of Adaptive Scheme for the Ginzburg-Landau Equation	248
13.12	Simulations	255
13.13	Notes and References	255
Chapter 1	4. Inverse Optimal Control	261
14.1	Nonadaptive Inverse Optimal Control	262
14.2	Reducing Control Effort through Adaptation	265
14.3	Dirichlet Actuation	267
14.4	Design Example	267
14.5	Comparison with the LQR Approach	268
14.6	Inverse Optimal Adaptive Control	271
14.7	Stability and Inverse Optimality of the Adaptive Scheme	273
14.8	Notes and References	275
Appendix	A. Adaptive Backstepping for Nonlinear ODEs—The Basics	277
A.1	Nonadaptive Backstepping—The Known Parameter Case	277
A.2	Tuning Functions Design	279
A.3	Modular Design	289
A.4	Output Feedback Designs	297
A.5	Extensions	303
Appendix	B. Poincaré and Agmon Inequalities	305
Appendix	C. Bessel Functions	307
C.1	Bessel Function J_n	307
C.2	Modified Bessel Function In	307
Appendix	C. Barbalat's and Other Lemmas for Proving Adaptive Regulation	310
Appendix	E. Basic Parabolic PDEs and Their Exact Solutions	313
E.1	Reaction-Diffusion Equation with Dirichlet Boundary Conditions	313
E.2	Reaction-Diffusion Equation with Neumann Boundary Conditions	315
E.3	Reaction-Diffusion Equation with Mixed Boundary Conditions	315
Reference	es	317

Index

327