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SUMMARY
In this paper, adaptive control of kinematically redundant
robot manipulators is considered. An end-effector tracking
controller is designed and the manipulator’s kinematic
redundancy is utilized to integrate a general sub-task
controller for self-motion control. The control objectives are
achieved by designing a feedback linearizing controller that
includes a least-squares estimation algorithm to compensate
for the parametric uncertainties. Numerical simulation
results are presented to show the validity of the proposed
controller.
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1. Introduction
When the number of joints of a robot manipulator is greater
than the dimension of its task-space position vector then
it is called a kinematically redundant robot manipulator. In
many applications, robot manipulators with such additional
degrees of freedom are preferred to execute complicated
tasks. This kinematic redundancy can result in joint motion
in the null space of the Jacobian matrix that does not affect
the end-effector position, this phenomenon is commonly
referred to as self-motion. There are generally an infinite
number of solutions for the inverse kinematics of redundant
robot manipulators2–4; this complicates the control of
kinematically redundant robot manipulators since it is
difficult to select a reasonable, desired joint trajectory for
a given desired task-space trajectory.

In our previous work,5 an adaptive full-state feedback-
quaternion-based controller developed in ref. [6] was utilized
and a general sub-task controller was designed. In ref. [5],
the sub-task controller was systematically integrated into
the stability analysis and specific sub-task objectives (such
as singularity avoidance, joint limit avoidance, bounding
the impact forces and bounding the potential energy) were
introduced to make use of the kinematic redundancy. In ref.
[7], configuration control of redundant robot manipulators

* A preliminary version of this paper has appeared in [1].
**Corresponding author. E-mail: enver@envertatlicioglu.com.

was investigated. The proposed controller achieved task-
space tracking and the redundancy was utilized to impose
kinematic and dynamic constraints or posture control. Hsu
et al.8 proposed a dynamic feedback linearizing control law
that guarantees asymptotic tracking of a desired task-space
trajectory. However, the controller in ref. [8] required that
the exact dynamic model of the robot manipulator should be
known. Zergeroglu et al.9 used the controller in ref. [8] as a
basis and developed an adaptive controller to compensate
for the parametric uncertainty in the dynamic model. In
refs. [8] and [9] both, the researchers provided control of
the redundant link velocities to accomplish desirable sub-
task objectives. Peng and Adachi10 proposed two compliant
motion controllers for redundant manipulators where the
redundancy was utilized to realize additional constraints
that optimize a user-defined objective function. Nakamura2

categorized the tasks to be accomplished by a kinematically
redundant robot manipulator based on their respective
priorities. Specifically, in chapter 4 of ref. [2], examples
of how orientation of the end-effector of a redundant robot
manipulator may have more significance than the position
of the end-effector or vice versa were provided and then the
tasks were classified based on their level of significance. For
a more detailed overview of the research on redundant robot
manipulators, the reader is referred to refs. [2, 6, 9, 11, 12]
and the references therein.

In this paper, the feedback linearizing controller in ref.
[8] is redesigned to compensate for parametric uncertainties
present in the dynamic model. The control development
is presented in two parts, namely, task-space control and
null-space control. The task-space controller is designed to
meet the task-space tracking objective, that is tracking a
desired task-space trajectory. The design of the task-space
controller allows the integration of a null-space controller
to make use of the redundancy resolution. This auxiliary
null-space controller is designed through the joint motion in
the null-space of the Jacobian matrix (i.e. self-motion) and
by controlling the joint velocities in the null-space, we can
integrate sub-task control objectives (the reader is referred
to ref. [5] for specific sub-task objectives) and achieve a
stable system. The integration of a sub-task objective into
the controller is completed by designing a framework that
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places preferences on desirable configurations based on the
sub-task objective. In the design of both task-space and null-
space controllers, Lyapunov-based analysis techniques are
utilized. This work demonstrates a major improvement to
our previous work,5 in the sense that in this paper a null-
space velocity tracking objective is defined and proven to
be met by driving the null-space velocity tracking error to
zero. This null-space control objective allows the sub-task
control objectives to be injected into the task-space controller
to control the body motion of the robot manipulator. When
compared to ref. [2], our control design utilizes Lyapunov-
based analysis, which is a powerful tool in control of non-
linear systems and in our design the position and orientation
of the end-effector is always the primary control objective and
the sub-task objectives are utilized to control only the body
motion of the manipulator. Review of the adaptive redundant
robot control literature (e.g. refs. [5, 9, 13]) suggests that
researchers typically prefer gradient-type algorithms for
parameter estimation. The design proposed here uses a
least-squares algorithm in a seemingly novel departure from
adaptive redundant robot control.

2. Dynamic and Kinematic Model
The dynamic model for an n-joint (n≥ 6), revolute, direct
drive robot manipulator is described by the following
expression:

M(θ)θ̈ + N(θ, θ̇ ) = τ , (1)

where θ(t), θ̇(t), θ̈(t) ∈ R
n denote the position, velocity

and acceleration in the joint-space, respectively. In Eq. (1),
M(θ) ∈ R

n × n represents the inertia effects, N(θ, θ̇ ) ∈ R
n

represents other dynamic effects (centripetal-Coriolis
effects, gravitational effects, dynamic frictional effects)
and τ (t) ∈ R

n represents the control input torque vector.
The subsequent development is based on the following
properties.14

Property 1 The inertia matrix M(θ) is symmetric and
positive-definite, and satisfies the following inequalities

m1‖ξ‖2 ≤ ξT M(θ)ξ ≤ m2‖ξ‖2 ∀ξ ∈ R
n, (2)

where m1, m2 ∈ R are positive constants and ‖·‖ denotes the
standard Euclidean norm.

Property 2 The left-hand side of (1) can be linearly
parameterized as

M(θ)θ̈ + N(θ, θ̇ ) = Y (θ, θ̇ , θ̈)φ, (3)

where φ ∈ R
p contains the constant system parameters and

the regression matrix Y (·) ∈ R
n × p contains known functions

dependent on the signals θ(t), θ̇(t) and θ̈(t).

The kinematic model for the robot manipulator is described
by the following expression:

ẋ = J (θ)θ̇ , (4)

where x(t) ∈ R
m is the task-space position and J (θ) ∈ R

m × n

is the manipulator Jacobian matrix. The subsequent develop-
ment is based on the assumption that x(t), ẋ(t), θ(t) and θ̇(t)
are measurable.

Remark 1 The dynamic and kinematic terms for a general
revolute robot manipulator, denoted by M(θ), N(θ, θ̇), J (θ)
and J+(θ), are assumed to depend on θ(t) only as arguments
of trigonometric functions, and hence remain bounded
for all possible θ(t). During the control development, the
assumption will be made that if x(t) is bounded then θ(t) is
a bounded signal.

3. Pseudo-Inverse and Its Properties
The pseudo-inverse of the Jacobian, denoted by
J+(θ) ∈ R

n×m, is defined as follows:

J+ �= J T (JJ T )−1. (5)

From (5), it is clear that J+(θ) satisfies the following∗

JJ+ = Im. (6)

As shown in ref. [2], the pseudo-inverse defined by (5)
satisfies the Moore–Penrose conditions as follows:

JJ+J = J, J+JJ+ = J+, (7)

(J+J )T = J+J, (JJ+)T = JJ+. (8)

In addition to the above properties, the matrix (In − J+J )
satisfies the following properties:

(In − J+J )(In − J+J ) = In − J+J, (9)

(In − J+J )T = (In − J+J ), (10)

J (In − J+J ) = 0n×1, (11)

(In − J+J )J+ = 0n×1. (12)

The following expression can be obtained for the time
derivative of J+J :

d

dt
{J+J } = Jφ + J+J̇ (In − J+J ), (13)

where Jφ(t) ∈ R
n × n is an auxiliary function defined as

follows:

Jφ
�= J̇+J + J+J̇ J+J. (14)

It should be noted that Jφ(t) satisfies the following property:

JJφ = (J J̇+ + JJ+J̇ J+)J,

= d

dt
{JJ+}J,

= 0n×n, (15)

∗ Throughout the paper, In and 0m×r will be used to represent
an n× n standard identity matrix and an m× r zero matrix,
respectively.
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where Eq. (6) was used. In addition, the following property
will also be utilized throughout the subsequent analysis:

(In − J+J )Jφ = Jφ − J+JJφ,

= Jφ, (16)

where Eq. (15) was used.

Remark 2 During the subsequent control development,
the assumption is made that the minimum singular value
of the manipulator Jacobian matrix, denoted by σm, is
greater than a known small positive constant δ > 0, such
that max{‖J+(θ)‖} is known a priori and all kinematic
singularities are always avoided.

4. Task-Space Controller Development
The primary control design objective is to formulate a control
input that ensures that the end-effector of the manipulator
tracks a desired trajectory. The task-space tracking error
denoted by e(t) ∈ R

m is defined as follows:

e
�= xd − x, (17)

where xd (t) ∈ R
m is the task-space desired trajectory. In the

subsequent development, it will be assumed that xd (t), ẋd (t)
and ẍd (t) are bounded signals.

Based on (4), the following expression can be obtained for
the joint velocities:

θ̇ = J+ẋ + (In − J+J )θ̇ . (18)

To facilitate the task-space controller development, the time
derivative of (18) is given as follows:

θ̈ = J+ẍ + J̇+ẋ − d

dt
{J+J }θ̇ + (In − J+J )θ̈ . (19)

After using Eq. (4), the following simplified expression can
be obtained for θ̈(t):

θ̈ = J+(ẍ − J̇ θ̇) + θ̈N , (20)

where θ̈N (t) ∈ R
n is defined as follows:

θ̈N
�= (In − J+J )θ̈ . (21)

The estimation form of (3) is defined as

M̂(t)θ̈ + N̂(t) = Y (θ, θ̇ , θ̈)φ̂, (22)

where φ̂(t) ∈ R
p, M̂(t) and N̂(t) are the estimates of φ, M(θ)

and N(θ, θ̇ ), respectively. After subtracting (22) from the
manipulator’s dynamics in (1), the following is obtained:

Y φ̃ = τ − (M̂θ̈ + N̂), (23)

where φ̃(t) ∈ R
p is the parameter estimation error defined as

φ̃
�=φ − φ̂. (24)

After pre-multiplying (23) by M̂−1(t), the following
expression can be obtained:

M̂−1Y φ̃ = M̂−1τ − M̂−1N̂ − θ̈ , (25)

for the open-loop error system. To facilitate the subsequent
analysis the control input τ (t) is designed as follows:

τ
�= M̂[J+u1 + φN ] + N̂ + u2, (26)

where u1(t) ∈ R
m, u2(t) ∈ R

n are auxiliary control inputs and
φN (t) ∈ R

n is a vector in the null-space of J (t). The auxiliary
control input u1(t) is designed as

u1
�= ẍd + kvė + kpe − J̇ θ̇ + uaux, (27)

where kv and kp are positive constants, and uaux(t) ∈ R
m

is another auxiliary control input that will be designed
subsequently. After substituting (26) and (27) into the open-
loop error system in (25), the following expression is
obtained:

M̂−1Y φ̃ = J+(ë + kvė + kpe + uaux)

+ M̂−1u2 + φN − θ̈N . (28)

After pre-multiplying (28) by J (t) and rearranging, the
following expression can be obtained:

ë + kvė + kpe + uaux = JM̂−1(Y φ̃ − u2), (29)

where Eq. (6) and the following facts were used:

JφN = 0m×1, J θ̈N = 0m×1. (30)

It should be noted that since θ̈(t) is an unmeasurable
signal, the regression matrix Y (θ, θ̇ , θ̈) introduced in Eq. (3)
is unmeasurable. To tackle this issue, a filtered regression
matrix Yf (t) ∈ R

n×p is introduced15:

Ẏf
�= − αYf + αY, Yf (t0)

�= 0n×p, (31)

where α ∈ R is a positive constant. Notice that Eq. (31)
cannot be implemented since Y (θ, θ̇ , θ̈) is unmeasurable. For
an implementable form of the filtered regression matrix see
Appendix B. A filtered control input is defined similarly15

τ̇f
�= − ατf + ατ, τf (t0)

�= 0n×1. (32)

To facilitate the subsequent analysis a prediction error,
denoted by z(t) ∈ R

n, is defined as follows:

z
�= M̂−1(τf − Yf φ̂). (33)
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After using the development given in Appendix A, the
prediction error in Eq. (33) can be written as follows:

z = M̂−1Yf φ̃, (34)

where (24) was also utilized. The auxiliary control input u2(t)
is designed as

u2
�= 1

α
Yf

˙̂φ + 1

α

˙̂Mz. (35)

After substituting u2(t) into Eq. (29), the following
expression can be obtained:

ë + kvė + kpe = J

(
1

α
ż + z

)
− uaux, (36)

where Eq. (34) and its time derivative were utilized. A filtered
tracking error, denoted by r(t) ∈ R

m, is defined to be of the
following form:

r
�= ė + σ1e, (37)

where σ1 ∈ R is a positive constant. After setting the constant
control gains kv and kp, which were introduced in Eq. (27),
as

kv
�= σ1 + σ2, kp

�= σ1σ2, (38)

the left-hand side of Eq. (36) can be written as

ë + kvė + kpe = ṙ + σ2r, (39)

where σ2 ∈ R is a positive constant. After using Eq. (39), the
expression in Eq. (36) can be rewritten as

ṙ + σ2r = J

(
1

α
ż + z

)
− uaux. (40)

To facilitate the subsequent stability analysis, an auxiliary
error signal, denoted by y(t) ∈ R

m is defined as

y
�= r − 1

α
Jz. (41)

The time derivative of y(t) is given as

ẏ = −σ2y +
(

1 − σ2

α

)
Jz − 1

α
J̇ z − uaux, (42)

where Eqs. (40) and (41) were utilized. The auxiliary control
input uaux(t) is designed as

uaux
�=

(
1 − σ2

α

)
Jz − 1

α
J̇ z. (43)

After substituting (43) into (42), the following simplified
expression is obtained for the dynamics of y(t) :

ẏ = −σ2y. (44)

From (44), standard analysis techniques can be utilized to
show that

y(t) = y(t0) exp(−σ2t) (45)

from which we can conclude that ‖y(t)‖ → 0 exponentially
fast. Motivated by the subsequent stability analysis, the
parameter estimate vector φ̂(t) is generated by the following
update law:

˙̂φ
�= 	YT

f M̂−T z, (46)

where 	(t) ∈ R
p×p is a least-squares estimation gain matrix

designed as follows:

d

dt
(	−1)

�=YT
f M̂−T M̂−1Yf . (47)

Remark 3 It should be noted that when 	−1(t0) is selected to
be positive definite and symmetric, then it is clear that 	(t0)
is also positive definite and symmetric. Therefore, it follows
that both 	−1(t) and 	(t) will remain positive definite and
symmetric ∀t . From (47), the following expression can be
obtained:

	̇ = −	YT
f M̂−T M̂−1Yf 	. (48)

From (48), it is easy to see that 	̇(t) is negative semi-definite;
therefore, the estimation gain matrix 	(t) is always constant
or decreasing, and hence 	(t) is bounded (for more details,
the reader is referred to refs. [15] and [16]).

Remark 4 The matrix inverse of the estimate of M(θ) (i.e.
M̂(θ)) can be guaranteed to exist through the use of a
projection algorithm as described in ref. [17].

Theorem 1 The control law described in (26), (27), (35) and
(43) and the adaptation law defined in (46) guarantee that
z(t), r(t) and e(t) are driven to zero as t → ∞.

Proof See Appendix C.

Remark 5 The proof of Theorem 1 requires the boundedness
of θ̇ (t) and φN (t). In the subsequent sections, an auxiliary
null-space control signal, denoted by g(θ), will be designed
to meet these conditions.

5. Sub-Task Error System
In addition to the end-effector tracking objective, there may
be sub-task objectives that are required for a particular
redundant robot application. To integrate the sub-task
objective into the controller, an auxiliary control signal,
denoted by g(θ), will be introduced. The integration of
this sub-task objective into the controller is completed by
designing a framework that places preferences on desirable
configurations based on the sub-task objective. The auxiliary
null-space controller g(θ) is designed through the joint
motion in the null-space of the Jacobian matrix (i.e. self-
motion).
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The null-space velocity tracking error is defined as8

ėN
�= (In − J+J )(g − θ̇ ), (49)

where g(t)∈ R
n is the subsequently designed null-space

controller. The following expression can be obtained for the
dynamics of ėN (t)

ëN = (In − J+J )ġ + (In − J+J )

(
1

α
ż + z − φN

)

−Jφ(g − θ̇ ) − J+J̇ ėN , (50)

where Eqs. (12), (13) and (49) were utilized along with the
following expression for θ̈ (t):

θ̈ = −
(

1

α
ż + z

)
+ J+u1 + φN, (51)

where Eqs. (20), (25), (26), (34), the time derivative of (34)
and (35) were utilized. To facilitate the null-space control
development, an auxiliary error signal, denoted by p(t) ∈ R

n,
is defined as follows:

p
�= ėN − 1

α
(In − J+J )z. (52)

The dynamics of p(t) can be written as

ṗ = (In − J+J )ġ + (In − J+J )(z − φN )

−Jφ

(
g − θ̇ − 1

α
z

)
− J+J̇ p, (53)

where Eqs. (13), (50) and (52) were utilized. The auxiliary
null-space vector φN (t), introduced in Eq. (26), is now
designed as follows:

φN
�= (In − J+J )(ġ + knp + z)

+ Jφ

(
g − θ̇ − 1

α
z

)
, (54)

where kn ∈ R is a positive constant. After substituting φN (t)
into Eq. (53) the following simplified expression is obtained
for the dynamics of p(t):

ṗ = −kn(In − J+J )p − J+J̇ p, (55)

where Eqs. (9) and (16) were used.

Theorem 2 The auxiliary null-space vector described by
(54) guarantees that ėN (t) is driven to zero as t → ∞.

Proof See Appendix D.

6. Sub-Task Controller
In this section, a general sub-task controller is developed.
As proven in the subsequent stability analysis, the sub-task
objective will be met if the Jacobian-related null-space matrix

maintains full rank. Specifically, when the subsequently
defined Jacobian-related null-space matrix loses rank, the
sub-task objective will not be met.

An auxiliary positive function ya(t) ∈ R is defined as

ya
�= exp(−kyβ(θ)), (56)

where ky ∈ R is a positive constant, β(θ) ∈ R is a non-negative
function that is specific to each sub-task and exp(·) is the
natural logarithmic exponential function. After taking the
time derivative of (56), the following simplified expression
is obtained for the dynamics of ya(t):

ẏa = Jsθ̇ , (57)

where Js(t) ∈ R
1×n is a Jacobian-type vector defined as

follows:

Js = ∂ya

∂θ
. (58)

After adding and subtracting the terms JsJ
+J θ̇ and Js(In −

J+J )(g − θ̇ ) to the right-hand side of Eq. (57), we obtain the
following for the time derivative of ya(t):

ẏa = JsJ
+ẋ + Js(In − J+J )g − JsėN , (59)

where (4) and (49) were used. Based on the subsequent
stability analysis, the sub-task controller is designed as

g
�= − ksJ

T
s ya, (60)

where ks ∈ R is a positive constant. After substituting Eq. (60)
into Eq. (59), we obtain the following expression:

ẏa = −ksJs(In − J+J )(In − J+J )J T
s ya

+JsJ
+ẋ − JsėN , (61)

where Eq. (9) was utilized.

Remark 6 The auxiliary signal ya(t) in Eq. (56) was
preferred because of the useful properties of the logarithmic
exponential function given that many different positive
functions could also be utilized for the design of ya(t). From
Eq. (56), it is clear that as β(θ) increases, ya(t) decreases
and ya(t) satisfies these inequalities, 0 <ya(t) ≤ 1.

The following theorem is stated to show the performance
of the sub-task controller.

Theorem 3 The control law described by Eq. (60) guarantees
that ya(t) is practically regulated (i.e. ultimately bounded) in
the following sense:

|ya(t)| ≤
√

y2
a (t0) exp(−2γ t) + ε

γ
, (62)

provided the following sufficient conditions hold:

‖Js(In − J+J )‖2 > δ̄, (63)
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‖Js(J+ẋ − ėN )‖ ≤ δ1, (64)

ks >
1

δ̄δ2
, (65)

where ε, γ , δ̄, δ1, δ2 ∈ R are positive constants.

Proof The reader is referred to Appendix A of ref. [18] for a
similar proof.

Remark 7 For specific sub-task objectives including
singularity avoidance, joint-limit avoidance, bounding the
impact forces and bounding the potential energy, the reader
is referred to ref. [18].

Remark 8 The sub-task objective is met only if the sufficient
conditions described by the inequalities in (63)–(65) are
satisfied.∗ From the result of Theorem 1, the task-space
tracking objective is guaranteed and the sub-task objective is
always secondary to it. When the sub-task controller forces
the end-effector of the robot manipulator to take a path not
allowed by the task-space tracking controller, the condition
in (63) will not be satisfied; hence, the result of Theorem 3
will not hold. To meet the task-space tracking and sub-task
objectives simultaneously, careful consideration is required
in the design of the desired task-space trajectory and the
sub-task objective.

7. Numerical Simulation Results
To illustrate the performance of the task-space and sub-task
controllers, a numerical simulation was conducted using the
model of a planar, three-joint, revolute robot manipulator.
Since most real robot manipulators have mechanical limits
on the joint rotations, joint limit avoidance is considered as
an interesting sub-task control objective. The objective for
this sub-task is to keep each joint away from its respective
joint limits, while meeting the task-space tracking control
objective. For this sub-task, the auxiliary signal β(θ) is
defined as follows5:

β
�=

3∏
i=1

[(
1 − θi

θmax
i

)(
θi

θmin
i

− 1

)]
, (66)

where θmin
i and θmax

i ∈ R
+ are the minimum and maximum

joint limits for the ith joint, respectively. For this sub-task
objective, the problem is set up to satisfy β(θ) > 0 which
can be achieved by keeping ya(t) < 1. Based on the result of
Theorem 3, from (62), it is clear that ya(t) < 1 if the following
inequality holds:

√
y2

a (t0) + ε

γ
< 1, (67)

∗It should be noted that, the control gain ks could be chosen to
satisfy Eq. (65). After using Remark 1 and the results of Theorem
1, it can be concluded that θ (t), J (θ ) and J+(θ ) are bounded. Since
Js(·) is a function of θ (t), then from Eq. (58), it is clear that Js(·)
is bounded function. From the results of Theorems 1 and 2, it can
be seen that ẋ(t) and ėN (t) are bounded functions, thus, it can be
concluded that the term ‖Js(J+ẋ − ėN )‖ can be lower bounded by
a positive constant.

which can be achieved by proper selection of the initial
conditions of the robot manipulator, control gains ks , ky and
bounding constants. From (66), it is easy to see that β(θ) > 0
will be satisfied as long as all joint angles are within their
respective joint limits. From (56), (62), (66) and (67), it is
clear that β(θ) > 0 ∀t , provided the sufficient conditions in
Eqs. (63)–(65) are met; hence meeting the sub-task objective.

For the simulation, the dynamic model of the robot
manipulator was considered to be of the following form:

M(θ)θ̈ + Vm(θ, θ̇ )θ̇ + Fdθ̇ = τ. (68)

In Eq. (68), M(θ) = (mi,j )3×3, Vm(θ, θ̇ ) = (vi,j )3×3 and Fd ∈
R

3×3 represent the symmetric inertia matrix, the centripetal-
Coriolis terms and the frictional effects, respectively. The
entries of the inertia matrix and the centripetal-Coriolis terms
have the following form∗∗

m11 = φ1 + 2φ4c2 + 2φ5c23 + 2φ6c3, m22 = φ2 + 2φ6c3,

m12 = φ2 + φ4c2 + φ5c23 + 2φ6c3, m23 = φ2 + φ6c3,

m13 = φ2 + φ5c23 + φ6c3, m33 = φ3,

v11 = −φ4s2θ̇2 − φ5s23θ̇2 − φ5s23θ̇3 − φ6s3θ̇3,

v12 = −(φ4s2 + φ5s23)(θ̇1 + θ̇2) − φ5s23θ̇3 − 2φ6s3θ̇3,

v13 = −(φ5s23 + φ6s3)(θ̇1 + θ̇3) − φ5s23θ̇2,

v21 = (φ4s2 + φ5s23)θ̇1,

v22 = −φ6s3θ̇3,

v23 = −φ6s3(2θ̇1 + θ̇2 + θ̇3),

v31 = (φ5s23 + φ6s3)θ̇1,

v32 = φ6s3(2θ̇1 + θ̇2),

v33 = 0,

the dynamic frictional effects are of the form

Fd
�= diag{φ7, φ8, φ9} and φi are the unknown parameters.

The task-space is defined by x(t)
�= [x1(t) x2(t)]T where

x1(t), x2(t) ∈ R are scalar Euclidean coordinates. The planar
three-joint robot manipulator has the following forward
kinematics for the end-effector

[
x1

x2

]
=

[
�1c1 + �2c12 + �3c123

�1s1 + �2s12 + �3s123

]
,

and the manipulator Jacobian is obtained as follows:

J =
⎡
⎣−�1s1 − �2s12 − �3s123 �1c1 + �2c12 + �3c123

−�2s12 − �3s123 �2c12 + �3c123

−�3s123 �3c123

⎤
⎦

T

,

where the link lengths were selected as �1 = 0.40 [m],
�2 = 0.36 [m] and �3 = 0.32 [m]. The desired task-space

∗∗ The notations ci , si , cij , sij , cijk and sijk represent cos(θi),
sin(θi), cos(θi + θj ), sin(θi + θj ), cos(θi + θj + θk) and sin(θi +
θj + θk) ∀ i, j, k, respectively.
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Fig. 1. Desired trajectory for three-link robot.

trajectory xd (t) ∈ R
2 is generated by the following bounded

dynamic system:

[
ẋd1

ẋd2

]
= 0.05

[− sin(0.1t)
cos(0.2t)

]

and can be seen in Fig. 1. The control gains were selected as
follows:

α = 1, σ1 = 4, σ2 = 8,

kn = 8, ky = 1, ks = 2.

The initial conditions of the parameter estimates and
estimation gain matrix were selected as follows:

φ̂(t0) = 09×1, 	(t0) = I9,

and φ=[1.2746 0.39464 0.0512 0.4752 0.128 0.1152
8 8 8]T . The robot manipulator was set to be initially at
rest at the following joint configuration:

θ(t0) = [0.5 0.5 3.3]T

and the following values were chosen for the joint limits:

θmin
1 = 0.5, θmin

2 = 0.5, θmin
3 = 0.1,

θmax
1 = 2.0, θmax

2 = 2.0, θmax
3 = 6.0,

all in radians. The initial configuration of the robot
manipulator was intentionally selected to make β(θ(t0)) = 0
i.e. maximize ya(t0)) to demonstrate that Eq. (62) holds for
the simulation. The auxiliary sub-task function β(θ) and the
tracking error are presented in Figs. 2 and 3, respectively.
From Figs. 2 and 3, it is clear that both the tracking objective
and the joint limits sub-task objective were successfully
satisfied. In Fig. 4, the parameter estimates are presented.
To better demonstrate the effects of the sub-task controller,
the simulation was run one more time without the sub-task
controller. This was done by setting ks = 0 and keeping
everything else the same. The joint positions of the slave
system and the auxiliary sub-task function β(t) are presented
in Figs. 5 and 6, respectively. It is clear that during the
simulation run, the first joint position becomes less than its
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Fig. 2. β(θ ) for joint limit avoidance sub-task.
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Fig. 3. Tracking error.
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Fig. 4. The parameter estimates φ̂(t).

minimum joint limit while the second joint becomes greater
than its maximum joint limits, and as a result β(t) becomes
less than zero.

8. Conclusions
Lyapunov-based stability analysis techniques were utilized
to design a feedback linearizing adaptive controller for
kinematically redundant robot manipulators. The controller
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Fig. 5. The joint positions of the robot manipulator.
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Fig. 6. β(θ ) when there is no sub-task controller (i.e. ks = 0).

compensates for the parametric uncertainties in the dynamic
model using a least-squares estimation algorithm. To our
best knowledge, this is novel when compared to the
previous adaptive redundant robot control literature. Task-
space tracking was achieved and the kinematic redundancy
was utilized to integrate a general sub-task controller.
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Appendix A: Filter Development
From Eqs. (1), (3), (31) and (32) the following can be
obtained:

τ̇f + ατf = Ẏf φ + αYf φ. (A 1)

The expression in Eq. (A1) can be rewritten as

(s + α)τf = (s + α)Yf φ, (A 2)

where s is the Laplace variable. From Eq. (A2) the following
can be obtained15:

τf = Yf φ, (A 3)

where the initial condition information defined in Eqs. (31)
and (32) were utilized.

Appendix B: Implementable Form of the Regression
Matrix
In order to obtain an implementable form of Eq. (31) the
entries of Y (θ, θ̇ , θ̈) will be written in the following form:

Yij (θ, θ̇ , θ̈)
�=BT

ij (θ)θ̈ + Aij (θ, θ̇), (B 1)

where BT
ij (θ) ∈ R

1×n and Aij (θ, θ̇ ) ∈ R for ∀i = 1, . . . , n

and ∀j = 1, . . . , p. An auxiliary filter signal, denoted by
Pij (t) ∈ R, is designed as follows:

Ṗij (t)
�= −αYfij

− ḂT
ij (θ)θ̇ + Aij (θ, θ̇ ), (B 2)

Pij (t0)
�= −BT

ij (θ(t0))θ̇ (t0), (B 3)
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where Yfij
(t) ∀i, j are defined as follows:

Yfij

�=Pij + BT
ij (θ)θ̇ . (B 4)

From Eqs. (B2)–(B4), it is clear that Eq. (31) is satisfied
and Yfij

(t) defined in Eq. (B4) can be implemented without
measuring θ̈ (t).

Appendix C: Proof of Theorem 1
The following non-negative function is introduced to analyse
the stability of the task-space controller:

V1
�= 1

2
φ̃T 	−1φ̃. (C 1)

The time derivative of the Lyapunov function in Eq. (C1) is
given as follows:

V̇1 = 1

2
φ̃T 	̇−1φ̃ − φ̃T 	−1 ˙̂φ

= 1

2
φ̃T Y T

f M̂−T M̂−1Yf φ̃ − φ̃T Y T
f M̂−T z

= −1

2
zT z, (C 2)

where Eqs. (34), (46) and (47) were used. After integrating
Eq. (C2) the following expression can be obtained:

V1(t0) − V1(∞) = 1

2

∞∫
t0

zT (τ )z(τ ) dτ. (C 3)

From (C1), it is clear that V1(t0) > 0, and from (C3), it is easy
to see that V1(t) ≤ V1(t0), then we can conclude that V (t) is
bounded, hence z(t) ∈L2 ∩ L∞ and φ̃(t) ∈L∞. From (24),
φ̂(t) ∈L∞ hence M̂(t) and N̂(t) are also bounded. Based on
Remark 4, the matrix inverse of the estimate of M(θ) (i.e.
M̂−1(t)) exists and is bounded. Remark 1 can be utilized to
show that J (θ) and J+(θ) are bounded. These boundedness
statements can be utilized along with Eq. (41) to prove that
r(t) is bounded; hence, from Eq. (37), we can conclude
that e(t), ė(t) ∈L∞. Since the desired trajectory and its time
derivative are assumed to be bounded then from Eq. (17) and
its time derivative we can prove that x(t), ẋ(t) ∈L∞. Based
on Remark 1, θ(t) is bounded. The rest of the development
requires the joint velocities to be bounded. From the proof of
Theorem 2 (see Appendix D), we know that ėN (t) ∈L∞ and
from the proof of Theorem 3, we know that g(t) ∈L∞. Based
on these facts, we can show that (In − J+J )θ̇ ∈L∞. After
utilizing this along with Eq. (4) and the fact that ẋ(t) ∈L∞,
we can prove that θ̇(t) ∈L∞. After utilizing the facts that

θ(t), θ̇ (t) ∈L∞, we can conclude that M(θ) and N(θ, θ̇ ) are
bounded. By utilizing the above boundedness statements it
is easy to show that J̇ (θ) ∈L∞. From the development in
Appendix B, we can show that Yf (t), Ẏf (t) ∈L∞. Then from
Eq. (46), it is clear that ˙̂φ(t) is also bounded. Thus ˙̂M(t)
and d

dt
(M̂−1(t)) can be shown to be bounded. We can utilize

the time derivative of Eq. (34) to prove that ż(t) ∈L∞. The
above boundedness statements can be utilized along with
(35) and (43) to show that uaux(t), u2(t) ∈L∞, thus, from
Eq. (27), u1(t) is also bounded. From the proof of Theorem 3,
we know that g(t), ġ(t) ∈L∞. After utilizing these facts and
the previous boundedness statements along with Eq. (54), we
can prove that φN (t) ∈L∞. Then from (26) and (51), it is clear
that τ (t), θ̈(t) ∈L∞. Since z(t) ∈L2 ∩ L∞ and ż(t) ∈L∞, we
can conclude that ‖z(t)‖ → 0 as t → ∞. Then from Eq. (41),
it is clear that ‖r(t)‖ → 0 as t → ∞; thus from (37), ‖e(t)‖,
‖ė(t)‖ → 0 as t → ∞.

Appendix D: Proof of Theorem 2
Let V2(t) ∈ R denote the following non-negative function:

V2
�= 1

2
pTp. (D 1)

The time derivative of (D1) is given as follows:

V̇2 = −knp
T p + pT J+(knJ − J̇ )p, (D 2)

where the dynamics of ṗ(t) in (55) was utilized. To
facilitate the subsequent development the following property
is introduced

pT J+ =
(

g − θ̇ − 1

α
z

)T

(In − J+J )T J+

=
(

g − θ̇ − 1

α
z

)T

(In − J+J )J+

= 01×m, (D 3)

where Eqs. (49) and (52) were utilized. In view of (D3), (D2)
can be written in the following simple form:

V̇2 = −knp
Tp. (D 4)

From (D1) and (D4), standard linear analysis techniques can
be utilized to show that

p(t) = p(t0) exp(−knt), (D 5)

from which we can conclude that ‖p(t)‖ → 0 exponentially
fast. Then from (52) and the proof of Theorem 1, it is easy
to see that ‖ėN (t)‖ → 0 as t → ∞.
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